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ABSTRACT

In this paper we present a novel sequence-based RF-only
node localization algorithm, called Ecolocation. Our algo-
rithm determines the location of unknown nodes by examin-
ing the ordered sequence of received signal strength (RSS)
measurements taken at multiple reference nodes. We em-
ploy a constraint-based approach that provides for robust
location decoding even in the presence of random RSS fluc-
tuations due to multi-path fading and shadowing. Through
extensive systematic simulations, and a representative set of
real mote experiments, we show that over a wide range of
settings Ecolocation performs better than other state of the
art approaches in terms of localization accuracy and preci-
sion.

1. INTRODUCTION

Wireless sensor networks (WSN) are severely constrained
for energy and cost of deployment and operation. The unique
selling point of many WSN systems is that they are inexpen-
sive, autonomous systems capable of working unattended
for many years. This can be realized to some extent by
multi-tasking the components on sensor motes. Thus, the
system radio which is used for inter-mote communication
can also be used for localization.

In this paper we present a novel RF based node localiza-
tion algorithm called Ecolocation that examines the ordered
sequence of nearby reference nodes (nodes with known lo-
cations) to determine the location of the unknown node (node
with unknown location). The key idea of Ecolocation is that
the distance-based rank order of reference nodes constitutes
a unique signature for different regions in the localization
space.

In Ecolocation, we obtain the ordered sequence of ref-
erence nodes by ranking them on one-way RSS measure-
ments between them and the unknown node. This measured
sequence is then compared with the ideal distance-based
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sequence for each location to determine how many order-
constraints are satisfied. The location which maximizes the
number of satisfied constraints is then determined to be the
best estimate of the unknown node’s location.

Ideally, the ranks of the reference nodes based on RSS
readings should be monotonic with their ranks based on
true Euclidean distance. Of course, this is not true in the
real world because of the presence of multi-path fading and
shadowing in the RF channel. Reference nodes farther from
the unknown node might measure higher RSS values than
reference nodes which are closer and this introduces er-
rors in the constraints. However, we show that the inher-
cnt insensitivity to absolute RSS amplitudes and the inher-
ent redundancy present in the set of constraints make this
approach to localization very robust in practice. Because
of the close analogy to controlling errors by redundancy in
traditional error control coding, we name our algorithm the
“Error COntrolling LOCAIlizaTION technique”, or Ecolo-
cation for short.

The rest of the paper is organized as follows: Section 2
describes Ecolocation in detail and presents some illustra-
tive examples. Section 3 deals with related RF based local-
ization techniques which we use for comparison with Ecolo-
cation. In section 4 we evaluate Ecolocation and present its
comparative study with other localization techniques. Sec-
tion 5 discusses the results of a real world systems imple-
mentation and the conclusion and future work are presented
in section 6.

2. ECOLOCATION

In this section we describe Ecolocation and illustrate it for
the ideal and real world scenarios through examples.

The localization process is initiated by the unknown node
by broadcasting a localization packet. The reference nodes
collect RSS measurements of this packet and forward them
to a single point' where the location estimate is computed

This could be either a cluster-head or the unknown node itself, de-
pending on the application and computational capabilities of nodes.



as follows:

1. Determine the ordered sequence of reference nodes
by ranking them on the collected RSS measurements.

2. For each possible location grid-point in the location
space determine the relative ordering of reference nodes
and compare it with the RSS ordering previously ob-
tained, to determine how many of the ordering con-
straints are satisfied.

3. Pick the location that maximizes the number of satis-
fied constraints. If there is more than one such loca-
tion, take their centroid.

2.1. Ideal versus Real World Scenarios

Radio frequency (RF) based localization techniques are in-
herently dependent on the RF channel whose multi-path fad-
ing and shadowing effects have a fundamental bearing on
the accuracy of location estimate. Nevertheless, it helps
to study the localization technique in isolation of these ef-
fects. We introduce Ecolocation for the ideal scenario of
zero multi-path fading and shadowing effects and latter ex-
plain why it provides robust and accurate location estimate
even in the presence of these effects.

2.1.1. Ideal Scenario

In the absence of multi-path fading and shadowing, RSS
measurements between the reference nodes and the unknown
node accurately represent the distances between them. If
the reference nodes are ranked as a sequence in decreasing
order of these RSS values then this order represents the in-
creasing order of their separation from the unknown node.
For a reference node ranked at position 7 in the ordered se-
quence,

R,‘ > Rj = r[-,‘ < dj-,Vi < ]

where, R; and ¢; are the RSS measurement and distance
of the #** ranked reference node from the unknown node,
respectively.

