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Abstract

This paper studies the challenging problem of scheduling packet transmissions for data gathering
in wireless sensor networks. The focus of our work is to explore the energy-latency tradeoffs in packet
transmission using techniques such as modulation scaling. The data aggregation tree — a multiple-source
single-sink communication paradigm — is employed for abstracting the packet flow. We consider a real-
time scenario in which the data gathering must be performed within a specified latency constraint. We
present algorithms to minimize the overall energy dissipation of sensor nodes in the data aggregation
tree without violating the latency constraint. For the off-line version of the problem, we propose
() a numerical algorithm for optimal solutions, and (b) a dynamic programming-based polynormial
approximation algorithm by discretizing the transmission time. While interference can be minimized
by medium access control (MAC) layer mechanisms, we also illustrate explicit packet scheduling for
interference avoidance when multi-packet reception techniques (such as CDMA, FDMA) are used.
Moreover, the discretized transmission time naturally leads to a simple, distributed on-line protocol that

relies only on the local information available at each sensor node. Extensive simulations were conducted
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improvements, including complete proofs, improved on-line protocol, and more comprehensive simulation results.



(2]

for both long-range communication (with radius around 32 m) and short-range communication (with
radius around 7 m). We used the baseline of transmitting all packets at the highest speed and shutting
down the radios afterward. Our simulation results from the scenarios that we studied show that compared
with the baseline, up to 90% energy savings can be achieved by our techniques, under different settings
of several key system parameters. The adaptability of the protocol is also demonstrated through several

run-time scenarios.

Index Terms

real-time data gathering, wireless sensor networks, rate adaptation, energy efficiency, dynamic

programming

1. INTRODUCTION

Wireless sensor networks (WSNs) are being developed for a wide range of civil and military
applications, such as target tracking, infrastructure monitoring, habitat sensing, and battlefield
surveillance [2]-[4]. In many applications for wireless sensor networks (WSNs) [3], data gather-
ing is important for extracting useful information from the coupled environment to users. Recent
studies [5], [6] show that data aggregation is particularly useful in eliminating the data redundancy
and reducing the communication load. Typical communication patterns in data aggregation
involve multiple data sources and one data sink (or recipient). Thus, the corresponding packet
flow resembles a reverse-multicast structure, which is called the data aggregation tree.

Energy-efficiency is a key concern in WSNs. The large number of sensor nodes involved in
such networks and the need to operate over a long period of time require careful management of
the energy resources. In addition, wireless communication is a major source of power consump-
tion. Since a significant portion of the communication in WSNs is due to data gathering, it is
crucial to design energy-efficient communication strategies in implementing such an operation.

One of the useful approaches for energy-efficient communication is to explore the energy-
latency tradeoffs. An important observation in [7] is that in many channel coding schemes, the
transmission energy can be significantly reduced by lowering transmission power and increasing
the duration of transmission. Techniques such as modulation scaling [8] have been proposed
for implementing such tradeoffs. Foreseeing the integration of these techniques into commercial
radio modules, we believe that it is important to analyze these techniques in the context of data

gathering in WSNs.



This paper studies the problem of scheduling packet transmissions over a data aggregation
tree. The main purpose is to explore the energy-latency tradeoffs at the MAC layer with respect
to the system performance at the application layer. We consider a real time scenario where the
raw data gathered from source nodes must be aggregated and transmitted to the sink within
a specified latency constraint. Our technique is applicable to any given aggregation functions.
The objective function is to minimize the overall energy dissipation of the sensor nodes in the
aggregation tree subject to the latency constraint. Compared with [7], [9], we use a more general
and accurate energy model for abstracting the energy characteristics for packet transmission in
WSNSs. Specifically, the transmission energy does not monotonically decrease as the transmission
time increases — the transmission energy may increases when the transmission time exceeds some
threshold value [10]. We refer to the above general model as the non-monotonic energy model.
Technical Approach Overview: We solve the considered problem using two different but
related approaches. In the first approach, we assume a continuously tunable transmission time.
A numerical optimization algorithm is developed for solving the off-line version of our problem,
where the structure of the data gathering tree and the energy characteristics of all sensor nodes
are known a priori. While this numerical optimization provides the optimal off-line solution to
our problem, it is theoretically difficult to give an upper bound on its running time.

In the second approach, we approximate the continuous transmission time using a set of
discrete values. We then derive a recursive presentation of the considered problem, which
naturally leads to a dynamic programming based algorithm (DP-Algo) for solving the off-line
problem. For a given number of discrete values for the transmission time, DP-Algo solves the
off-line problem in polynomial time.

While the communication interference in the aforementioned two solutions can be minimized
by medium access layer (MAC) scheduling, we also study the application of multi-packet
reception (MPR) techniques for explicit interference avoidance. To do so, we consider the so-
called “scheduling constraint”, which essentially enforces that at any time, any sensor node can
receive packets from at most one of its children. We propose a heuristic approach to schedule
the transmission from multiple children such that they do not overlap with each other.

Furthermore, a simple, localized on-line protocol is developed based on discretized transmis-
sion time. The key idea is to iteratively identify the sensor node with the highest energy cost

in the gathering tree by piggybacking existing data messages and reduce its energy cost when



allowed by the latency constraint. In this protocol, each sensor node only needs to perform simple
operation based on its local information and the piggybacked information from data messages.
The protocol is designed with the aim of self-adaptation to various dynamics in the system,
including changes of packet size and latency constraint.

Finally, we evaluate the performance of our algorithms and protocol through extensive sim-
ulations. The simulations were conducted for both long and short-range communications. We
considered two models of source placement, namely the random source and the event radius
source placements [6]. We used the baseline where all sensor nodes transmit the packets at the
highest speed (8 bits/symbol) and shut down the radio afterwards. Our simulation results from
the scenarios we studied show that compared with this baseline, up to 90% energy savings can
be achieved by our off-line algorithms and the on-line protocol. We also investigate the impact of
several key network and radio parameters. The adaptability of the protocol is also demonstrated
through two run-time scenarios.

Paper Organization: We briefly discuss the related work in Section 1I. We describe our un-
derlying network model and the energy-latency tradeoffs for wireless communication in Sec-
tion III. The packet transmission problem is then defined in Section IV. Off-line algorithms
for the problem are presented in Section V. In Section VI, a distributed on-line protocol is
described. Simulation results are shown in Section VIL. Finally, concluding remarks are made

in Section VIIIL.

II. RELATED WORK

Data gathering tree is common to data-centric routing in WSNs [5], [6]. The construction of the
data gathering tree has been studied under various circumstances. For example, several localized
tree topology generation mechanisms are compared by Zhou er. al. using metrics including node
degree, robustness, and latency [11]. When the joint entropy of multiple information sources is
modeled as a concave function of the number of sources, a randomized logarithmic approximation
algorithm is developed by Goel et. al. [12]. By considering a simplified compression model,
where the entropy conditioning at nodes only depends on the availability of side information,
a hybrid scheme of Shortest Path Tree and Traveling Salesman Path is proved to provide 2-
approximation performance for minimizing the overall cost of the data gathering tree [13]. A nice

analysis of the impact of spatial correlation on several practical schemes for tree construction [14]
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indicates that a simple cluster-based routing scheme performs well regardless the correlation
among sources. All these works provide the underlying communication substrate above which
our algorithms and protocols can be applied for energy minimization.

From wireless communication perspective, rate adaptation have been widely studied to opti-
mize spectral efficiency (e.g., network throughput) subject to the channel conditions in cellular
networks [15]-[17] or local-area wireless networks [18]-[20]. Several recent works [7]-[9], [21]-
[23] have studied the application of rate adaptation for energy conservation, which is closely
related to our work.

