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Abstract— In realistic wireless sensor networks, lossy unre-
liable links and high density pose considerable challenges
to efficient routing and data gathering. Blacklisting tech-
niques provide a mechanism to address these challenges by
removing weak links and reducing networking complexity,
however they run the risk of reducing path optimality
and introducing network disconnections. We undertake
an original analysis of blacklisting techniques on two tree
structures of particular importance for routing in wireless
sensor networks: the Directed Minimum Spanning Tree
(DMST), which is best suited for data gathering with
aggregation, and the Shortest Path Tree (SPT), which is
best suited for data gathering without aggregation. Using
a realistic model of link loss statistics, we show interesting
tradeoffs between the connectivity and optimality of these
structures for different blacklisting techniques. For the
specific model considered, we show that up to 70% of
the links can be blacklisted with negligible impact on the
optimality and connectivity of the SPT with even higher
degree of blacklisting possible for the DMST.

[. INTRODUCTION

Tree-based routing techniques are a natural choice for
a large class of wireless sensor network applications
that require periodic data gathering. These networks
arc envisioned to be densely deployed in an ad hoc
fashion without much control over the placement of the
individual sensors. The high density of these devices
would mean that, on an average, a node can communicate
with a large number of other nodes. This gives rise to
the problem of neighborhood table management which
is to determine a small and finite subset of neighbors,
irrespective of network size, whose information is suffi-
cient for the purpose of data gathering (sce for example

)

One approach to neighborhood table management in
wireless sensor networks in the presence of unreliable
links is to blacklist a subset of bad links and use only

the remaining better links. In the context of cost-based
routing, at the node level, this translates into each node
discarding some of its high-cost outgoing links and not
using them for routing. The key intuition behind this
approach is that a low-cost path between any pair of
nodes is unlikely to have a high-cost link as a component.
Thus, low-cost paths (based on a cost metric) constructed
after blacklisting are likely to be same as or close to the
paths constructed without any blacklisting.

In this paper, we study the impact of blacklisting on data
gathering trees in wireless sensor networks. Specifically,
we consider two standard edge-weighted tree structures,
namely the Directed Minimum Spanning Tree (DMST)
and the Shortest Path Tree (SPT) on the network graph.
Minimum Spanning Tree (MST) and Shortest Path Tree
(SPT) are two basic Tree structures that have been
extensively used for Tree-based routing in traditional net-
works. Note that, for directed graphs, the tree structure
corresponding to MST over undirected graph is called
Directed Minimum Spanning Tree (DMST). We illustrate
the DMST and SPT rooted at node R for a directed graph
using an example in Fig 1, 2, 3.

In wireless sensor networks, where data aggregation is a
highly promising technique for reducing the cost of data
gathering, these structures become even more important.
The DMST is the optimal edge-weighted tree structure
when perfect aggregation is possible. This is because
under perfect aggregation, the optimal tree structure is
the one with minimum fotal cost, and DMST is such a
structure by definition. Similarly, the SPT is the optimal
structure (in terms of cost) when no aggregation is
performed. Again, this is because under no aggregation,
the optimal structure minimizes the cost from each node
to the sink.

The main advantages offered by a blacklisting-based
approach are:
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1) Reduced cost of building standard tree structures:
The complexity of all the standard algorithms for
constructing these tree structures (e.g. Dijkstra’s
algorithm for SPT or Edmonds’ algorithm for
DMST rooted at a sink) is proportional to number
of edges in the network graph ([11], [12]). Black-
listing reduces this complexity as it essentially
removes some edges from the graph.

2) Reduced storage requirements and ecasier neighbor-
hood table management: Typical sensor network
applications would require dense deployments of
sensor nodes. In such scenarios, the average num-
ber of neighbors that a node can communicate with
can be very high. This would lead to a bigger
neighborhood table which would increase storage
requirements. Blacklisting a subset of the outgoing
links would reduce the table size and make the
table management easier.

