Trends Toward On-Chip Networked Microsystems

Timothy Mark Pinkston (Senior Member, IEEE) and Jeonghee Shin
SMART Interconnects Group
Electrical Engineering-Systems Department
University of Southern California
Los Angeles, CA 90089-2562, USA
E-mail: {tpink, jeonghee} @charity.usc.edu

Abstract—This survey paper identifies some trends in the
application, implementation technology, and processor architec-
ture areas. A taxonomy which captures the influence of these
trends on processor microsystems is presented, and the commu-
nication needs of various classes of these architectures is also
briefly surveyed. We observe a trend toward on-chip networked
microsystems derived from logically and physically partitioning
the processor architecture. Partitioning the architecture logically
enables the parallelism offered by growing application workloads
to be well exploited. Partitioning the architecture physically
enables the scaling properties of the underlying implementation
technology to continue to provide increasing performance and
not be encumbered by chip-crossing wire delay, which no longer
is negligible. The impact on future research directions of this
paradigm shift in the way microsystems are designed and
intraconnected is briefly highlighted.

Index Terms—interconnection network, microprocessor, mi-
crosystem, on-chip network, partitioned architecture, system-on-
chip.

I. INTRODUCTION

HE 2003 International Technology Roadmap for Semi-
conductors (ITRS’03)[1] projects that within 10 years (by
2013), high-volume processor chips will have approximately
1.5 billion transistors per cm?® running at over 20 GHz.
Achieving this milestone would signify an inevitable paradigm
shift in parallel computing away from the current notion of
“macro” systems consisting of multiple (and possibly het-
erogeneous) chips toward the notion of highly parallel and
integrated “micro” systems implemented within single chips,
otherwise known as systems-on-chips (SoCs). Although SoCs
can implement microsystems consisting of a wide variety of
intellectual property (IP) cores, we restrict ourselves to those
which implement general-purpose processor microsystems.
Microprocessor designers are faced with the challenge
of building integrated systems which fully utilize abundant
transistor and wiring resources while operating at increased
clock frequencies. At the same time, they are dealing with
the concomitant increase in on-chip communication require-
ments and bottlenecks. Wiring delay, failures, and overall
design/verification complexity among other things (including
power consumption) are causing designers to re-think the
architecture of these so-called microsystems, especially the
communication subsystem. The extent to which techniques

This work was supported in part by NSF grants CCR-0209234 and CCR-
0311742, and by WiSE funding at USC.

developed for the communication subsystem within traditional
macrosystems can be directly applied to the interconnect
problem in emerging microsystems is not readily known.
What's more, the unique solutions needed to address certain
microsystem-specific interconnect problems have yet to be
discovered.

In this survey paper, we highlight some of the critical issues
involved in designing billion transistor microsystems and focus
on the communication subsystem: the on-chip interconnec-
tion network. We first consider some trends in the areas of
applications, implementation technology, and architecture in
Section II. Then, in Section III, we survey emerging processor
microsystem architectures and discuss their communication
needs. We introduce a new classification scheme for processor
microsystems based on the way the architecture is partitioned,
and we identify some common attributes of their on-chip
communication subsystem. This is followed by Section IV in
which possible future research directions in the area of on-chip
networks for microsystems are presented. Finally, Section V
concludes the paper.

II. TRENDS IN MICROSYSTEM DESIGN

To gain a deeper understanding of microsystem design
issues and trends, it is useful to revisit the basic interrelation-
ships between applications, architecture, and implementation
technology in this context. Applications place demands on
the processor architecture and implementation technology to
deliver performance by defining what system functions should
be supported by the hardware and software. The processor ar-
chitecture defines how system functions are supported in both
hardware and software (i.e., the compiler and programming
model). The implementation technology determines the extenr
to which system functions are supported in hardware—in the
context of microsystems, within the real estate of a single chip.
The capabilities and limitations of an architecture and those
of the technology in realizing the architecture ultimately in-
fluence the achievable application performance. By observing
various trends in these three areas, likely directions for future
microsystem design can be revealed.

A. Application Trends

Commercial applications are becoming more and more data-
centric, oriented towards needing peak aggregate throughput
for executing multiple problems simultaneously rather than

requiring peak response time for executing any single prob-
lem. Although response time is important for many technical
workloads, peak throughput in teraflops or petaflops has for
some time been a convenient measure for performance, e.g.,
in workloads encompassing the scientific-engineering domain
such as bio/molecular processing, human genome, pharma-
ceutical design (protein folding), weather/event forecasting,
computational fluid dynamics, 3D plasma modeling, and other
simulation and grand challenge applications. However, as com-
mercial applications represent the largest and fastest growing
market segment for high-performance computing [2], systems
that achieve peak aggregate throughput will likely dominate.

Throughput-oriented commercial workloads include
database, on-line transaction/financial processing, network
processing, data (audio/video) streaming, rendering, and
various other web and data center applications. As discussed
in [2], [3], these applications are typified as having large
instruction and data footprints which increase communication
costs, i.e., miss rates at various levels in the memory
hiearchy. They also are largely integer intensive and highly
data-dependent, with little exploitable instruction-level
parallelism (ILP). More importantly, they are trivially
parallelizable into “thread” or “process™ logical work units.
Such parallelism exists in applications when there is some
degree of independence between sequences of instructions
such that execution of those instruction sequences can be
overlapped in time and/or space. The granularity of those
instruction sequences or threads can be as fine as basic blocks
of instructions delimited by branches in control flow to as
coarse as traces of instructions spanning many branches or
even the entire program.