For a single-hop link, the problem of minimizing the energy cost of transmitting a set of
packets subject to a specified latency constraint is studied by Prabhakar er. al. [7]. An extension
of the problem [9] investigates the packet transmission from one single transmitter to multiple
receivers. In both [7] and [9], optimal off-line algorithms and near-optimal on-line solutions are
provided. The concept of modulation scaling was first proposed by Schurgers er. al. [8]. For a
single-hop link, policies for adjusting the modulation level are developed for cases where no
real-time requirements are imposed [8] or each packet delivery has a deadline to meet [21],
Also, modulation adaptation is integrated into multi-packet scheduling with deadline for each
packet [21] and the Weighted Fair Queuing (WFQ) scheduling policy [22]. For a multi-hop
communication path, modulation scaling is used for balancing the energy cost for all nodes
along the path [23].

The real-time latency constraint considered in this paper requires the use of global time-

synchronization schemes [24]. Our scenario is similar to the epoch-based data gathering scheme [25],

where the length of each epoch actually plays the role of latency constraint. However, prior work
has not considered the possibility of using packet-scheduling techniques that trade latency for
energy in such a scenario.

To the best of our knowledge, this is the first paper that addresses packet scheduling in a general
tree structure. The challenges of our problem are multi-fold. Firstly, the energy functions can
vary for different links. It is therefore required to develop general optimization techniques instead
of explicit solutions. Secondly, the latency constraint for data gathering in real applications is
typically given by considering the aggregation tree as a whole. It is difficult to directly apply the
techniques in [9] and [7], as they require explicit latency constraints over each link. Lastly, we

consider the non-monotonic energy functions, which has not been addressed in previous work.



However, the tree structure leads us to an extension of the numerical optimization algorithm

proposed in [9] as well as a recursive representation of the problem for applying dynamic

programming.

I1I. MODELS AND ASSUMPTIONS

In this section, we first describe the underlying network model, the data gathering tree. We

then explain our scheme of computing data aggregation along the tree. Finally, we discuss the

energy model for packet transmission and reveal the inherent energy-latency tradeoffs. For the

sake of clarity, we list a summary of notations used in this paper in Table L.

TABLE 1

TABLE OF NOTATIONS

T =< V,E > | the data gathering tree composed by the set of n sensor nodes V' and the set of communication links
{Vi,...,Vr} the set of the M leaf nodes in T’
Va the sink node of T
i the subtree rooted at V;
R the latency constraint for data gathering over T
Si the size of packet transmitted by V; to its parent
i the transmission time of s;
pi the path from a leaf node V; to the sink
L; the length of p;, in the metric of transmission time
C,F the radio parameters that determine the output power and the clectronic power, respectively
R the symbol rate of the radios
w;i(7i) the energy function for packet transmission by Vi, with C, F', and R as parameters
m; the value of 7; over (0,I] that minimizes w;(m)
T a schedule of packet transmission, ¥ = {71, 72,...,Tn-1}
D the approximation accuracy of DP-Algo
& the latency laxity of V;
p.c the connectivity and correlation parameters used by our simulation, respectively
N the number of source nodes used by the random source model
S the sensing range used by the event radius model

A. Data Gathering Tree

We abstract the underlying structure of the network as a data aggregation tree. This is

essentially a tree that gathers and aggregates information from multiple sources enroute to a



single sink. Such a topological structure is common to data-centric routing schemes for sensor
networks such as Directed Diffusion [5], [6]. While there may be transients during the route
creation phase (for example, when the gradients are being determined in Directed Diffusion),
we assume that this tree, once formed, lasts for a reasonable period of time and provides the
routing substrate over which aggregation can take place during data gathering.

Let T' = (V, E) denote the data gathering tree, where 1/ denotes the set of n sensor nodes,
{Vi:i=1,...,n}, and E denotes the set of directed communication links between the sensor
nodes. Let M denote the number of leaf nodes in the tree. Without loss of generality, we assume
that the sensor nodes are indexed in the topological order with Vi, ..., Vi, denoting the M leaf
nodes and V;, denoting the sink node. Every link in E is represented as a (source, destination)
pair (2, j), implying that V; is the parent of V;.

Let 7} denote the subtree rooted at any node, V;, with 7;, = T'. A path in T is defined as a
series of alternate nodes and edges from any leaf node, V;,i € {1,..., M}, to V},, denoted as
pi. We use the notation V; € p; to signify that node Vj is an intermediate node of path p;.

Raw data is generated by a set of source nodes from V' (not necessarily leaf nodes). Data
aggregation is performed by all non-sink and non-leaf nodes (referred to as internal nodes
hereafter). We assume that aggregation at an internal node is performed only after all input
information is available at the node — either received from its children, or generated by local
sensing if the node is a source node. The aggregated data is then transmitted to the parent node.
Let s; denote the size of the packet transmitted by V; to its parent. We discuss the computation
of data aggregation to determine s; in the next section.

For ease of analysis, it is assumed that raw data is available at all source nodes at time 0. Let
I" denote the latency constraint, within which data from all source nodes needs to be aggregated
and transmitted to the sink node.

We assume that sensor nodes are completely shut down when there is no packet to transmit or
receive'. Also, the time and energy costs for generating raw data at source nodes or aggregating

data at internal nodes are considered to be negligible.

Mechanisms such as signaling channel [3] can be used for synchronization between sensor nodes before any packet

transmission. However, the modeling of energy cost of such mechanisms is beyond the scope of this paper



B. Data Aggregation Paradigm

While there may be transients during the creation phase of a data gathering tree, we assume that
this tree, once formed, lasts for a reasonable period of time and provides the routing substrate over
which aggregation can take place during data gathering. Various techniques have been previously
proposed for computing aggregates, or joint information entropy, from multiple source nodes.
In our study, we adopt the model proposed by Pattern et. al. [14] where the joint entropy (or
total compressed information) from multiple information sources is modeled as a function of the
inter-source distance d, and a pre-specified correlation parameter ¢, that characterizes the extent
of spatial correlation between data. Specifically, let H, denote the data size generated from any

single source. The compressed information of two sources is calculated as [14]:

d

H,=H
4 l-‘_af-l-c

H, (1

We assume that the correlation parameter ¢ is the same for any set of sources. Based on
(1), a recursive calculation of the total compressed information of multiple sources can be
developed [14]. Due to space limitation, we omit the details here.

Although we use the expression in (1) as a typical aggregation function, please note that our
technique is not limited to this function alone. The only requirement is that we can derive the
value of s;’s based on the functions. Thus, even different functions can be used to specify the

aggregation at different sensor nodes.

C. Energy-Latency Tradeoffs in Wireless Communication

We model the transmission energy using the example of modulation scaling [8] based on the
Quadrature Ampitude Modulation (QAM) scheme [17]. Note that the algorithms presented in
this paper are extendible to other modulation schemes as well as other techniques that provide
energy-latency tradeoffs, such as code scaling [26]. Consider a packet of s bits to be transmitted
between two sensor nodes. Assuming that the symbol rate, R, is fixed, the transmission time,

7, can be calculated as [8]:

where b is the modulation level of the sender in terms of the constellation size (number of bits

per symbol).



The corresponding transmission energy can be modeled as the sum of output energy and
electronics energy. To illustrate the key energy-latency tradeoffs, we abstract the energy cost as

a function of 7 [8], denoted as w(7):
w(r)=[C- 27k —-1)+F]-7-R, (3)

where C is determined by the quality of transmission (in terms of Bit Error Rate) and the noise
power, and F' is a device-dependent parameter that determines the power consumption of the
electronic circuitry of the sender. Further, the output power, P,, and the electronic power, F,,

can be modeled as follows [8]:

= C-R-(2°—1) and 4)

0

B, = F-R. ()

Note that different assumptions about the radio characteristics, including power consumption
and data rate, may significantly affect the analysis of various energy-saving mechanisms. In
this work, we consider the radio modules described in [10], [27]. Typically, for short-range
communication with R = 1 Mbaud, the electronic power of the radio is approximately 10
mW, while the output power is approximately 1 mW at 4-QAM (which is translated into 2
Mbps). Note that the above data rate and power consumption are better than currently available
radios for commercial sensor nodes that typically support data rate up to 100 Kbps with slightly
higher power characteristics, such as Berkeley motes. However, radio devices with the above
specifications are anticipated in the near future.