3) Reduced cost of flooding: Flooding is one of
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Shortest Path Tree (SPT) rooted at R for the graph in Fig

the basic communication primitives in a broadcast
medium like wireless. However, it can be an ex-
pensive operation because of repeated broadcasts
by nodes. Blacklisting a subset of the links would
mean that those links are not used for broadcast
and thus, the cost of flooding would be reduced.

Note that a blacklisting-based approach also has the
following disadvantages:

1) Disconnected Network Graph: Blacklisting links
could lead to scenarios where it is not possible to
construct any path between a pair a nodes.

2) Suboptimal Tree structures: It is also possible that
the tree structures constructed after blacklisting are
worse than the optimal trees that are obtained with
no blacklisting.

With these ideas, the problem that we consider in this
paper can be now be formulated. We model the wire-
less sensor network as an edge-weighted directed graph
where the sensor nodes are represented by vertices and
the communication links between them are represented
by edges of the graph. These links are assigned a weight
that represents the expected number of transmissions
required to successfully send a packet over a link. We use
an empirically obtained model (see section IIT) for the
link characteristics which is used to obtain these weights.

Given this model, we ask the following questions:

1) How much can we blacklist without disconnecting
the graph?

2) What are the tradeoffs between the degree of
blacklisting and optimality of the tree structures



constructed after blacklisting?
3) What policies/strategies can be used for blacklist-
ing?

We investigate these issues in the remaining sections
which are organized as follows. To gain insights into
the connectivity-optimality tradeoffs, we first consider
similar scenarios in Geometric Random Graphs (GRG)
in section 1. To generalize to realistic scenarios, we use
an empirical model for link level dynamics which is dis-
cussed in section IIl. We then propose four blacklisting
schemes and compare them using extensive simulations
followed by a discussion on the results in section IV. The
related work is presented in section V before concluding
in section VI

II. IDEAS FROM GEOMETRIC RANDOM GRAPHS

It can be seen that when a blacklisting policy progres-
sively removes high-cost links, the graph would remain
connected as long as the worst edge of the DMST or
SPT has not been removed. Moreover, the DMST and
SPT for the graph obtained after removing the links
would be same as those for the original graph. Thus,
for such a blacklisting policy, the first question can be
answered as follows: We can blacklist all the links that
are worse than the worst link of the DMST/SPT. And we
are guaranteed that the optimality of these tree structures
would be preserved.

The properties of the worst edge of the MST of a
Geometric Random Graphs (GRG) have been extensively
studied. Note that in a GRG, the cost associated with an
edge is its Euclidean length.

It has been shown in [6], [7] that the longest edge of
the MST in a GRG is always the critical radius required
for connectivity. The connectivity problem in geometric
random graphs has been addressed independently in [9]
and [10]. Gupta and Kumar [9] show that if n nodes
are placed uniformly and independently in a disc D of
unit area in N2, and each node transmits at a power
level so as to cover an area of 7R> = (log(n) +
e(n))/n , then the network is connected with probability
asymptotically tending to one if and only if ¢(n) — oc.
Penrose [10] has shown that the longest edge M, of
the minimum spanning tree of n points randomly and
uniformly distributed in a unit square S satisfies the
limp—oe Pr(nmM2 —log(n) < a) = e ¢ " for any real
number a.

Based on the above, we can conclude the following:

1) In a GRG, we can blacklist all the links longer
than the longest edge of the minimal spanning tree
without getting disconnected.

2) Moreover, the minimal spanning tree constructed
after blacklisting is guaranteed to be same as the
optimal MST as long as the graph is connected.

3) Since the longest edge of the MST is also the
critical radius for connectivity, this value quantifies
the blacklisting limit.

We note that MST on a undirected graph can be shown
to be unique if the edge-weights are all different. On
the other hand, DMST on a directed graph would be
different for different choices of the root node. However,
DMST for a fived root node would still satisfy the above
properties.

The Shortest Path Tree is another tree structure of interest
in cost-based routing. This structure is different from an
undirected MST in the following fundamental ways:

1) The undirected MST is defined for the entire graph
and it can be shown to be unique if the edge-
weights are all different. On the other hand, SPT
is defined specific to a source/sink node. Thus, it
is expected to be different for different source/sink
nodes.