Commercial applications, therefore, would benefit greatly
from architectures capable of exploiting modest amounts of
ILP and significant amounts of thread-level parallelism (TLP)
(or process-level parallelism (PLP)). In database applications,
for example, TLP can be used to hide communication latency
as relatively independent transactions or queries can be initi-
ated in the same time frame by different clients in response to
cache/memory misses and disk I/O requests. ILP alone cannot
hide this latency as effectively.

B. Implementation Technology Trends

On the implementation side, device scaling and chip sizing
continue to allow an exponential growth rate in the number
of transistors and wires that can be integrated per unit area
on a CMOS chip.! Obvious advantages are that more system
functions required by applications can be implemented in
on-chip hardware, and local switching speeds (i.e., clock
frequencies) spanning a fixed number of densely packed gates
increases in proportion to technology scaling. These tendencies
as projected by ITRS-2003 are shown in Figure 1. However,
several challenges also arise, many of which have been well
documented in recent literature—namely, global and semi-
global wire delay, design and verification complexity, fault

In this paper, we restrict ourselves to microsystems built from CMOS
technology as opposed to other more exotic nanotechnologies, e.g., MEMs,
molecular and quantum computing technologies, etc.

[5]

6000
—e— Logic Device 1/2 Fitch (nm)

—=a— Logic Device Physical Gate Length {(nm)
—a&—— Max Number of Metal Layers

— =~ — Usable Transistors per Chip (in mﬂlnons)r
-#— — Chip Frequency (10MHz)

/- 5000

4000

41 3000

1 2000

Values for Size, Layers
o
o

¥
—
(=]
o
o

Aouanbai 4 ‘sI0)SISURL | 10} SANEA

-3

ST

2009 2012
Technology year

2003 2008 2015

Fig. 1. ITRS-2003 Technology Projections [1].
100000
—+— Semi-global, conservative
— - o - - Semi-global, aggressive 4
—#&— Global, conservative
e - Global aggresswa
- 10000 | -
&
B
K]
8
2
= 1000
100
0.18 0.13 0.10 0.07 0.05 0.035

Technology (um)

Fig. 2. Unrepeated wire delay (picoscconds) spanning 10 mm distance [4].

containment/tolerance, and power consumption [4]. All but
power consumption are touched upon below.?

Computation speed is no longer limited by device switching
time—which decreases with scaling—but by non-local wiring
delay. This remains true even with the use of highly conductive
copper wires insulated by low-k dielectric material to reduce
electrical “crosstalk.” Copper is about 50% more conductive
than aluminum but only about 40% more conductive when
walled to keep from diffusing into surrounding oxide. How-
ever, like any other conductor, it still suffers from quadratic
delay growth with increasing interconnect distance. Using the
delay models provided in (4], Figure 2 shows this quadratic
wire delay growth as a range (conservative to aggressive
assumptions) for several process generations. Here, for a fixed-
length 10 mm long wire, the interconnect distance relative to
each generation’s shrinking gate length increases. That is, the
interconnect distance spans proportionally more gates for each
process shrink. Semiglobal wires are assumed to have a pitch
of 8\ (i.e., middle metal layers 3 and 4) and global wires are
assumed to have a pitch of 16A (i.e., top metal layers 5 and 6),
where) is a technology-independent parameter that represents
half the drawn gate length. As summarized in Table I, a chip-
crossing global wire signal can reach only about .4% of the

IPower consumption issues are not considered in this work. For more
discussion on the impact of technology scaling and architectural techniques
on power consumption, the interested reader is directed to [3], [6], [7]

TABLE |
EFFECT OF TECHNOLOGY SCALING ON INTRA-CHIP INTERCONNECT PARAMETERS

Technology Scaling
Parameter 180 nm 130 nm 100 nm 70 nm 50 nm 35 nm
technology year 2000 2002 2003 2006 2009 2012
FO4 delay (picoseconds) [4] 90 psec 05 psec 30 psec 35 psec 25 psec 17.5 psec
16 FO4 worst-case clock (GHz) [4] .7 GHz 1 GHz 1.25 GHz | 1.8 GHz 2.5 GHz 3.6 GHz
ITRS-2003 projected clock (GHz) [1] — — 2.9 GHz 9.3 GHz 12.4 GHz | 20.1 GHz
chip edge (1000%s of A's) [4] 2101 kA | 3184 kA 456 kA 711.4 kA 1,096 kA 1,720 kA
chip edge (mm) [4] 19 mm 207 mm | 228 mm | 249 mm | 27.4 mmm | 30.1 mm
repeated diagonal chip-crossing (16 FO4 clks) 1 clk 1.5 clks 2.3 clks 3.6 clks 5.8 clks 10.7 clks
repeated diagonal chip-crossing (ITRS-2003 clks) _ —_ 5.3 clks 18.6 clks 28.8 clks 59.7 clks
unrepeated edge crossing (16 FO4 clks) 1.1 clks 3.4 clks 7.8 clks 25 clks 77 clks 256 clks
unrepeated edge crossing (I'TRS-2003 clks) — — 18 clks 129 clks 382 clks 1428 clks
semiglobal wires/edge/metal layer (pitch = 8A) 206.4k 39.8k 57k 88.9k 137k 215k
global wires/edge/metal layer (pitch = 16A) 13.2k 19.9k 28.5k 44.4k 68.5k 107.5k
tiles on the chip (33.3kA x 53.3kA tiles) 16 tiles 36 tiles 64 tiles 169 tiles 400 tiles 1024 tiles
chip’s length within a clock cycle time of 16 FO4 gate delays? 100
(i.e., 3.6 GHz clock frequency) in 35nm technology.* Only =
about .07% (extrapolated) of the chip’s length can be reached £
with a much higher 20 GHz clock as projected by ITRS-2003 g ”(_/_*,,_—a;—,"‘
for that same process generation. § oy ——
For such chip-crossing wires with length that is independent TV . ==
of each process generation, repeaters can be used to make § ==
wiring delay grow approximately linearly with interconnect E —+— Semi-global, conservative :
distance, as opposed to quadratically. Repeaters essentially - i e |
serve as gain stages between fixed-length wire segments that ¢ A aeeke [
1 A