From the calculation of P, and P,, it can be derived that C' &~ 3 x 107! and F = 1075,
Further, we consider a d” path loss model for signal propagation, where d is the communication
radius. Assuming that it takes 10 pJ/bit/m? by the amplifier to transmit one bit at an acceptable
quality [28], we infer that the corresponding communication radius for 1 mW output power is
v/50 ~ 7 m (from % = 10 pJ/bit/m? x d?). In our study, we also consider one more
case of communication in WSNs with longer radius. Specifically, we set the communication range
to 30 m, implying an output power of 10 pJ/bit/m* x 30% m? x 2 x 10° bit/sec = 18 mW at 4-
QAM, and consequently C' = 6 x 107%. We refer to this communication scenario as long-range

communication. Note that these numbers for communication radii are for illustrative purpose
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Fig. 1. Energy-latency tradeoffs for transmitting one bit

only — to show the different weights of C' against F' with respect to variations in communication
radius. They may vary according to different radio devices and operating environments.

Figure 1 plots the energy functions with b € [2, 8] for the long and short range communication
scenarios. In practice, b is typically set to positive even integers, as indicated by circles in the
figure. We can observe a 10-time energy reduction for long-range communication by varying b
from 8 to 2 and a 3-time energy reduction for short-range communication by varying b from 8
to 4. Intuitively, it is more beneficial to explore the energy-latency tradeoffs for the long-range
communication. However, we demonstrate in Section VII that more than 50% energy savings
can still be achieved by our algorithms for the short-range communication.

Though QAM is used as an example for abstracting the energy model, the algorithms presented
in this paper are extendible to other modulation schemes and techniques that can be used to trade
latency against energy, such as code scaling [26]. The applicable energy functions are assumed
to satisfy the following conditions:

1) w(t) > 0;

2) there exists m such that w(7) is monotonically decreasing in interval (0,m] and monoton-

ically increasing in interval [m, 00);

3) w(7) is strictly convex;



4) w(r) is continuously differentiable and its derivative w(7) tends to —oo when 7 tends to

0.

Note that condition 3) prohibits the existence of multiple m’s for any given energy function.

Apparently, we only need to consider the energy-latency tradeoffs between (0, m].

IV. PROBLEM DEFINITION

A schedule of packet transmission is defined as a vector 7 = {7 : ¢ = 1,....,n — 1},
where 7; is the time duration for packet transmission over link (7, j). Since a sensor node can
transmit its packet only after receiving all input packets from its children, the start time of each
transmission is implicitly determined by 7. The transmission latency of a path, p;, is denoted as
L; and calculated as L; = Y ivyen Ti- A schedule is feasible if for any p; € T, we have L; < I.

While our goal is to improve the energy-efficiency of the system, various objective functions
can be developed for interpreting energy-efficiency. For ease of analysis, the objective function
defined in this paper is to minimize the overall energy cost for packet transmission of all the
sensor nodes in the data gathering tree.

Let w;(7;) denote the energy function of V;, with m; denoting the value of 7; € (0,I'] when
w;(+) is minimized. Note that w;(-) may vary for different nodes due to variations in packet size
and transmission radius (in other words, such information is implicitly embedded into w;(-)).
We now formally state the packet transmission problem (PTP) as follows:

Given:

a. a data gathering tree T consisting of n sensor nodes,
b. energy functions for each link (i, j) € E, w;(7;), and
c. the latency constraint, I';

find a schedule of packet transmission, 7 = {r; :i=1,...,n — 1}, so as to minimize

n—1

f(7) = wiln) (6)
=1
subject to
Vpi in T,Li: Z ‘T,Sr (7)
1:ViEp;:

The above formulation differs from the problem defined in [9] in two key aspects. (1) We

employ a tree structure packet flow where the latency constraint is imposed on each path of the



tree. (2) The non-monotonic energy model in Section III-C indicates the presence of an upper-
bound on the transmission time of each packet, i.e., to optimize PTP, we should have 7; < m;,
for each i = 1,...,n — 1. The consequences of such differences are discussed in Section V-A.

We consider two versions of PTP, an off-line version and an on-line version. In the off-line
version, the structure of the data gathering tree and the energy functions for all sensor nodes are
known a priori. Centralized algorithms can be developed for solving the off-line version. In the
on-line version, each sensor node only has local knowledge about its own radio status and can
communication with its parent and children. Hence, distributed on-line protocols are needed to
locally adapt the transmission time of each sensor node to achieve global energy minimization.

As for now, we assume a simplified communication model with a medium access control
(MAC) layer that ensures no collision or interference at a node. Such an assumption can be
realized by multi-packet reception (MPR) techniques through frequency or code diversity [29].
We further investigate the case when such interference must be explicitly handled by the packet

scheduling algorithms in Section V-C.

V. OFF-LINE ALGORITHMS FOR PTP

In this section, we consider an off-line version of PTP (called OPTP) by assuming that the
structure of the aggregation tree and the energy functions for all sensor nodes are known a priori.
We first describe an extension of the MoveRight algorithm [9] to get optimal solutions for OPTP.
A faster dynamic programming based approximation algorithm is then presented. Techniques for

handling interference are also discussed.

A. A Numerical Optimization Algorithm

Since we must have 7; < m; in an optimal solution to OPTP, the latency of a path does
not necessarily equal I". Moreover, let V; denote an internal node. For any optimal solution to
OPTP, we show that the first derivative of the energy function of V; equals the sum of the first
derivatives of the energy functions of all children of V;.

Lemma 1: A schedule, 7, is optimal for OPTP iff

1) for any node V; with 777 < m;, the length of at least one path that contains V; is equal to

[': and



2) for any internal node, V;, we have

wi(rf) = Z w;(75) - (8)
. . Gaen

The proof of the lemma is presented in Appendix 1.

The problem proposed in [9] is to schedule multiple packet transmission over a single trans-
mitter multiple receiver connection, where the ready time of packets can differ from each other.
A special case of the problem is to assume all packets are of equal size and ready at time 0.
This special case can also be regarded as a special case of the proposed OPTP problem where
(1) the aggregation tree degenerates into a pipeline of sensor nodes — the latency constraint is

imposed over exactly one path; and (2) all energy functions are monotonically decreasing. The

MoveRight algorithm proposed in [9] can be directly applied to solve such a special case.

Begin

1. Set £+ 0 /I initialize iteration counter

2. For (i,n) € E, set ¥ + min{T,m;} // initialize transmission time for links to the sink
3. For (i,j) € E such that j # n, set 7} + 0 // initialize transmission time for other links

4. Set flag + 0 /I flag to keep track of convergence in the iterations
5. While flag =0

6. k+k+1 /I increment the iteration counter by 1

7. For each V; with i from n — 1 downto M+1 / perform local optimization for each internal node
8. Y Ger ) « besl({'.v'j"""1 Y // move right the start time of transmission from V;
9. For (i,n) e E

10. Set 7} « min{m;,T" — (maxy,ep, {L;} — 7F)} /increase the transmission time for links to the sink
1. if 7F =71, flag+ 1 // check convergence

End

Fig. 2. Pseudo code for EMR-Algo

In this section, we are interested in extending the MoveRight algorithm to solve OPTP in a
general-structured aggregation tree with non-monotonic energy functions. The pseudo code for
the extended MoveRight algorithm (EMR-Algo) is shown in Figure 2. In the figure, 7/ denotes

the value of 7; in the £-th iteration. Initially, we set the starting time for all packet transmission



to zero — the transmission time for all the links to the sink is set to min{I',m;}, while the
transmission time for the rest links is set to 0 (Steps 2 and 3). The main idea is to iteratively
increase (move right) the starting times of packet transmissions, so that each move locally
optimizes our objective function. Finally, this iterative local optimization leads to a globally
optimal solution.