2) MST minimizes the fotal cost of the tree structure
whereas SPT minimizes the cost of path from each
node to the source/sink node.

These properties make the characterization of the longest
edge of the SPT analytically difficult. Specifically,
adding edges to the graph would not preserve the SPT.
Thus, blacklisting of links from the graph can lead to
suboptimal shortest path trees. Note that the connectivity
condition is still the same, i.e., we can blacklist up to the
critical connectivity radius and still remain connected. In
this limit, the MST becomes the SPT for the blacklisted
graph.

The properties of the MST and SPT for a randomly
chosen node in a GRG are illustrated in Fig. 4. Here, the
transmission radius R associated with the GRG is grad-
ually reduced till the point at which the graph becomes
disconnected. The end points of the curves represent the
disconnected graph, where the cost of MST and SPT
becomes infinite. As discussed above, it can be seen that
while the cost of MST always remains optimum, the
cost of SPT shows a transition from optimum to sub-
optimum.
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Fig. 4. Cost of Minimum Spanning Tree (MST) and Shortest Path
Tree (SPT) rooted at a randomly chosen node for a GRG on square
of unit area

III. A REALISTIC MODEL FOR LINK LAYER

The GRG model assumes that nodes within each other’s
transmission range can communicate with cach other
perfectly. On the other hand, nodes with distance ex-
ceeding the radius cannot communicate at all. Although
useful for analysis, this is a very simplistic view of
the environment. Recent studies (see Section V) have
shown that the real wireless medium can deviate highly
from this ideal scenario. Thus, cost-based routing where
distance is taken as the cost metric is not a good
approach. The authors of [1], [5] propose another metric
(they call it MT and ETX respectively) which takes
into account link layer dynamics. This metric denotes
the expected number of transmissions (including retrans-
missions) required to successfully deliver a packet over
a link. This metric is thus a good indicator of the energy-
cost of packet transmission associated with the link. We
therefore use this metric in our simulations in Section
V.

To capture the effects of lossy channels in realistic sensor
networks, we used an empirical model obtained by curve
fitting on the data collected by Woo ef @l [1]. In this
model, the bit error rate on a link is assumed to be a
Gaussian random variable whose mean g is the following
function of the distance d (measured in feet)

20x 10740 +8.0x 10740 d<11.0
pld) ={ sisigm d < 40.0
0.0 d > 40.0

(1

and the standard deviation o is related to the distance d
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Fig. 5. A scatter plot showing packet delivery ratios with distance
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Here o« = 23.0 and 3 = 7.0 for the specific environment
considered in [1].

Using the above model, bit error rates for all the links in
both the directions can be obtained. Note that this model
allows us to take into account the asymmetric nature of
links, which is a commonly observed characteristic of
link layer in real sensor networks ([4], [1], [5]). Having
obtained the bit error rate BE R, the packet delivery ratio
on a link can be calculated as (1.0 — BER)%*¢ where
size is the packet size in bits. Fig. 5 shows a scatter
plot of the packet delivery ratios with increasing distance
using this model.

IV. SIMULATIONS AND RESULTS

In this section, we describe the simulations carried out to
examine the connectivity-optimality tradeoffs associated
with various blacklisting techniques on the two tree
structures of interest to us, i.e., DMST and SPT. Specifi-
cally, we consider four blacklisting schemes that differ in
the way they find the high-cost edges and compare their
performance in terms of two metrics: cost of the tree
structure generated after blacklisting and connectivity of
the tree structure.

A, Methodology

In the simulations, in each run, n nodes were uniformly
and randomly distributed in a square of dimension 100



feet X 100 feet. The bit error rates for the links were
obtained using the model described in section III. Using
these bit error rates, the forward delivery ratio Py and
backward delivery ratio P, for each link were obtained.
The expected number of transmissions (including re-
transmissions) required for successful packet delivery on
a link is given by #fﬁ' ([1], [3]). This metric was
assigned as the cost of each link. In the simulations,
we assume the packet size to be 240 bits. Further, we
assume that acknowledgement packet ACK is sent on
the reverse path and its size is taken to be 40 bits.