scale with gate delay. Even with repeaters, wire delay can
still be many factors higher than gate delay and dominate
the overall delay experienced by a logic signal transmitted
between gates across a chip. Again, using the delay models
provided in [4] and summarized in Table I, a repeated chip-
crossing global signal can reach only about 10% of the
chip’s length within a 16 FO4 clock cycle time in 35nm
technology under worst case environmental conditions. This
percentage worsens to 1.8% assuming the much higher ITRS-
2003 projected clock frequency of 20 GHz. For the clock cycle
time not to be slowed down to this chip-crossing critical path
length, communication across semiglobal and global distances
would have to be pipelined by the architecture.

Figure 3 shows the reachable distance per clock for signals
transmitted on repeated semiglobal and global wires juxta-
posed to chip edge-to-edge distance, assuming 16 FO4 clock
cycle times for each process generation. Figure 4 shows this
same information but in terms of logical spans in kA’s—that
is, in terms of the number of 1000's of half gate lengths
that can be spanned per clock. These figures taken directly
from [4] convey some very useful information that leads to
an important conclusion. Although the reachable distance per
clock decreases with every technology generation, the achiev-
able logical span remains almost constant across generations.
That is, about the same number of logic gates can be crossed
as technology scales since the sizes of those gates and the

3The designation “FO4" (or fan-out of four) is the delay (e.g., in picosec-
onds) of an inverter loaded by four identical inverters for a given technology.

“Worst case environmental conditions of high temperature and low supply
voltage were assumed.

0.18 0.13 0.10 0.07

Technology (um)

0.05

Fig. 3. Reachable distance (mm) per 16 FO4 clock for repeated wires [4].
10000
=
=
1
% 1000
a
Q
2
L}
8 100 - :
——— Semi-global, conservative
% — - & - — Semi-global, aggressive
] —a&—— Global, conservative
§ — - & - — Global, aggressive
(i 10 —x— Chip edge
0.18 0.13 0.10 0.07 0.05 0.035
Technology (um)
Fig. 4. Reachable distance (kA's) per 16 FO4 clock for repeated wires [4].

wires interconnecting them also scale. This means that wire
delay becomes problematic only when the logic complexity
increases beyond a certain point: when the logical span of the
functional block being implemented grows to encompass more
of the many A’s available through scaling, beyond some wire-
limited upper bound. This observation therefore embraces the
notion of keeping the logic complexity of functional blocks

below that critical bound through modular design or “tiling.”>
This has the added benefit of bounding overall chip design
and verification complexity, which would otherwise grow with
technology scaling.

Modularized implementation helps to mitigate the wire-
delay problems associated with technology scaling. It also
enables the architecture to deal effectively with other tech-
nology scaling problems, such as the increased potential for
device fabrication defects and failures owing to use damage.
Electromigration, for example, causes the breaking of conduc-
tor lines over the chip’s lifetime due to electron bombardment
of metal atoms as electrons flow through devices and wires.
Technology scaling increases the current density in conductor
lines (particularly copper-based wires), which leads to greater
electromigration effects, especially near vias which connect
two metal layers. If designed for high dependability to work
in the presence of defects and faults, the architecture may be
able to salvage affected chips, leading to higher yield and/or
increased chip lifetime.

Clearly, the growing capacity for device integration impacts
architectural decisions in terms of how to utilize those re-
sources most advantageously. What architecture best increases
chip functionality while not negatively affecting achievable
clock frequencies, communication latency, design/verification
effort and fault resilience? While this remains an open ques-
tion, what is becoming clear is the following: with imple-
mentations reaching the 10s of nanometer technology scales,
interconnect delay and integrity issues have risen to the point
of criticality and must now be considered first-class citizens
in a microsystem’s architecture.

C. Architecture Trends

Following after the trends in applications and implementa-
tion technology as discussed above, processor architectures are
being designed more modularly and to exploit parallelism at
higher levels beyond that which can be achieved through ag-
gressive single thread pipelining and multiple instruction/data
issuing. Current approaches are based on logically and/or
physically partitioning the architecture. That is, architectures
are partitioned into multiple “logical” work units, multiple
“physical” work units, or combinations of both logical and
physical work units. Logical partitioning into logical work
units of rhreads allows the architecture to exploit the thread-
level parallelism inherent in applications. Physical partitioning
into physical work units of compute/operation clusters or
processor cores enables the architecture to exploit the scaling
properties of the underlying technology. These design trends
follow naturally—as the architecture’s capability to exploit
parallelism increases, subsystem components naturally tend to
become less tightly coupled, both logically and physically.

As mentioned in the context of implementation technology,
modular design bodes well in mitigating chip-crossing wiring
delay as resources comprising high affinity functional blocks
can be partitioned, grouped together into small replicable
physical work units, and distributed across the chip. As

3The tile size in Table [is equivalent to that used in the Raw architecture [8],
which is 4mm x 4mm in .15um technology for 16 tiles per chip.