The best(-) function returns the transmission durations for node V; and its children, such that
Lemma 1 holds for V; with respect to the invariant that Tik < m;. Since the value of 77 must
lie within (0,77, the best(-) function can be easily implemented using binary search. Step
10 is important as it moves right the complete time of transmissions on links to the sink. This
movement stops when the latency constraint is reached.

The proposed EMR-Algo is distinguished from the MoveRight algorithm in two key respects
(recall the difference discussed in Section IV between our problem and the one defined in [9]).
(1) The best(-) function respects Lemma | regarding the optimality in a tree structure. (2) The
transmission time for any V; € V' is bounded by m;, enforced by lines 2, 8 and 10.

The correctness of EMR-Algo can be proved by exploring the convexity property of the energy

functions. Let 7 = {7{,...,7/_,} be the optimal schedule. Let s} = 0, for i = 1,..., M; and
s; = max(jep(s] +7;), for i = M,...,n — 1. As previously stated, {7f : k=1,...,n — 1}
indicate the transmission time of nodes Vi,...,V,,_; after the k-th pass of EMR-Algo. Let
sf=0,fori=1,..., M, and sf = max(;jee(sf +7f), fori=M,...,n—1.

Theorem 1: Let s¥ and s}, i=1,...,n— 1 be as defined before. Then

1y sF = gf*:

2) sk <! and

3) si° = s}

The proof of Theorem 1 is similar to that of Theorem 1 in [9] and is detailed in Appendix L

The convergence speed of EMR-Algo depends on the structure of the aggregation tree and
the exact form of the energy functions. It is therefore difficult to give a theoretical bound on the
number of iterations. In Section VII, we show running time of EMR-Algo for simulated problems.
However, by approximating w;(7) with a set of interpolated discrete values, we develop a much
faster approximation algorithm based on dynamic programming. We present the approximation

algorithm in Section V-B.



B. A Dynamic Programming Based Approximation Algorithm

For ease of analysis, we assume that for each sensor node, D discrete values are evenly
distributed over [0, I'] in the domain of 7. Let £ be the difference between two adjacent values.
That is € = %. Hereafter, D is called the approximation accuracy. Higher value of D leads
to a more accurate approximation of the energy function. By changing D, we can explore the
tradeoffs between the quality of the solution and the time cost of the algorithm.

Let g(V;,t) denote the minimal overall energy dissipation of a subtree rooted at V; within
latency constraint ¢. The original OPTP problem can be expressed as g(V},, ). It is clear that
for any sensor node V;, g(V;,t) can be computed as the sum of (a) the energy dissipation for
packet transmission by the children of V;, and (b) the energy dissipated by transmitting packets
within the subtrees rooted at each child of V;. Additionally, the packet transmission time from
any child of V; can take % values, namely ¢, 2¢, . . ., t. Therefore, we have the following recursive

representation of g(V;, t):

w;(t), for 1 <i< M
/1) = ¢
9(Vi,1) Z (11_11111{10;;(_15) + g(Vi,t — je)}), otherwise ©)
J=
(ki)EE

o |G | s sesmsssenss

2V, 39 :

2¢ |g(V,, 2¢) )

£ gV, 9 | gy &) || g0, &) |rereeees | 2(¥, &
v, v, ¥, v,

Fig. 3. The g() table computed by DP-Algo

The above representation is suitable for a dynamic programming based algorithm (DP-Algo

for short). DP-Algo can be viewed as a procedure to build a table of size D x n (Figure 3). The



i-th column from the left side corresponds to sensor node V;, while the j-th row from bottom-up
corresponds to je. After the execution of DP-Algo, the cell crossed by the j-th row and the i-th
column shall contain the value of g(V}, je).

To build the table, we start from the bottom left cell that contains g(V4,£) = wi(¢). The table
is then completed column by column, from left to right. To calculate the value of g(V}, je) fori >
M, we need to compare, for each child of V}, j different values by varying the packet transmission

time of the child. Therefore, the time cost for building up the table is O((£)?(|V|+ |E|), which

is pseudo-polynomial due to the factor I'2.
A Special Case for Modulation Scaling:In practice, the modulation levels are typically set
to positive even integers. Based on equation 2, it can be verified that the 7;’s resulted from
different modulation levels are not evenly distributed among [0, I']. Thus, DP-Algo cannot be
directly applied. However, one practical method is to, for each i, set 7; obtained by EMR-Algo
or DP-Algo to the largest time duration below 7; that can be achieved by an available modulation
level. We call the above method the rounding procedure. Such a rounding procedure may affect
the performance of DP-Algo. As shown in Section VII, the performance degradation is around
10% for loose latency constraints and 50% for stringent latency constraints.

Another issue with modulation scaling is that the maximal or minimal transmission time can
be bounded, due to the lowest and highest settings for the modulation level. Such boundaries

can be captured by filling the corresponding cells in the table with infinity.

C. Multi-Packet Reception Techniques for Interference Avoidance

The definition of PTP assumes that there is no interference among the sensor nodes. Such an
assumption can be realized by using MAC layer scheduling that minimizes interference using,
for example, CTS/RTS mechanisms. To use such mechanisms, we need to intentionally set the
latency constraint imposed on PTP to be less than the actual constraint. The preserved time slot
can be used to accommodate the back-off time of the sensor nodes when collision occurs.

A more efficient technique is to use multi-packet reception (MPR) through frequency or
code division multiple access (i.e., FDMA and CDMA) [29]. The challenges to apply the MPR
technique is to satisfy the so-called “scheduling constraint”, which enforces that at any time,
any sensor node can either transmit (broadcast) to a set of nodes or receive from at most one

node. For the data gathering tree topology, since every sensor node transmits its packet only



after receiving packets from all of its children, the scheduling constraint essentially requires that
at any time, at most one child of any sensor node can transmit packets to the parent. In other
words, the packet transmission time from children of the same sensor node should not overlap
with each other. We refer to such an approach as interference avoidance (IA).

To achieve interference avoidance in the context of PTP is actually non-trivial, as for any
sensor node, the order of packet transmission from its children matters — the child that transmits
earlier has a stricter latency constraint over the subtree rooted at the child. Our basic idea is to
divide the latency constraint over any subtree 7; (rooted at V;) into two consecutive parts. We
schedule the packet transmission in the subtrees rooted at each child of V; in the first part of
the latency constraint. The packets transmitted to V; from its children are then scheduled in the
second part. Hence, the order of packet transmission in the second part has no effects on the
packet scheduling in the first part. The optimal division of the latency constraint over 7; can be

found using dynamic programming with the following recursive representation of g(V;,t):

w;(t), forl <i< M
¢

9(Vi,t) = n_lzin{z(i,js) + Z g(Vi,t — je)}, otherwise Y

g=t (ki)EE
The function z(z,je) returns a schedule for the packets from children of V; within time
duration je so that run-time contentions can be avoided. Obviously, if j is less than the number
of children of V;, no feasible solution exists. Otherwise, we use the following greedy heuristic.
Initially, the transmission time from all children of V; to V; are set to £. Let the energy gradient
of a sensor node be the energy gain that can be obtained by increasing the current transmission
time of the node by =. Note that the energy gradient can be negative due to the non-monotonic
energy functions. We then increase the transmission time of the child with the maximal positive
energy gradient by . The above operation is repeated until the sum of the transmission time of
all children reaches j=, or no more energy savings can be achieved by increase the transmission

time (i.e., the gradients of all children are negative).