The above relationship between two reference nodes is
a constraint on the location of the unknown node and is de-
pendent on it. An *" ranked reference node forms (i — 1)
constraints with lesser ranked ones and for a total of o refer-

-1 .
ence nodes there are % constraints on the unknown
node.

For fixed reference node locations, the sequence order
and the constraints are completely determined by the un-
known node location. Figure 1 illustrates this idea for a
simple case of five reference nodes and one unknown node.
Table 1 shows the constraints on the unknown node for the
example in 1(a).

(a) (b)

Fig. 1. The order of reference nodes (3. C. D, E, IF) de-
pends on the location of the unknown node (A).

B:1 Cc:2 D:3 E:4 F:5
R Ho < Yy Ry < Ry Ry < Ry R; < Ry
Ry < Ry | Ry < Ra | Rs < Ry
I?.j < l'l’(q Ra < Ha
Rs < Ry

Table 1. Constraints on the unknown node for the example
in figure 1(a).

Each location grid-point® in the location space has its
own set of constraints based on its Euclidean distances to
the reference nodes. The unknown node location estimate
can be obtained by comparing the constraints obtained from
RSS measurements to the constraint sets of each location
grid-point and picking the location which satisfies the max-
imum number of constraints. If there are more than one
such locations then their centroid is the location estimate.

2.1.2. Real World Scenario

In contrast to the ideal scenario, the real world is character-
ized by the presence of multi-path fading and shadowing in
the RF channel. Ideally, reference nodes that are far from
the unknown node should measure lower RSS values than
reference nodes that are nearer, but due to multi-path effects
this is not true in the real world.

Figure 2 shows the experimental RSS measurements at
five MICA 2 receivers placed at different distances from a
MICA 2 transmitter. It shows that the receiver at 17.08 feet
measured a higher RSS value than the receiver at 16.12 feet.
Evidently, RSS measurements do not represent distances ac-
curately in the real world.

*Location space scanning can be made more efficient by using greedy
search/multiresolution algorithms instead of exhaustively looking at all lo-
cations, but we do not discuss this optimization in this paper as it doesn’t
affect localization performance.
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Fig. 3. Ecolocation location estimate (E) for the unknown node (P) at (1,3) for a grid layout of 9 reference nodes (A). The
reference nodes are numbered according to their rank in the ordered sequence. (a) Sequence: 123456789 (no erroncous
constraints) [Estimate: (0.5, 3)] (b) Sequence: 123745968 (13.9% erroneous constraints) [Estimate: (0.5, 3)] (c) Sequence:
124739586 (22.2% erroneous constraints) [Estimate: (0.5. 1.5)] (d) Sequence: 913276584 (47.2% erroneous constraints)

[Estimate: (5. 7)].
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Fig. 2. Real world experimental results: Reference nodes
far from the unknown node may measure higher RSS val-
ues than closer reference nodes. Note that y-axis is reverse
ordered.

Therefore, if the reference nodes are ranked on their
respective RSS measurements, the constraints on the un-
known node location formed by these ranks will be erro-
neous. For example, if the ranks of fourth and fifth ranked
reference nodes are interchanged due to multi-path effects
in the RF channel, as in the experiment of figure 2, for
the example in figure 1(a), then the new constraints are as
shown in table 2. As it can be seen, 10% of the constraints
are erroneous in this case.

The percentage of erroneous constraints depends on the
RF channel condition, the topology of the reference nodes
and the number of reference nodes. The unknown node lo-
cation estimate accuracy in turn depends on the percentage
of erroneous constraints. This is illustrated through a few
examples.

Bl | c2 D:3 [E:5] [F:4]
Iy Ra < IRy R.‘s < Ry R5 < 1'] R:i < Ry
Rs < Ra | Ry < Ry Ry < Ra
Rs < Ry Ri< Rs
Ry < Ry

Table 2. Constraints for the example of table 1 when the
ranks of fourth and fifth ranked reference nodes are inter-
changed due of multi-path effects.

Figure 3 shows a sample layout of nine reference nodes
placed in a grid and a single unknown node. Figure 3(a)
plots the location estimate for the ideal case when there
are no erroneous constraints on the unknown node. Fig-
ures 3(b), 3(c) and 3(d) show the location estimates for vary-
ing percentages of erroneous constraints. It is evident that
location estimate error increases with increasing percentage
of erroneous constraints.

These examples suggest that Ecolocation is robust to
multi-path effects of the RF channel up to some level. The
inherent redundancy in the constraint set ensures that the
non-erroneous constraints help in estimating the unknown
node location accurately. Also, the constraint construction
inherently holds true for random variations in RSS measure-
ments up to a tolerance level of (|R; — R;|). Prior to pre-
senting a complete performance evaluation of Ecolocation
we discuss related localization techniques proposed by oth-
ers.