Table T shows, it would take an estimated 11 cycles (16 FO4
clocks) or 60 cycles (ITRS-2003 clocks) to cross the diagonal
of a chip implemented in 35nm process technology using
repeaters on the global wires. If repeaters were not used (this
would be atypical), it would take an estimated 256 cycles
(16 FO4 clocks) or 1428 cycles (ITRS-2003 clocks) in the
same technology. Centralized designs employing monolithic
global structures across the chip, thus, would suffer enormous
pipeline latencies for most instructions executed. Such long
latencies would be encountered less frequently in physically
partitioned designs. For example, in tile-based designs, longer
latencies would be experienced only in those cases when inter-
tile communication is required.

Modular design into logical and physical work units also
enables defects and faults to be tolerated more easily by the
architecture through isolation, redundancy, and reconfiguration
at the circuit and/or functional block level (i.e., adaptive, self-
correcting, self-repairable microsystems as suggested in [1]).
For example, replicating tiles across the chip can increase yield
as the entire chip need not be discarded if only one or a
few fabrication defects occur. Instead, all that is needed is
the ability to deactivate and disconnect the affected tiles from
the rest of the microsystem. This technique has been used
by DRAM and SRAM designers for years to raise yield in
the presence of a certain number of fabrication flaws/defects
(e.g., by including redundant memory cells). In the same way,
the dependability of the microsystem can be increased with
reconfiguration, allowing the chip to survive faults that may
occur once deployed. Partitioning the architecture in this way,
however, increases the need for more explicit communication
across the system at both the macroscopic and microscopic
levels. More onus is placed on the hardware and/or software
(i.e., compiler and run-time kernel) to provide a consistent and
efficient single-system image.

As integration of functional blocks onto a single chip con-
tinues to increase, interconnection complexities that had once
existed primarily at the macroscopic level between multiple
chips will transfer to the microscopic level within a single
chip. As shown in Table I, as many as 1024 Raw archi-
tecture tiles [8] may be implementable in 35nm technology.
Support for low latency, high throughput and fault tolerant
communication will therefore be critical within the microsys-
tem’s interconnection network architecture to interconnect
the tiles. Some recent microprocessor chips (e.g., the Alpha
21364 [9], IBM POWER4 [10], and the now canceled Compaq
Piranha [2]) have opted to integrate on-chip router switches
to enable seemless upward scalability to larger multiprocessor
macrosystems built from smaller microsystem modules. While
this may be one way of utilizing the abundant chip resources to
improve macrosystem performance, it does not ease the scaling
problems within the single chip microsystem. Extending the
notion of an inteconnection network to within the chip—that
is, in the form of an on-chip network—may, in fact, be the
only viable architectural approach to dealing with escalating
microsystem technology scaling problems.

A number of researchers have recognized the advantages
of on-chip networks [11], [12], [13], [14], [15], [16], [17],
[18], [71, [19], [20]. One of the first to make a solid case was

Partitioned Architectures

Only physical partitioning
at cluster-level with single thread

(Superscalars EPICs)

Only logical partitioning
al processor-level
with multiple threads

(SMTs, Intal P4)

]

Logical & physical
partitioning

1

I |

Compiler-blind Compiler-visiblo Cluster-level
partitioning

(Alpha 21264, (Grid processor)

Alpha21364)

——

Single thread Multiple threads

I l

Processor- & cluster-level Processor-level
partitioning partitioning

——

Single thread Multiple threads Single thread ~ Multiple threads

per cluster par cluster per processor per processor per processor per processor
(Multiscalar, (Alpha 21464, {Sun MAJC) (IBM POWER4, (IBM POWERS,
Trace, MAP) Compaq Piranha Sun Niagarg)
Superthreaded Hydra)
processors)
Single thread Multiple threads
per cluster per cluster
(Raw, (None)
Multiplex
procassors)
Fig. 5. A taxonomy of processor microsystem architectures based on the notion of logical and physical partitioning.
Dally in [21], [22]. There, the notion of replacing dedicated
and bus-based global wiring with a general-purpose on-chip | IF/D BF—=—— _EX MEM WB
interconnection network that routes packets was first proposed. “L/J

This allows sharing of wiring resources between many com-
munication flows, and it facilitates modularity with replicable
router and channel resources across the chip. It also provides
better fault isolation and tolerance than a shared bus; a single
fault in a network wire or buffer will not halt all transmissions.
Moreover, an on-chip network can reduce the wiring complex-
ity in a tiled design as the paths between tiles can be precisely
defined and optimized early on in the design process. This
enables the power and performance characteristics of global
interconnects to be improved considerably. Furthermore, as
deduced from the wiring and tiling information given in
Table 1, more than 6,600 global wires cross each edge of the
tile in a tiled chip for all process generations, assuming only
the top two metal layers are used. As noted in [22], having
such a large number of “pins” crossing the four edges of a
tile (over 26,000 in this case) allows wiring resources to be
traded off for improved network performance. For instance,
this allows for very wide network channels to be implemented
over which data can be sent broadside, as opposed having the
data to be serialized over narrow channels.

Clearly, the architecture of processor microsystems is tend-
ing to be more communication-aware than it has been in the
past. Greater emphasis is now being placed on the commu-
nication needs of the architecture and how on-chip networks
can be designed to meet those needs efficiently.