We call the above modified DP-Algo as the DP-IA algorithm. It can be verified that the time
complexity of DP-IA is also O(D?*(|V'|+|E|)). We further examine the performance degradation

resulting from interference avoidance in Section VIIL



VI. DISTRIBUTED ON-LINE PROTOCOL

The algorithms presented in Section V all assume a complete knowledge of the data gathering
tree. However, the discrete approximation of the energy function motivates a simple on-line
distributed protocol that relies on local information of sensor nodes only. The key idea of the
protocol is to identify the sensor nodes with the largest energy cost on each path of the tree. We
then increase their transmission time if the latency constraint will not be violated. We repeat the
above procedure until either the latency constraint is reached for all paths or the energy cost of
the gathering tree is minimized.

To facilitate the on-line scheduling, we make the following assumptions:

1) Some local unique neighbor identification mechanisms are available at each sensor node
for identifying the parent and children.

2) Every node V; can derive the time cost for data gathering within the subtree rooted V;.

3) Every sensor node can measure its current power consumption, and hence its energy gradient
— the energy gain by increasing the transmission time of the node by .

4) Interference among sensor nodes is minimized by using MAC layer scheduling.

The local identifier in assumption 1 is commonly implemented in protocols such as Directed
Diffusion [5]. Assumption 2 can be fulfilled by attaching a time stamp to each packet from the
leaf nodes (we shall be assuming that time synchronization schemes, such as [24], are available).
In assumption 3, the power consumption and energy gradient of a sensor node can be determined
using the system parameters provided by the hardware vendors and the operating configuration of
the system, such as the modulation level. Assumption 4 can be satisfied by intentionally setting
the latency constraint to be tighter than the actual constraint for accommodating the incurred
time cost for resolving collisions.

Moreover, we define the latency laxity of a node as the maximal amount of time that can be
used to increase the transmission time of the node without violating the latency constraint. Let
x; denote the latency laxity of V;. The latency laxity of each node is dynamically maintained
during the protocol to verify if the transmission time of the node can be safely increased.

In the following, we first describe the local data structure maintained at each sensor node. A
distributed adaptation policy for minimizing the energy cost is then presented.

Local Data Structure: Each sensor node, V;, maintains a simple local data structure (r, 73, 7a).



The flag r equals one if V; is the node with the highest positive energy gradient in subtree T3,
and zero otherwise. Field 7; is the time cost for transmitting the packet from V; to its parent,
while 7, records the time cost of the longest path, excluding 7;, in T;.

The local data structure is maintained as follows. Every leaf node piggybacks its energy
gradient to the outgoing packet. Once a sensor node, 1}, receives packets from all its children,
the node compares the energy gradients piggybacked to each packet and the energy gradient of
its own. The value of r at V; is then set accordingly. If V; is not the sink, the largest energy
gradient from the above comparison is piggybacked to the packet sent to the parent of V;. The
above procedure continues till all the sensor nodes have the correct value of r. Fields 7; and 74
can be easily maintained based on the above assumptions.

Adaptation Policy: The sink node periodically disseminates a feedback packet to its children
that contains the value of its local 7; and the difference between I and 74, denoted as 4. Basically,
d is the latency laxity of nodes on the longest path of the data gathering tree.

Once a sensor node V; receives the feedback packet from its parent, it performs the following
adaptation. To distinguish from the field 7, in V;’s local data, let 7; denote the field 74 in the
feedback packet. First, the latency laxity of V; can be calculated as z; = 6 + 7 — (7 + 74)-
This is because 7; + 74 is the time cost of Tj; 7} is the time cost of the longest path in the
subtree rooted at V;’s parent (excluding the transmission time of V;’s parent); and ¢ is actually
the latency laxity of nodes on this longest path. Then, V; takes one of the following actions.

1) If 6 < 0, the transmission time for packet from V; is decreased by a factor of 3, where 3

is a user-specified parameter. The feedback packet is then forwarded to all of V;’s children.

2) If r =1 and x; > &, the transmission time of V; is increased by ¢. The local data structure

at V; is updated accordingly; and the feedback packet is suppressed.

3) Otherwise, the feedback packet is updated by setting § = z; and 7; = 74. The updated

packet is then forwarded to all children of V;.

The rationale behind the above adaptation policy is that when the latency constraint is violated,
all the sensor nodes send out packets with an increased rate (action 1). If V; is the node with
the largest positive energy gradient in 7; and the latency laxity allows, the transmission time of
V; is increased (action 2). Otherwise, the latency laxity of V; is recorded in the feedback packet
and the sensor nodes in 7} are recursively examined (action 3).

Discussion: During each dissemination of the feedback packet, the proposed on-line protocol



increases the transmission time for at most one sensor node per path. Such an increment is
guaranteed not to violate the latency constraint. Therefore, the on-line protocol converges after
the latency constraint is reached by all paths, or 7; = m;, for each V; € V. We assume that
each sensor node has ¢ discretized transmission time. Before the protocol converges, a feedback
packet would increase the transmission time for at least one sensor node when it traverses the
data gathering tree. Thus, the protocol converges after the dissemination of at most nq feedback
packets, where n is the number of sensor nodes in the tree.

Various tradeoffs can be explored in implementing the above protocol. Ideally, the adaptation
should be performed under a stable system state. Thus, the period « for disseminating the
feedback packet should be large enough to accommodate oscillation in system performance.
However, a larger period means a longer convergence process with greater energy cost. There
is also a tradeoff involved in selecting the value of 3. A larger value of § leads to higher
transmission speed when the latency constraint is violated. However, extra energy cost is caused
if the violation is not dramatic. Intuitively, S should be related to the severity of the violation,
which is indicated by the value of 4.

Another option to handle latency violations is to repeatedly reduce the transmission time
of the sensor nodes with the smallest enérgy gradient till the latency constraint is satisfied.
Compared with the proposed technique that simultaneously reduces the transmission time of all
sensor nodes, such an option is more aggressive in the sense of reducing the incurred increment
in energy cost. However, it requires more sophisticate control protocol and more importantly,

increases the response time in handling latency violations.

VII. SIMULATION RESULTS

To conduct the simulations, a simulator was developed using the PARSEC [30] software, which
is a discrete-event simulation language. The purposes of the simulations are (1) to demonstrate the
energy gain achieved by our algorithms compared with the baseline; (2) to evaluate the impact of
several key system parameters to the performance of our algorithms; and (3) to show the energy

saving and the adaptation capability of our on-line protocol in various run-time scenarios.



A. Simulation Setup

The transmission speed of sensor nodes is continuously tunable by setting modulation level
within [2, 8], except for the special case of modulation scaling where modulation level can only
be integer even values within [2, 8]. Hence, for all sensor nodes, the highest data rate is 8 Mbps
and the lowest data rate is 2 Mbps. The baseline in our simulations is to transmit all packets
at the highest speed (i.e., 8 Mbps), and shutdown the radios afterward. This policy is use, for
example, in the PAMAS protocol [31] and the DMAC protocol [32].
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Fig. 4. Two example data gathering trees generated by the random sources and event radius models, respectively (connectivity

parameter p = 0.15)

A sensor network was generated by randomly scattering 200 sensors in a unit square. The
sink node was put at the left-bottom corner of the square. The neighbors that a sensor node can
directly communicate is determined by a connectivity parameter, p € (0, 1]. Specifically, two
sensor nodes can communicate with each other only if the distance between them is within p.
We used two models for generating the location of the data sources, namely the random sources
(RS) model and the event radius (ER) model. In the RS model, N (the number of sources)
out of 200 sensor nodes are randomly selected to be the sources, whereas in the ER model, all
sources are located within a distance S (essentially the sensing range) of a randomly chosen

“event” location. For both models, the Greedy Incremental Tree (GIT) algorithm [6] was used
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for constructing the data gathering tree. In Figure 4, we illustrate two example data gathering
trees generated based on the RS and ER models, respectively.