With this setup, the experiment consisted of constructing
the two tree structures of interest, the Directed Minimum
Spanning Tree and the Shortest Path Tree (rooted at
a randomly chosen node) on this edge-weighted graph
after pruning it using different blacklisting policies. Each
policy blacklists a subset of the edges in the graph based
on some metric. The objective is to compare the cost of
these tree structures for the new graph with the original
ones. These trees were constructed using Dijkstra’s al-
gorithm for Shortest Path Tree and Edmonds’ algorithm
for Directed Minimum Spanning Tree ([11], [12]).

The percentage of links that were blacklisted was taken
as the common metric across the four different policies.
This was calculated as the ratio of the number of links
that were blacklisted to the total number of links. Links
with a cost of over 1000.0 were not considered in
calculating this percentage.

Since one possible drawback of blacklisting is discon-
nected graphs, the probability of this event is another
quantity of interest. This was obtained as the ratio of
the number of runs in which the graph got disconnected
to the total number of runs.

B. Blacklisting Policies

We now discuss the four blacklisting strategies that were
considered in this study.

1) Global Blacklisting: In this strategy, a cost thresh-
old is set up globally. Each node blacklists a/l of its
outgoing links with cost greater than this threshold.

2) Local Blacklisting: In this strategy, cach node lo-
cally blacklists a certain percentage of its outgoing
links, starting with the higher cost links.

3) Hybrid Blacklisting: This strategy combines the
first two methods. Here, starting with the higher
cost links, ecach node blacklists a certain percentage
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Fig. 6. Mean cost of Directed Minimum Spanning Tree (DMST)
for different Blacklisting policies. The DMST is rooted at a randomly
chosen node on 100 node graphs with randomly chosen node loca-
tions
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Fig. 7. Mean cost of Shortest Path Tree (SPT) for different

Blacklisting policies. The SPT is rooted at a randomly chosen node
on 100 node graphs with randomly chosen node locations

of links only if their cost is more than the globally
set threshold.

4) All-Except-Best-K Blacklisting; Here, each node
keeps its best K links, blacklisting all others.

C. Results and Discussion

Fig. 6 and 7 show the mean cost of the DMST and SPT
respectively for 100 node graphs over all the runs for the
four strategies. The plots were obtained up to those levels
of blacklisting beyond which the probability of getting
disconnected exceeds 0.5. Fig. 8 shows the probability
of getting disconnected at different levels of blacklisting
for these strategies.

It can be observed in Fig. 6 that in the Global blacklisting
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Fig. 8. Probability of getting disconnected on 100 node graphs for
different Blacklisting policies

scheme, the mean cost of DMST remains unchanged.
This is similar to the behavior of the undirected MST
over GRG. In the other schemes, the mean cost starts
to increase with increased levels of blacklisting. This
increase is most prominent in the All-Except-Best-K
blacklisting scheme, followed by Local blacklisting and
then Hybrid blacklisting.

Fig. 7 for SPT shows similar trends, albeit with a
subtle difference. We see that with increased levels of
blacklisting, even the Global blacklisting scheme causes
suboptimal SPTs. However, the cost of the SPT is much
better than those obtained under other schemes.

If we observe Fig. 8, we find that the connectivity
properties exhibit a reverse trend. Given a level of black-
listing, the All-Except-Best-K blacklisting scheme shows
highest probability of remaining connected, followed by
Local, Hybrid and Global schemes.

This shows that there exists a tradeoff between the degree
of blacklisting and optimality of the tree structures under
these blacklisting schemes. While the Global scheme
promises best performance in terms of cost of the tree, it
is poorest in terms of connectivity guarantees. The All-
Except-Best-K blacklisting scheme shows best probabil-
ity of staying connected, at the cost of sub-optimal trees
which can have substantially higher costs.

Fig. 9, 10 and 8 show the observations for 200 node
graphs. While the nature of observations is similar, it
should be noted that the blacklisting levels for optimality
and connectivity higher than the 100 node case. This pos-
sibly represents an optimistic trend: we can blacklist an
increasing percentage of links with increasing densities.
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To explore this possibility, we plot the blacklisting levels
for optimality of DMST and SPT under Global policy
for increasing node densities (Fig. 12). Note that the
curve for connectivity is same as the curve for DMST
optimality.