III. ON-CHIP MICROSYSTEM COMMUNICATION

In this section, the on-chip communication needs of proces-
sor microsystems are surveyed for several classes of architec-
tures. We introduce a new classification scheme to distinguish
between the various processor microsystem architectures. A
previous classification presented in [23] is based mainly
on the architecture’s communication subsystem for operand
transport. Here, the architecture of the processor microsystem

Fig. 6. Five basic pipeline stages of a monolithic processor chip.

is classified based on how it is partitioned, both logically
and physically. For the various processor architecture classes
presented, the additional communication paths needed between
partitions at various pipeline stages are identified.

Figure 5 gives an overview of various processor architecture
classes in which some form of partitioning is used. Architec-
tures can be partitioned only logically, only physically, or with
some combination of both logical and physical partitioning.
Physical partitioning can occur at the granularity of processor
cores, at the granularity of functional unit clusters, or at both
levels. Partitioning may or may not be exposed to the compiler;
however, in this taxonomy, we assume the compiler can be
made aware of logical partitioning (i.e., always compiler-
visible). In the case of combined logical and physical partition-
ing, a single logical partition or multiple logical partitions in
the form of fine- or coarse-grained thread(s) can be associated
to each physical partition.

Although processors may have different pipeline structures,
all must implement the following basic functions: fetch and
decode instructions (IF/ID), fetch operands from the register
file (RF), issue and execute instructions (EX), access data
memory (MEM), and write back results to the register file
(WB). More deeply pipelined architectures can be reduced
down to these five basic stages, shown in Figure 6 for a
monolithic (non-partitioned) processor chip. Using this tem-
plate, the necessary on-chip data communication paths beyond
those supported by a traditional pipeline can be observed for
the various partitioned architectures. Section III-E summarizes
these findings in Table II for several recent commercial and
proposed processor microsystems.

qm

wB

Fig. 7.
logical work units or threads are shown with the four different shadings.

An architecture in which only logically partitioning is used. Four

A. Logical Partitioning

Let us consider architectures which are logically partitioned.
These aim to exploit thread-level parallelism of applications.
A thread logical work unit may comprise an entire sequential
program or it may comprise one of a number of instruction
sequences composing a sequential or parallel program. Each
thread has an associated state which defines its execution
progress, i.e., the point reached within its instruction se-
quence as given by the program counter (PC) and its data
values as captured by datapath registers and memory. Coarser
grained TLP may be exposed by the operating system (OS)
or the user as a consequence of parallelism existing at the
program-level. This can occur for a collection of applications
that run independent processes simultaneously in a multi-
programmed workload environment or for a parallel program
that is decomposed into independent processes which may
need to synchronize at various points during execution. Finer
grained TLP may be exposed within a single program (e.g.,
with thread-level speculation on loops or instruction traces)
by a parallelizing compiler, the hardware architecture or a
combination of both. In any case, logically partitioning the
architecture into separate thread logical work units enables
multiple threads to run simultaneously.

An architecture that is only logically partitioned enables
multiple threads to be overlapped in time over a set of shared
resources. This is shown for a physically non-partitioned five-
stage pipeline in Figure 7, where four different threads are
distinguished from one another by their different shadings.
This is illustrative of physically non-partitioned architectures
which use fine-grained multithreading (FMT) or the more
popular simultaneous multithreading (SMT) [24]. If needed,
threads communicate data values to each other through the
data memory in the MEM stage, usually through the first level
data cache (L1). Hence, no extra communication paths beyond
those normally supplied by the pipeline are required. However,
without any physical partitioning, the monolithic control struc-
ture used to dispatch and execute the threads across the chip
will result in wire delays and design/verification complexities
at the implementation technology level which, ultimately, will
limit the cost and performance scalability of the architecture.

An example of an SMT architecture that is logically par-
titioned is the Intel Pentium 4 [25]. The pipeline stages of
the Pentium 4 are fully shared by two threads, including a
centralized instruction dispatcher. However, the register alias
table, translation look-aside buffer, PC, stack pointer, and other
resources which capture the state of the threads are dedicated
(partitioned) to each thread to help reduce complexity and
improve performance.

B. Physical Partitioning

Now we consider architectures which are physically parti-
tioned. Physically partitioned architectures decompose com-
plex monolithic global structures into simpler localized struc-
tures that are distributed across the chip. This aims to ex-
ploit the resource scaling properties of CMOS implemen-
tation technology while not exacerbating wiring delay and
design/verification complexity. Physically partitioning the ar-
chitecture into separate physical work units allows instruc-
tions to execute on resources that are geographically close
in proximity, thus within acceptable wire delays. However,
since physical work units span much less chip area than their
monolithic counterparts, their designs tend to be much simpler.
Typically, each is designed to exploit only a modest amount
of instruction-level parallelism, e.g., single- or dual-issue, in-
order instruction execution over each physical work unit.

An architecture that is only physically partitioned allows
instructions of a single thread to be overlapped in space over
distinct sets of dedicated resources or clusters. If a cluster con-
sists of all the functional units needed by the basic five-stage
pipeline, the cluster may be considered a processor core. An
example of a physically partitioned, logically non-partitioned
five-stage pipelined architecture is shown in Figure § with four
different clusters. In this figure, each cluster has associated
to it a register file and a set of execution units (denoted
by a single ALU symbol); other functional units along the
pipelined datapath such as the instruction fetch/decode and
data memory units are shared by instructions. Thus, this cluster
is not considered a processor core. Since only a single thread
is executed over all the clusters, this architecture enables ILP
to be exploited beyond the modest amount provided by each
cluster alone. ILP can be exploited exclusively by the hardware
architecture without explicit compiler intervention, as is done
in the Alpha 21264 [26], 21364 [9], and other multiple-issue
superscalar architectures, or by a combination of hardware
architecture and compiler support, as is done in the U.T. Austin
Grid processor [27] and EPIC architectures.