The energy function used in the simulation was in the form of (3). Unless otherwise stated,
we set R = 10% and F = 10~® for all the sensor nodes, while the value of C' of a sensor node
was determined by the distance from the node to its parent in the tree. Specifically, we assume
a d? power loss model, where d is the distance between a node and its parent. Then, for node
Vi, we have C; = Chase * (%’)2 Based on our analysis in Section II-C, Cj,s. Was set to 6 x 1077
for the long-range communication and 3 x 107! for the short-range communication.

During our simulation, the latency constraints " was determined as follows. We define the
shortest time cost, I',,;, of a gathering tree as the transmission latency of the longest path in
the tree when all sensor nodes transmit at the highest speed (8 Mbps). On the other hand, the
longest time cost, [',,,, of the gathering tree is defined as the transmission latency of the longest
path in the tree when every sensor node V; sends its packet using time min{m;, ¥ }. In the above
definition, the term m; comes from the fact that it is not energy beneficial for V; to transmit its

acket using time beyond m;; the term 2t is due to the lower bound of modulation level in our
P =] y 2

simulation. Therefore, I' was adjusted between [',,,;;, and T';,4.

B. Performance of the Off-Line Algorithms

The performance metric is defined as the percentage of energy savings achieved by using
our techniques, compared with the baseline. In the simulation, the approximation accuracy for
DP-Algo, D was set to 100. The size of raw data generated by source nodes was set to 200 bits.

In Figure 5, we show the energy saving achieved by our off-line algorithms for both the RS
and ER models. For both models, we show the results for long and short range communication.
Each data point in the figures is averaged over more than 100 instances such that it has a 95%
confidence interval with a 5% (or better) precision. In the following, we focus on analyzing the
results for the RS model; similar analysis can be made for results of the ER model.
Performance Overview: In Figure 5(a), we investigate the performance of algorithms including
EMR-Algo, DP-Algo and the special case of DP-Algo for modulation scaling (denoted as MS in
the figure) when varying [ from [',,;,, to I',,,.... The first thing to notice is that when I" approaches
[nas, our algorithms achieve more than 90% energy saving for the long-range communication,

and around 50% for the short-range communication. Even when I' = I',,;,, EMR-Algo and
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Fig. 5. Performance of our off-line algorithms (c: correlation parameter, p: connectivity parameter, N: number of sources, S:

sensing range)

DP-Algo can still save more than 30% of the energy for long-range communication and 20%
for short-range communication.

The reason for successful energy saving even when I' = I',,;, is because I' equals the
transmission time of the longest path in the data gathering tree. Thus, energy can still be reduced
for nodes not on the longest path. On one hand, when there exists only one path in the tree,

no energy can be saved when I' = [',,;,. On the other hand, when the tree forms a star-like



TABLE 11

THE MISS RATE OF MS (BASED ON SIMULATED INSTANCES FOR FIGURE 5(A))

source | communication || # of successful | # of failed | total number miss
model scenario instances instances of instances | rate (%)
RS long-distance 102 28 130 21
short-distance 104 16 120 13
ER long-distance 324 66 390 17
short-distance 352 38 390 10

structure, all links, except the longest ones, can be optimized for energy savings when I' = I[',,;,,.
This also explains the performance degradation of our algorithms in the ER model, compared
with the performance in the RS model. Specifically, as illustrated by Figure 4, the gathering tree
for the ER model forms a small cluster connected to the sink by a linear array of sensor nodes,
while the tree for the RS model is more close to a star-like structure.

The plot shows that the performance of DP-Algo is quite close to the performance of EMR-
Algo. However, the performance of MS quickly degrades when I' decreases. From Figure 1, the
first derivative of the energy function decreases fast as 7 tends to 0. Thus, when I' is small, the
rounding procedure for solutions with high modulation levels leads to large performance loss.

During our simulation, we also observed that when I' = [',,;,, MS fails to find feasible
solutions for some problem instances, due to the rounding procedure of the approximated
solutions from DP-Algo. The ratio of instances that MS fails over the total number of instances
is between 10 - 20% in our simulations. We define the miss rate of MS as the ratio of number
of instances that MS fails to find a feasible solution over the number of total problem instances.
The miss rate for the performed simulations is given in Table II.

The simulation was performed on a SUN Blade1000 with a 750 MHz SUN UltraSPARC III
processor. The running time of EMR-Algo is between 0.5 to 3 second, whereas the running time
of DP-Algo is around 0.01 second.

Impact of Network Parameters: Figure 5(b) shows the energy conservation achieved by DP-
Algo with respect to variations in ¢ and I'. It was observed that for a fixed [, the energy gain
of DP-Algo slightly increases when ¢ increases. This is because a smaller value of ¢ causes a

larger size of data packet after aggregation. Thus, the energy cost by links close to the sink node



dominates the overall energy cost of the tree. It is however difficult to reduce the energy cost
of these links since they have high a likelihood of lying on the longest path of the tree.

Figure 5(c) plots the performance of DP-Algo with respect to variations in /N and I". It can
be seen that when I' is close to I',;,, the energy gain of DP-Algo increases as the number of
sources increases. This is because a larger number of sources offers more opportunities for the
optimization of links on paths other than the longest one.

Figure 5(d) demonstrates the performance of DP-Algo with respect to variations in p and
[. It can be observed that the energy saving of DP-Algo increases when p increase. This is
understandable since a large p reduces the height of the data gathering tree (the extreme case is
a star-like tree formed by setting p = 1).

Together, the above results suggest that DP-Algo is quite robust with respect to variations in

different system parameters, including ¢, p, IV, and S.
Impact of the radio parameters: In Figure 6(a), we show the impact of radio parameter Cj,,. on
the performance of DP-Algo. In the figure, the x-axis represents the value of Cj,s. from 3 x 1010
to 6 x 1077 in logarithmic scale. As expected, the energy conservation achieved by DP-Algo
increases with C. Also, when I' = I',,,,,, there is almost no difference in the performance of
DP-Algo under either RS or ER models; whereas when I' = I',,,;,,, a performance degradation
of 9-14% is observed for the ER model compared with the RS model.

To evaluate the impact of symbol rate R, we varied R from 10 KBaud to 1 MBaud. Consider
the modulation level within [2, 8], the above range of R reflects a bit rate of 20 to 80 Kbps when
R = 10 KBaud and 2 to 8 Mbps when R = 1 MBaud. We show the performance of DP-Algo for
RS model in Figure 6(b). It can be seen that the energy saving is almost the same throughout the
variation of R. This is quite understandable, since from (3), the performance ratio of DP-Algo
to the baseline is determined by b, but not R.

We further investigate the energy saving of DP-Algo under different settings of the highest
modulation level of the radio. In Figure 6(c), we show the energy saving achieved by DP-Algo
in RS model when the highest modulation level is varied from 4 to 8. As expected, lower highest
modulation level results in less energy saving. When the modulation level is restricted within
[2, 4], less than 20% energy saving is achieved for both long and short range communication.

We now show the impact of start-up energy of radios, which was estimated as 1 pJ [10].

In each epoch, the radio of each sensor node is started exactly once. Figure 6(d) shows the
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Fig. 6. Impact of radio parameters (corrclation parameter ¢ = (.5, connectivity parameter p = 0.15, number of sources

N = 30, sensing range S = 0.2)

performance of our algorithms with start-up energy. Though the impact of the start-up energy to
the long-range communication is almost negligible, we observe a decrease of 6-15% in energy
conservation for the short-range communication (compared with Figure 5(a)). This is because
the start-up energy is comparable to the transmission energy for short-range communication.