Fig. 12 shows an interesting trend. While the percentage
of blacklisting that still maintains optimality of the
DMST increases with node density, the percentage of
blacklisting that maintains optimality of the SPT remains
almost constant with increasing densities (70% in Fig.
12). This observation is not very optimistic in terms of
scalability of neighborhood table management. However,
we must point out that if we are ready to tradeoff
optimality to some extent, we can achieve levels of
blacklisting that scale with node density. It would be
an interesting future work to quantify this tradeoff.

V. RELATED WORK

Experimental studies in recent papers [1], [2], [3], [4],
[5] suggest that the link layer characteristics in a real
wireless medium can deviate substantially from the ideal
connectivity within R model. Specifically, these non-ideal
characteristics become even more prominent in sensor
networks with their low-power radio devices and high
node densities. The authors of [1], [5] propose a new
metric which captures the effect of link layer dynamics
on routing decisions. This metric denotes the expected
number of transmissions (including retransmissions) re-
quired for delivering a packet over a link and is thus a
good indicator of the energy-cost of transmission over a
link. We use this metric as the weight of an edge of the
network graph in our simulations,

The issue of neighborhood table management has been
addressed in [1]. This issue becomes important in sen-
sor networks where high node densities and non-ideal
link characteristics mean a potentially large number of
neighbors per node. The problem considered is how to
determine a subset of neighbors that are most useful for
routing. The authors propose a combination of inser-
tion, eviction and reinforcement policy for this purpose.
Specifically, they fix the neighborhood table size and
compare different policies based on the fraction of time
they yield good neighbors (see [1] for details). However,
the tradeoff between the degree of blacklisting and the
connectivity and optimality of the underlying graph
structure is not considered. The blacklisting approach to
neighborhood table management proposed in this paper
is different from [1] because here, a link once blacklisted,
is not considered for insertion into the neighborhood
table.

The idea of blacklisting has been considered in Dynamic
Source Routing (DSR) [8], a routing protocol proposed
for mobile ad-hoc networks. In DSR, to deal with
asymmetric links, each node maintains a blacklist, which
lists immediate neighbors with unidirectional links to the
node. These are links over which the node might receive
broadcast requests, but which are unsuitable for unicast
traffic. Nodes are added to or removed from this list
based on the success of packet forwarding.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we examined the impact of blacklisting-
based approaches to data gathering trees in wircless
sensor networks. These schemes exploit the fact that
it is possible to construct low-cost tree structures that
are same as or close to the optimal structure even if a
substantial number of high-cost links are removed from
the network graph. The main advantages of these tech-
niques are reduced complexity of constructing and main-
taining such trees besides scalable neighborhood table
management. Specifically, we considered two important
standard tree structures of interest, namely the Directed
Minimum Spanning Tree (DMST) and the Shortest Path
Tree (SPT). In the context of data-aggregation, these
assume even more importance.

Using a realistic model of link loss statistics, we showed
interesting tradeoffs between the connectivity and op-
timality of these structures for different blacklisting
techniques which differ in the way they decide on the
set of links to be blacklisted. It was found that while the



Global policy performs best in terms of optimality, its
connectivity guarantees are the poorest. The All-Except-
Best-K blacklisting shows best connectivity properties,
though the tree structures have higher costs than the
optimum ones. However, even for the Global policy, we
showed that up to 70% of the links can be blacklisted
with negligible impact on the optimality and connectivity
of the SPT with even higher degree of blacklisting
possible for the DMST. Furthermore, if we are ready
to tradeoff optimality to some extent, we can achieve
levels of blacklisting that scale with node density.

Our study provides interesting insights into the
optimality-connectivity tradeoffs for the two tree struc-
tures considered using simulations. Quantifying these
tradeoffs analytically is a challenging future work. We
would also like to incorporate effects of temporal dy-
namics of the link layer in future models.
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