Results of instructions can be communicated between clus-
ters several ways beyond that which is normally provided by
the pipeline’s forwarding/bypassing paths and MEM stage. To
express this, we denote the possible intercluster uni- or bi-
directional data communication paths between stage A of a
local cluster and stage B of a remote cluster by <A—B>
and <A+B>, respectively, where A and B are substituted
with IF/ID, RF, EX or MEM. The communication paths of
the WB stage are regarded as the same as the RF stage
since both stages access the same resource: the register file.
Therefore, for simplicity of expression, we use only the
RF designation in specifying communication paths, i.e., no
explicit communication path is represented for the WB stage
(no distinction is made for out-of-order instruction commit, if
allowed).

If resources only in the EX stage are partitioned, a commu-
nication path should exist between them to allow forwarding
of ALU results from producer clusters to consumer clusters:
<EX+EX>, as shown in Figure 8. This is in addition
to augmenting the existing pipeline communication paths

<EXEOIEX> _ <RF—EX>

<RFEAF>

cl uster_

IF/ID
wB
Fig. 8. An archilecture in which only physical partitioning is used. Four

physical work units or clusters are shown (resources of a cluster are grouped).
Possible intercluster communication paths are shown in bold.

to allow communication to occur between shared resources
and partitioned ones, e.g. between the shared RF stage and
partitioned EX stage, and between the EX stage and the
shared MEM stage. By partitioning resources in the RF stage
as well, more new communication paths are possible, also
shown in Figure 8: <RF&RF> and <RF++EX>. These paths
can be affected by the way register files are partitioned.
One way is to replicate the register files in the clusters.
Replicating the register files reduces complexity, but requires
communication on every register update to propagate the result
to all register files (all need to have the same system image).
Another way is to distribute the register files. This would
require communication on a subset of the updates to the
register files—that is, the minimum subset needed to maintain
coherency between the register files. Distributed register files
may result in less communication, but they may necessitate
some synchronizing data structure (e.g., shared global register
file) which adds design complexity. In Section III-C below, a
few other possibilities for physically partitioned architectures
are discussed in the context of combined logical partitioning.

An example of an architecture that is physically partitioned
is the Alpha 21264 processor core. This core is also used in the
Alpha 21364 processor chip. This single-threaded architecture
has two clusters each consisting of a replicated register file
and two integer execution units. The compiler is oblivious
to the physical partitioning, thus the partitions are managed
by hardware mechanisms (i.e., the issue queue). Intercluster
communication is allowed only between the register files, i.e.,
<RF&RF> is allowed, but <EX-EX> and <RF&EX>
are not supported. One cycle is needed to propagate updates
between the register files of the two clusters.

Figure 9 illustrates the value of physically partitioning the
microarchitecture. Shown is the clock cycle time of various
Alpha architecture generations relative to the estimated bypass
delay needed to propagate results from the EX stage both for
physical partitioning and without it. This data was obtained
using the bypass delay model in [28]. For each successive
architecture and technology generation, the bypass delays
increase for the non-partitioned architecture, whereas they
remain almost constant for all but the last generation of the
partitioned architecture. The reason for this is the span of the
bypass paths becomes larger for each architectural generation
due to more execution units, physical registers, and read/write
ports being implemented. For instance, the 21264 and 21364
have 1.7 and 4 times more execution units and registers,

---¢- - - bypass delays (w/o physical partitioning) 100000 §
——e—— bypass delays (with physical partitioning) -
—=—— clok cycle time
e -® ___1 10000
+ 1000
+ 100
21064 _ 21184 21264 21364 -
1 0.8 0.6 0.4 0.2 0

Technology (um)

Fig. 9. Estimated bypass delays of Alpha microprocessor generations with
and without physical partitioning, assuming non-repeated wires.

respectively, than the 21164. The 21464[29]° has 2, 3.2, and 2
times more execution units, registers, and number of register
ports, respectively, than the 21264 and 21364. Hence, a non-
partitioned 21264 and 21364 would need ~650ps or one
clock cycle to bypass its results, whereas a non-partitioned
Alpha 21464 would require 25 clock cycles to bypass its
results. As shown, partitioning the RF and EX stages and
grouping those resources into clusters mitigates this bypass
delay problem. The Alpha 21464 combines logical partitioning
with physical partitioning to allow four SMT threads per
cluster. If repeated wires were used, the additional logic
complexity needed to support this form of logical partitioning
would likely prevent bypass delays from surpassing a single
clock cycle.

C. Logical and Physical Partitioning

Architectures that are partitioned both logically and phys-
ically, like the Alpha 21464, are more capable of exploiting
the TLP in applications as well as the scaling properties of the
implementation technology. This is true as long as the logical
span (i.e., logic complexity in kA's) needed to implement the
combined logical and physical work units remains below the
critical wire-limited bound. It is for this reason that these
partitioned work units typically are simpler in design than
their monolithic counterparts, though more complex than only
physically partitioned work units.

As indicated by the taxonomy in Figure 5, there are several
ways in which architectures can be logically and physically
partitioned. At one extreme, architectures can be physically
partitioned into multiple clusters and logically partitioned into
multiple finer-grained threads such that each cluster executes a
single thread or multiple threads. We refer to such architectures
as multiclustered processors (MCPs). At another extreme,
architectures can be physically partitioned into multiple pro-
cessor cores and logically partitioned into multiple coarser-
grained threads possibly consisting of multiple finer-grained
threads such that each processor core executes a single thread
or multiple threads. These are commonly referred to as chip

OThis processor architecture project was canceled before any chips were
ever built.