Impact of Interference Avoidance: We also examined the performance of DP-IA with respect

to variations in I' (shown in Figure 7). It can be seen that the performance degradation due



to interference avoidance is severe when [ is small. When I' = I',,,;,, DP-IA achieves around
half of the energy conservation by DP-Algo for both long and short range communication.
However, when [' is large, DP-Algo achieves almost the same energy conservation with or

without interference avoidance.
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C. Performance of the On-Line Protocol

Energy Conservation: We show the energy conservation achieved by the on-line protocol in
Figure 8. The simulated on-online protocol is based on modulation scaling where available
modulation levels are even integers within [2, 8]. The presented data is averaged over more than
150 problem instances and has a 95% confidence interval with a 10% (or better) precision. In
each instance, we generated a sensor network with 200 randomly dispersed sensor nodes. After
randomly selecting 20 source nodes, the data gathering tree was then generated using GIT.
When the latency constraint approaches ', there is slight performance degradation com-
pared with DP-Algo from Figure 5(a). Specifically, for the RS model, we observe around 4% less
energy conservation for long-range communication and 3% for short-range communication. This
is reasonable considering the fact that only 4 options are available to set the transmission time for
each sensor in the on-line protocol, instead of the fine granularity adjustment of the transmission

time in DP-Algo. Moreover, the on-line protocol actually outperforms the modulation scaling
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case (MS) shown in Figure 5(a), implying a large performance degradation of the rounding

technique used by MS.
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Fig. 9. Adaptability of the on-line protocol (correlation parameter ¢ = 0.5, connectivity parameter p = 0.15)

Adaptability to System Variations: Our simulations were performed based on the tree shown
in Figures 4(a) that has 44 sensor nodes out of which 30 are source nodes. Again, we assume
that modulation scaling is used by all the nodes with the available modulation levels being even
numbers within [2, 8]. The data gathering was requested every 2 milliseconds. For the sake of
illustration, we set o = 4 milliseconds, and 3 = 10. Two run-time scenarios, namely A and B,
were investigated to demonstrate the efficiency and adaptability of our protocol.

Scenario A: We fixed s at 200 bits. It can be calculated that I',;, =~ 1.5 milliseconds and
T nee =~ 4.5 milliseconds. We set I' to 2.4, 3, 2.1, 1.8, 2.1, 2.7, 2.1 milliseconds at 0, 0.5, 1, 1.5,
2, 2.5, and 3.5 seconds, respectively. In real life, such variations can be caused by for example,
change of user requests.

We depict the energy cost and latency for data gathering over 4 seconds in Figure 9(a),
where the optimal solutions are obtained by using EMR-Algo. It can be observed that when
I" is fixed, the actual energy cost gradually decreases till it is close to the optimal, while the
latency approaches the constraint. At time 1 second, I' is varied from 3 milliseconds to 2.1

milliseconds, which causes a violation of the latency constraint. Due to the feedback mechanism,



the transmission latency dramatically decreases as the modulation settings of all the sensor nodes
are restored to higher levels. Consequently, the energy cost is also increased. After that, the energy
cost drops again as time advances. Moreover, by setting § = 10, the modulation levels of the
sensor nodes were restored to the highest levels when a violation is detected, reflected by the
high peaks in the energy curve.

Scenario B: We set I' = 2.1 milliseconds, while setting s to 200, 250, 300, 200, 150, 200,
and 250 at 0, 0.5, 1, 1.5, 2, 2.5, and 3.5 seconds, respectively. In real life, the change of packet
size may be caused by variations in gathered information, or the correlation parameter at sensor
nodes. The results is illustrated in Figure 9(b), where the optimal solutions are also obtained by
using EMR-Algo. An analysis similar to the one in scenario A can be performed.

In short, our on-line protocol is capable of saving significant energy in the studied scenarios.
The ability of the protocol to adapt the packet transmission time with respect to the changing

system parameters is also demonstrated.

VIII. CONCLUDING REMARKS

In this paper, we have studied the problem of scheduling packet transmissions over a data
aggregation tree by exploring the energy-latency tradeoffs. For the off-line version of the problem,
we have provided (a) a numerical algorithm for optimal solutions, and (b) a faster approximation
algorithm based on dynamic programming. Techniques for handling interference were also
discussed. Our simulation results show that between 20% up to 90% energy saving can be
achieved by the algorithms. We have investigated the performance of our algorithms with different
settings of several key system parameters. Furthermore, we have proposed a distributed on-line
protocol that relies on local information only. Our simulation results show that the energy saving
achieved by the protocol is between 15% up to 90%. Also, the ability of the protocol to adapt the
packet transmission time upon variations in the system parameters were demonstrated through
several run-time scenarios.

We conclude the paper with a brief discussion of the future work. This paper considers an
epoch-based application scenario. It would be interesting to model pipelined packet transmission,
where the transmission speed is determined by the bottleneck link. Also, adaptive fidelity
computation [5] for aggregation and compression provides more opportunities for exploring

the energy-latency tradeoffs. The fidelity of the computation can be characterized by the size
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of the output data, which affects the consequent transmission time and energy costs. Thus, a

broader tradeoff space could be explored.
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APPENDIX |

CORRECTNESS OF EMR-ALGO

Proof of Lemma 1: = Condition (1) trivially holds for an optimal solution. Otherwise, we
can always increase 7;° without violating the latency constraint and thus decrease the energy
dissipation of V.

Let A denote a matrix of size M x n, where A[i|[j] = 1 if and only if V; € p;. Intuitively,
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the 1°s in the i-th row of A indicate the set of nodes on path p;. Let I’ be a M x 1 vector with
all elements equal to I". Then OPTP can be expressed as to minimize f(7), subject to A7 =T

Based on the first-order necessary condition for linearly constrained problems [33], there exists

a vector of values \ = (A1y ..oy Aar)T, such that
Vi) +ATX=0 (11)
where V f(7%) is a column vector with the partial derivative a_,(;(;_) = w;(7;") as the i-th element.
By solving equation 11, we have for any internal node, V;, |
wi(7) + Z Aj=10 (12)

J:Vi€p;
The sum in equation 12 sums up A;’s such that path p; passes through V;. Since any path
containing the children of V; must also pass through V;, we have
o= Y 1> M (13)
J:Viep; (ki)eEE j:ViEp;j
Thus, the necessary condition of optimality can be obtained by summing up equations 12 for
all the children of V; and subtracting equation 12 for V;.

<= The proof follows the fact that the feasible space of OPTP is convex and compact. |
Comments: We examine Lemma 1 in two interesting examples. In the first example, consider
an aggregation tree T = (V, E) where V = {V}, V5, V3,Vy} and E = {(1,3),(2,3),(3,4)}. Let
7* denote the optimal schedule of such a problem. Assume that my + mg > I' and m, is fairly
small compared with m, and mj such that we have 77 = m, in the optimal schedule. In this
case, we shall have (7)) = 0 and s (75) = ws(7;), which respects Lemma 1.

In the second example, consider an OPTP problem with an extremely large latency constraint
(e.g., I' = 00) such that the optimal schedule is obtained by setting 77 = m; for each V; € V.
In such a case, we have w;(7;}) = 0, for each V; € V, which again respects Lemma 1.

More importantly, we shall note the following fact in the optimal solution for the second
example. Let s; denote the start time for packet transmission from V;. ldeally, s; can be de-
termined as max(;ez(s; + 7' 7). However, due to the laxity in the latency constraint, we can
safely increase the start time of packet transmissions to some extent without compromising the
optimality of the schedule. To prevent such situations, we adopt a strict definition of s; in the

proof of Lemma 2 and Theorem 1 such that s; must equal max; jyep(s; + 7" 7).
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Corollary 1: Consider an optimal schedule, 7, of OPTP; the following hold:

1) Suppose 7 = m; for some V; € V', we have 7; = m; for all sensor nodes in T;.