3. RELATED WORK

Over the past few years many solutions have been proposed
for RF-only localization in wireless ad-hoc and sensor net-



works which can be broadly classified into two main cat-
egories — range based and range free. Range based tech-
niques estimate distances (range) from RSS measurements
between the unknown node and the reference nodes and use
them to triangulate the location of the unknown noede [3],
[6], [71, [8), [9], [10], [12], [13], [14], [15]. On the other
hand range free techniques estimate the location of the un-
known node without determining the range [4], [17].

To compare with Ecolocation, we selected four local-
ization techniques — proximity localization, centroid [17],
approximate point in triangle [4] and maximum likelihood
estimation [7] — based on the criterion that they should use
RSS of RF signals to calculate the location estimate over a
single hop.

Proximity localization: 1t is a simple localization scheme
in which the location of the closest reference node, based
on RSS measurements, is the unknown node location esti-
mate. It can be considered as an extreme special case of
Ecolocation where only the first ranking reference node is
considered.

Centroid : In [17] the authors propose a range free, prox-
imity based solution for localization where the location es-
timate is the centroid of all the reference nodes which are in
the proximity of the unknown node. In [16] the authors sug-
gest an enhancement to this technique by adaptively plac-
ing reference nodes to minimize location error. We do not
consider this enhancement as this requires extra information
gathering and processing.

Approximate point in triangle: T. He et al in [4] propose a
range free localization technique called approximate point
in triangle (APIT) in which the RSS value at the unknown
node is compared with RSS values at its neighbors and based
on this comparison a decision is made whether the unknown
node location is inside various triangles formed by the ref-
erence nodes. This comparison test is done for all the loca-
tions in the location space and for all the triangles that can
be formed by the reference nodes. The location estimate is
the centroid of the locations which are in a maximum num-
ber of triangles. The accuracy of the location estimate also
depends on the non reference node neighbor density of the
unknown node.

Maximum Likelihood Estimation: Out of the many maxi-
mum likelihood location estimation (MLE) techniques pro-
posed, [3], [13], [7] etc., we consider a simple, represen-
tative MLE technique proposed in [7]. In this, the authors
calculate the location which maximizes a likelihood func-
tion, which is based on the distance estimate and its stan-
dard deviation, using the gradient climbing method. All RF
based MLE methods need good ranging techniques that use
radio frequencies to estimate distances. This either requires
expensive ranging equipment and/or time consuming pre-
configuration surveys of the location space.

In [2] the authors present a comparative study of many
RSS based localization techniques using commeodity 802.11
cards. According to the authors none of the localization
techniques have a significant advantage over others over a
range of enviranments. We conjecture that this could be an
artifact of fixing the number of nodes and the node density.
Our work differs from this in evaluating the performance of
five different RSS based localization techniques over differ-
ent node deployments in different RF channel conditions.

4. EVALUATION

In the section we present a complete performance evaluation
of Ecolocation using simulations.

4.1. Simulation Model

The most widely used simulation model to generate RSS
samples as a function of distance in RF channels is the log-
normal shadowing model [18]:

!
RSS(d) = Pr — PL{(dy) — 10n1log,, # + X, (1)
]

where, Pr is the transmit power and PL(dy) is path
loss for a reference distance of dy. 7 is the path loss ex-
ponent and the random variation in RSS is expressed as a
gaussian random variable of zero mean and o* variance,
X, = N(0,0%). All powers are in ¢ Bm and all distances
are in meters. In this model we do not provision separately
for any obstructions like walls. If obstructions are to be con-
sidered an extra constant needs to be subtracted from equa-
tion (1) to account for the attenuation in them (the constant
depends on the type and number of obstructions).

4.2. Simulation Parameters

The location estimate of any RF-based localization tech-
nique depends on a fundamental set of parameters which
can be broadly categorized into RF channel characteristics
and node deployment parameters.

e RF Channel Characteristics: [19], [18]

— Path loss exponent (17): Measures the power at-
tenuation of RF signals relative to distance.

— Standard deviation (¢): Measures the standard
deviation in RSS measurements due to log-normal
shadowing.

The values of 7 and o change with the frequency of
operation and the clutter and disturbance in the envi-
ronment.



e Node Deployment Parameters:

— Number of reference nodes («) and unknown
nodes (p).

— Density of reference nodes (/7) and unknown nodes.

Node density is defined as the number of nodes
per square meter.