<EXEIEX> <RFE—EX>

<RF&>RF>

e lue
S
DE(

I 7T

<RF—EX>

IFAD EX MEM

=
@

Fig. 10. A multiclustered processor chip consisting of four clusters and one
thread per cluster. Possible intercluster communication paths shown in bold.

multiprocessors (CMPs). A combination of these two extremes
is an architecture that is physically partitioned into multiple
processor cores each of which is composed of multiple clusters
that execute one or more threads. We refer to these as hybrid
multiclustered chip multiprocessors or, simply, hybrid proces-
sors (Hybrids). The communication needs of each of these
architectures are briefly examined below through examples.

Multiclustered Processors

One example of a multiclustered processor is the Trace
processor [30]. This architecture implements both register
file structures mentioned in the previous section and takes
on a pipeline structure similar to that given in Figure 8.
However, different threads can be executed over the clusters
similar to the shading shown in Figure 10. The architecture’s
replicated register files contain global registers that are visible
to remote clusters. The distributed register files contain local
registers that are invisible to remote clusters, as allocated by
the compiler. Hence, the only intercluster communication path
is through <RF+EX>, which occurs only if the produced
register value maps to the global register file.

Figure 10 illustrates further partitioning that allows each
thread to work more independently in terms of instruction
dispatching. The possible data communication paths are the
same as discussed for Figure 8. The Multiscalar processor [31]
is an example of this architecture. It allows <RF&RF>
between the distributed register files by sending and receiving
register values through a queue, which is recorded in register
control bit masks. As another example of this architecture,
the register values produced in the EX stage in the M-
Machine’s MAP processor [32] can be directly written into
the register files of remote clusters through <RF+EX>. In
the Superthreaded processor [33], clusters have private register
files that are distributed and global registers that are shared but
synchronized through memory. Hence, a virtual <RF-RF>
communication path exists through the normal pipeline MEM
stage as is done in SMT architectures.

More TLP can be exploited by allowing multiple threads
to execute on each cluster. This idea was used in the M-
Machine’s MAP processor which supports cycle-by-cycle mul-
tithreading (FMT). The Alpha 21464 was designed to allow
simultaneous issuing of four threads (i.e., 4-way SMT) on
each cluster. For this architecture class, the same interclus-
ter communication paths as in Figure 10 are possible, ie.,
<RF+RF>, <RF&EX> and <EX+EX> and the pipeline
MEM stage. The different intercluster MEM stage accesses

processor core

=l

B
By
1N)

IFAD RF

Fig. 11. A chip multiprocessor consisting of four processor cores each of
which executes one of four threads. Intercluster communication paths are
shown in bold from L1 cache to L2 cache.

must be aggregated to and distributed from memory in some
efficient way, possibly by augmenting the pipeline communi-
cation paths between the dedicated EX resources and shared
MEM resource and between the MEM resource and the ded-
icated WB register file resources. Intracluster communication
between threads in the same cluster can be through the data
memory in the MEM stage as is done in the SMT architecture.

Chip Multiprocessors

Figure 11 illustrates a chip multiprocessor architecture in
which partitions at the granularity of reduced processor cores
with L1 instruction and data caches are replicated across
the chip. Each processor core executes a different thread.
Each core has access to a second level cache (L2) or higher
to allow threads to synchronize or otherwise communicate
with one another through memory. Hence, interprocessor com-
munication occurs only through additional <MEM&MEM>
paths between dedicated L1s via the shared L2. Examples of
processor chip designs that have adopted this architecture style
include the IBM POWER4 [10], Compaq Piranha [2], and
Stanford Hydra [34].

Similar to multiclustered architectures, more TLP can be
exploited in chip multiprocessors by allowing multiple threads
to execute on each processor core. IBM has adopted this for its
POWERS processor chip due out later this year [35]. Its design
has two processors on the chip each capable of dynamically
switching between executing a single thread in superscalar
mode or multiple threads in SMT mode.

Hybrid Processors

Figure 12 illustrates one example of a hybrid processor chip
consisting of two processors that share an L2 cache. In the
figure, each processor is composed of two clusters, and each
cluster executes a different thread. An alternative design would
allow only a single thread per multiclustered processor, as
in the Sun MAJC [36]. Yet another design alternative is to
allow multiple threads to execute on each cluster within each
processor consisting of multiple such clusters.” In order to
keep the logic complexity of work units below the critical
wire-limited bound, the logical span implemented over a

TWe know of no hybrid designs that allow this as of yet, however these
may emerge in the near future if the required logic complexity remains below
the critical wire-limited bound.

. <RF&XRF>

_— "
IFID Ar <RFEX> oy MEM wa

Fig. 12. A hybrid processor chip consisting of two processor cores each
composed of two clusters in which one of four threads is executed. Possible
intercluster communication paths are shown in bold.

physical distance of a “tile” is bounded typically by cluster
granularity, not by the processor core. Hence, a processor
core in a hybrid architecture may be composed of several
neighboring tiles, where each tile contains all the functional
units composing a cluster.

As with mulitclustered architectures, intercluster communi-
cation can occur through the same paths as in Figure 10, i.e.,
<RF&RF>, <RF&EX> and <EX++EX>, except that MEM
stage communication must go through <MEM ¢+ MEM > paths
between L1s via L2. Likewise, similar to chip multiproces-
sors, interprocessor communication occurs primarily through
<MEM&MEM> paths. However, the hierarchical structure
of hybrid architectures makes it possible for both intercluster
and interprocessor communication to use any of these paths,
albeit less efficiently for some types of data., The advantage
of this structure is that it enables the architecture to adapt and
scale more efficiently to a given workload.