2) Suppose 7;° < m; for some V; € V', we have 7; < mj for all ancestors of V;.

Proof of Corollary 1:

1) Since 7' = m; implies ), ;. w;(77) = wi(7;") = 0, we have 7; = m; for all children of
Vi. So on so forth, we have 'r}‘ = m; for all sensor nodes in the subtree rooted at V;.

2) Let V; denote the parent of V;. 77 = m; implies w;(7;) < w;(7]) < 0; hence 77 < m;. So

on and so forth. |

Fig. 10. A problem instance of 2-Lev-OPTP

We now define the level of a tree as the greatest number of edges contained by any path

in the tree. We consider an OPTP problem with a two-level aggregation tree with exactly one
internal node that has p children (see Figure 10). We call the above problem 2-Lev-OPTP. Let
V41 denote the internal node, with V., denoting its parent and C = {Vi,...,V,} denote its
children. Assume that for any V; € C, a packet is ready to transmission at time s; and Vo must

received aggregated information from V,,, by time ¢. We first prove the following lemma:

Lemma 2: Let 7 = {7},..., 75,1} denote an optimal schedule to the 2-Lev-OPTP problem

as defined above, then the following hold:

1) The schedule 7 is unique.
2) Let s,4; denote the start time of packet transmission from V4, to Vj4o in the optimal

schedule, i.e., s,+1 = maxyec(si + 77). Then s, never decreases when (a) some s;’s,
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Vi € C, increase, holding ¢ fixed; or (b) ¢ increases, holding s;’s fixed, for all V; € C; or
(c) both some s;’s and t increase.

Let D denote the set of sensor nodes that increase their transmission start time in cases
(a) and (c). Then, in particular, s,, increases in case (a) if for any V; € D, we have
Sp41 — 8i < my; or in case (b) we have ¢ — 5,4, < m,y; or in case (c) we have either of
the previous two conditions hold.

Sp4+1 never increases when (a) some (> 1) s;’s, V; € C, decrease, holding ¢ fixed; or (b) %
decreases, holding s;’s fixed, for all V; € C; or (c) both some s;’s and ¢ decrease.

Let D' denote the set of sensor nodes that decrease their transmission start time in cases
(a) and (c). Then, in particular, s, decreases in case (a) if for any V; € D', we have
Spy1 — 8; < my; or in case (b) we have { — s,,1 < m,y1; or in case (c) we have either of

the previous two conditions hold.

Proof of Lemma 2:

1) The uniqueness of the optimal solution follows the strict convexity of the energy functions.

2) From Lemma 1, the optimal schedule 7* must satisfy Y7_, (") = tbp41(7;,,). Moreover,

we have 77 < m,; fori=1,...,p+ 1. In the following, we prove property (a).

We first assume that the transmission start time of exactly one child of V},;; increases. That

is, for some V, € C, s, increases to sj,. Let §,.; denote the start time of packet transmission

from V4, in the resulting optimal schedule. We consider the following two cases.

Case (i): Suppose that in schedule T, 7, < myg. This implies that s, = s,+7,. Otherwise,

a schedule with less energy dissipation than 7* can be constructed by increasing 77 by

d < min{sp1—(s,+75), m,—7, } without affecting 7541 Or violating the latency constraint.

Similarly, we have 7,1 < mp1 and sp + 7, =1L

Now we consider the problem resulted from increasing s, to s/,. Suppose that in the new

packet schedule, we still enforce the transmission by V4 to start at s,,;, we have:
Wa(r = (sh—8a)) + Y wil(r) < Y wi(r) = tipa(Thy) - (14)

VieChiza viec
The above inequality comes from the fact that the first derivative of an energy function is
strictly increasing due to its strict convexity.

Or, we may start the transmission by V1, at s,y + (s, — S,) in the new schedule. Since
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Tpt1 < Mpy1, We have:

We(T)) + Z wi(min{7] + (s}, — Sa), M} > Z w; (77)

VieCAi#a viec

= "bp+1(T;+1)
> bpyalrgyy — (8, —8a)) . (A5

Equations 14 and 15 and the uniqueness of the optimal schedule imply that 5,4, < 8,41 <

Sp+1+ (85 — 8a)

*

Case (ii): Suppose that in schedule 7, 7F = m,; hence, we have Syl = Sa = Ty, IF

[

Sp+1 — S, < Mg, a similar analysis as in Case (i) can be carried out to show that (s, <
8p41 < Spy1 + (8) — 5,). Otherwise, 7* remains an optimal schedule, implying that §,,; =

Spii-
In case when multiple s;’s (V; € C) increase, it can handled by increasing these s;’s one
after another and the lemma still holds. Property (b) can be analyzed in a similar fashion.
Also, Property (c) can be handled by first increasing s;’s and then increasing f.

3) This part of the lemma is actually an inverse case of part (2) and can be easily proved by

contradiction. [ ]

Now we present the proof of Theorem 1.
Proof of Theorem 1I:

1) Recall that EMR-Algo works in iterations: for each iteration k, the algorithm determines
s¥ by decreasing i from n — 1 to M + 1. Since the EMR-Algo initializes s; = 0 for

i=1,...,n—1, it follows that s? < s! for each i =1,...,n — 1. Suppose that 7/ > 1 and

k' > 1 are the first time that there is a violation; that is, & > s&*1.

Consider the 2-level aggregation tree formed by Vs together with its parent, denoted as V},,

and its children, denoted as set C. We have s}’j’ < sf“, and sfl"l < sf', for each V; € C.

Is

From line 8 in EMR-Algo, the time stamps sg' and sf»_"‘ s actually give the boundaries

k-1

Blag o
»  and s7’s give the

within which EMR-Algo determines sf}'. Similarly, the time stamps s

boundaries within which EMR-Algo determines s® *!

'l’

. From part (2) of Lemma 2, we have

sk < s¥'*1 This contradicts the assumption s& > s5 ! and hence property (1) holds.
2) It is obvious that s? < s?, for each i = 1,...,n — 1. Similar to the proof for property (1),
K

suppose that i > 1 and £’ > 1 are the first time that there is a violation; that is, S; > 8h.
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Again, consider the 2-level aggregation tree formed by 1} together with its parent, denoted

as V), and its children, denoted as set C. We have sf," < sp, and sf’_l < s;, for each

k.l

, and sf'"]’s actually give the boundaries within which EMR-

Vi € C. The time stamps s
Algo determines s%. Similarly, the time stamps s, and s;’s give the boundaries within
which EMR-Algo determines s},. Part (2) of Lemma 2 again leads to the contradiction that
sff < s; and proves property (2).

We prove by contradiction and hence assume that j = max{i : s3° < s}. Let V}, denote
the parent of V; and V; denote the parent of V,,. We have s7° = s} and s{° = s;. Since 7}
is optimal, we have 7; < m;. We consider two cases:

Case (i): We suppose that 77 < m;. Considering the 2-level tree formed by 1, V; and the

*and s° < s7, foreach V; € CA¢ # j.

children of V}, denoted as C, we have s;?" < 8;

Suppose that we run EMR-Algo for one more pass and let 5, denote the resulting start time

for the transmission from V), to V. From part (3) of Lemma 2, we have s — (.5’;E - s?") <

§p < 8,° = s, contradicting both property (1) for V}, and the definition of j.

Case (ii): We assume that 77 = m;. From part (1) of Corollary 1, we have 77 = m; for

any V; € Tj. Moreover, we have s§° — sj" > s; — s; = TJ?‘ = m;. Obviously, we shall have

7;° = m;. Again from part (1) of Corollary 1, we have 77° = m; for any V; € T}. Based

on the definition of s;?" and s;-‘, we obtain the contradiction that s;?" — s;. O