— Location space size: A square area of (A x A)
sq. meters is considered.

— Resolution or granularity (7): The unit distance
between two grid points in the location space.

— Node distribution in the location space: Ran-
dom, grid topology or grid-random topology.

The effect of each of the above parameters on any local-
ization technique depends on the actual technique itself. For
example, some localization techniques depend more on the
number of reference nodes than resolution, while for some
other techniques reference node density may be more im-
portant than the number of reference nodes.

Table 3 lists the typical values and ranges for different
parameters used in our simulations. Each simulation sce-
nario consists of randomly placing o reference nodes and
one unknown node in a square of (A x A) square meters and
generating RSS values between them using equation 1. A
48 bit arithmetic, linear congruential pseudo random num-
ber generator is used. Results are averaged over 100 random
trials using 10 different random seeds.

Parameter Typical Value Typical Range
Py 4dBm (max.) NA
PL{da) 55dB (do = 1my [1] NA
n 4 (indoors) 1-7[19]
4.6 (outdoors)
a 7 (indoors) 2-14[19]
4.7 (outdoors)
o 25 3= 25
A 15 {50,25, 15,5}
(= ) 0.11 10.01,0.04.0.11, 1}
(1 ref. node in
9 sq.meters)
5 0.1 NA
p (for APIT) 8 NA
Node Random (Grid, Random,
Placement Grid-random)

Table 3. Typical values and ranges for different simulation
parameters

4.3. Simulation Results

The performance of Ecolocation is measured on the average
location error for a wide range of RF channel conditions

and node deployment parameters. A comparative study of
Ecolocation with the four localization techniques described
in section 3 is also presented.

Location error is defined as the Euclidean distance be-
tween the location estimate and the actual location of the
unknown node. The average location error is presented as
a percentage of the average inter reference node distance
(D,). On an average, D, = %

Figures 4(a) and 4(b) show the average location error
for Ecolocation and the four localization techniques as a
function of path loss exponent (1) and standard deviation
of log-normal shadowing (o) respectively. The results sug-
gest that Ecolocation performs better for RF channels that
have higher 1 and lower o values.

Among all five localization techniques Ecolocation pro-
vides the least location error over a range of 77 and ¢ values.
MLE performs equally well for some values. APIT is the
least accurate and Centroid is not influenced by radio chan-
nel conditions because all reference nodes fall in the radio
range of the unknown node.

Figures 4(c) and 4(d) compare the average location er-
ror for all five localization techniques as a function of the
number of reference nodes («v) and the reference node den-
sities (/3) respectively. As the results show, Ecolocation per-
formance improves with increasing reference nodes num-
bers and density. It should be noted that the average inter
reference node distance (1,) changes with reference node
density. Although, figure 4(d) shows that the error due to
Ecolocation is constant over all densities, it is constant as a
percentage of D, implying that the absolute location error
increases with reducing density of reference nodes.

Ecolocation provides the most accurate location esti-
mate compared to other techniques over a range of refer-
ence node numbers and their densities. Proximity localiza-
tion performs surprising well compared to APIT and Cen-
troid. As expected, the performance of Ecolocation, MLE
and Proximity localization improves with number of refer-
ence nodes whereas it degrades for Centroid and APIT.

Figure 5 plots the average location error due to Ecoloca-
tion for different reference node distributions and it shows
that grid placement of reference nodes provides the best lo-
cation estimates and random placement provides the worst.
This is expected because, reference nodes are spread more
widely in grid placement than in random placement result-
ing in a more robust constraint set.

Simulation results suggest that Ecolocation and MLE
perform equally well for some radio channel and node de-
ployment parameters even though they follow entirely dif-
ferent approaches. But in the real world, MLE may not
perform so well as it needs good 7 and o estimates for the
deployment environment and its very difficult to obtain ac-
curate estimates for these parameters in the presence of ob-
structions like walls and furniture,
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5. SYSTEMS IMPLEMENTATION AND
EVALUATION

The performance of Ecolocation in real systems is studied
through two experiments, representing different RF channel

and node deployment parameters, conducted using MICA
2 motes. The first experiment was conducted in a parking
lot which represents a relatively obstruction free RF chan-
nel and the second experiment was conducted in an office
building with many rooms and furniture that represents a
typical indoor environment.

Five different unknown node locations were estimated
using four different localization techniques - Ecolocation,
Centroid, MLE and Proximity localization. APIT was not
considered as it requires more than one unknown node. The
Centroid technique was introduced to radio channel influ-
ence by calculating the location estimate as the centroid of
the first three reference nodes by RSS value. This also helps
in avoiding the situation where all location estimates are
equal because the unknown node radio range covers all ref-
erence nodes. For the MLE technique, the values of 7 and
o from table 3 were used. All calculations were conducted
offline using RSS values recorded by the MICA 2 motes in
their EEPROMSs during experiments.



5.1. Experiment I: Parking lot

The RF channel in an outdoor parking lot represents a class
of relatively obstruction free channels. Twenty MICA 2
motes (reference nodes) were placed on the ground with a
separation of 10 feet between each other in a (5 x 4) grid in
an area of (40" x 30") = 1200 sq. feet as shown in figure 6.

A MICA 2 mote (the unknown node) placed at five dif-
ferent locations as shown in Figure 6 broadcasted a single
localization packet and the reference nodes recorded its RSS
measurement. All reference nodes were in the radio range
and in line of sight of the unknown node. Figure 6 shows the
location estimates calculated using the RSS measurements
and table 4 compares the estimation error for all four lo-
calization techniques. According to the results Ecolocation
performs better than all other techniques in four out of the
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Fig. 6. Experiment [: Parking lot - Performance of various
localization techniques.

Technique P1 P2 P3 P4 P5
Ecolocation | 5.25 | 0.97 | 0.98 | 1.84 | 2.73
Centroid 3.73 | 5.00 | 3.73 | 3.73 | 5.00
MLE 3.65 | 3.53 | 3.12 | 3.05 | 1416
Proximity | 5.00 | 5.00 | 5.00 | 5.00 | 15.00

Table 4. Experiment I: Location error (in feet) at different
locations due to different localization technigues.

5.2. Experiment II: Office building

Office buildings with features such as rooms, corridors, fur-
niture and other obstructions represent a distinct class of RF
channels. In such dense scenarios it often becomes neces-
sary to provide symbolic location estimates relative to these

features. In this experiment we compare the four localiza-

tion techniques on the accuracy of symbolic location esti-

mates.

Figure 7 shows a schematic of the experimental setup.
Eighteen MICA 2 motes (reference nodes) were placed on
the ground randomly in an area of (52" x 20") = 1040 sq.
feet across corridors and different rooms. As in Experiment
[, a MICA 2 mote (the unknown node) placed in five dif-
ferent locations as shown in the figure broadcasted a sin-
gle localization packet and the reference nodes recorded its
RSS measurement. For all five locations only a subset of
the reference nodes were in line of sight of the unknown
node. Table 5 shows the location estimate errors and table 6
compares the symbolic location estimates for all four Jocal-
ization techniques. As the results show, Ecolocation is the
only technique which provides accurate symbolic location
estimates for the unknown node.
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Fig. 7. Experiment 11: Office building - Performance of var-
ious localization techniques.

Technique P1 P2 P3 P4 P5
Ecolocation | 3.68 342 | 1.20 | 4.85 | 5.97
Centroid 406 | 872 | 4.0 | 5.89 | 6.00
MLE 11.39 | 13.51 | 8.76 | 2.28 | 5.32
Proximity 5.83 4.00 | 5.00 | 2.00 | 5.34

Table 5. Experiment [I: Location error (in feet) at different
locations due to different localization techniques.

The experimental results suggest that MLE does not per-
form as well as it does in simulations. As suggested in
the previous section, this is because the simulation model



Technique Pl P2 P3 P4 P5
(C) | (©) | (C) | (C) | (CR)

Ecolocation | C C C C CR

Centroid C |€R || ER.| L CR

MLE CR | CR | CR C CR

Proximity C ¢ I'ER.| € CR

Table 6. Experiment II: Symbolic location estimates for
various localization techniques. Note that Ecolocation is
the only technique that indicates the correct location in cach
reading.

of section 4.1 does not include real world features such as
walls, furniture and other obstructions.

6. CONCLUSION AND FUTURE WORK

In this paper we have presented a novel RF based local-
ization technique called Ecolocation which makes use of
the inherent redundancy present in the ordering of reference
nodes with respect to the unknown node to provide good lo-
cation accuracy. We have also presented comparative study
of Ecolocation with four other RF based localization tech-
niques through simulations and real world systems imple-
mentation. The results show that Ecolocation performs bet-
ter than other localization techniques over a range of RF
channel conditions and node deployment strategies.

In the future we would like explore algorithms such as
greedy search and multi-resolution search for scanning the
location space to make Ecolocation more efficient. All lo-
calization techniques extract costs from the system over which
they operate. As part of our future work we will study
the effect of Ecolocation as well as other localization tech-
niques over a variety of realistic system designs and proto-
cols.
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