An example of a hybrid architecture that exploits such
flexibility is the MIT Raw processor [8]. Its sixteen tiles
can, in concept, compose anywhere from one to sixteen
different processors. A single thread or multiple threads of
a single program can execute over all the clusters comprising
a single processor through compiler intervention (operation-
operand matching [23]). Alternatively, multiple programs can
run simultaneously on distinct sets of clusters comprising
different processors under the control of the compiler and
operating system. This capability enables the architecture to
adapt to the type of parallelism presented by the application
workload, whether mainly ILP, TLP, or a combination of both.

Another example is the Multiplex processor [37]. It also is
reconfigurable according to the characteristics of the code be-
ing executed. If the code has less explicit TLP, the architecture
is configured as multiple clusters and mainly exploits ILP or
fine-grained TLP. Communication between work units occurs
through <RF&RF> to reduce the communication overhead.
If the code has more explicit TLP, the architecture is config-
ured as multiple processors, allowing infrequent interprocessor
communication through <MEM&MEM>. Reconfiguration
between these two architecture modes occurs when the code
characteristics change.

D. On-Chip Networks in Current Partitioned Architectures

To obtain the best performance from these partitioned archi-
tectures, not only must the user, OS, hardware and/or compiler

balance the parallelism in the workload over the clusters
and/or processors, but also the interconnection subsystem must
support efficient communication between these work units.
Currently, partitioned processor architectures employ tradi-
tional networks such as buses, rings, meshes and crossbars.
However, it has yet to be determined whether these are the
best topologies for future on-chip processor microsystems.

In general, the communication paths used to transfer
data between work units can be classified in terms of
the type of data that is transmitted: register operands or
cache memory blocks. Multiclustered architectures commu-
nicate register operands through <RF&RF>, <RF&EX>,
<EX#EX>, and the augmented MEM stage communica-
tion paths. Chip multiprocessor architectures communicate
cache blocks through explicit <MEM<MEM> communi-
cation paths between Lls via L2 cache (or some lower
memory resource in the hierarchy). Hybrid architectures use
a combination of both to communicate register operands and
cache memory blocks. Thus, we can think of <RF&RF>,
<RF<EX>, and <EX+-EX> communication paths as be-
ing supplied by an operand network, and <MEM+MEM>
communication paths as being supplied by a memory network.
Either or both of these networks can be designed as a general-
purpose packet-switched on-chip network.

Figure 13 illustrates the use of operand and memory on-
chip networks for the various partitioned architecture classes.
Represented in the figure are the main resources over which
data is communicated and their groupings.® The size of data
transfer in operand networks is relatively small; the payload
is equivalent to the size of a register value (typically < 64
bits for integer data). The traffic generation rate, however,
is relatively high. It depends on the degree of dependence
between instructions executing in different clusters. It is ex-
pected to be higher when a single thread executes over multiple
clusters (i.e., exploiting only ILP) or if thread-level speculation
or loop-level parallelism is used to increase the number of
threads being executed, thus exploiting finer-grained TLP.
Coarser-grained threads are likely to communicate mostly
using memory through the MEM pipeline stage, and only at
synchronization points. The size of data transfer in memory
networks, however, is relatively large; the payload is equivalent
to the size of a cache block (typically between 32 and 128
bytes). Traffic is generated on the event of an L1 cache miss,
thus the traffic generation rate is relatively low but possibly
bursty compared to operand network traffic.

The latency of operand networks is likely to affect mi-
crosystem performance more than memory networks due to
the finer granularity of threads running on the system. Coarser-
grained threads tend to synchronize less frequently than finer-
grained threads, causing fewer communication events. With
an abundance of such threads supplied by an application,
the communication latency can be effectively hidden by the
physical work unit switching between threads. If only a single
thread is executed by each work unit, the memory network
latency becomes as important as operand network latency.

8For completion, also shown are some resources for communicating in-
structions, but we focus on data communication.

{4
=
1]

lc Dc'
HEEE |5

i
5

(a) Multiclustered Processor (MPC) (b) Hybrid Processor (Hybrid)

(c) Chip Multiprocessor (CMP)

Fig. 13. Two general classes of on-chip networks: register networks and memory networks. In this figure IC, IB, DC, DB, RF and NI stand for instruction
cache, instruction buffer, data cache, data buffer, register file, and network interface, respectively. The two instances of NI for each cluster in part (a) and (b)
could be two separate network interfaces or one-in-the-same. For the multiclustered processor, a generic bus structure is shown as the augmented MEM stage

communication path, but this can be replaced by a general-purpose memory network as in the hybrid and chip multiprocessor architectures.

High network latency causes additional pipeline stalls to be
suffered or requires an increased number of pipeline stages
for communication. Several approaches have been proposed
to deal with on-chip network latency. One approach is to
reduce the number of intercluster communications, thus the
number of times this latency is experienced. The Multicluster
Architecture [38] does this by efficiently partitioning the
code to have dependent instructions map to the same cluster.
Another technique tries to hide network latency by using value
prediction [39]. Neither of these approaches, however, attempt
to optimize the design of the on-chip network architecture to
achieve low latency communication.

The bandwidth of the network also affects performance
as well as the implementation complexity. For instance, as
the bandwidth of the operand network increases, the number
of register file ports may also need to increase as well as
the complexity of the intracluster forwarding/bypass logic. In
the Alpha 21264 processor core, updated register values are
broadcast to the remote cluster (there are only two clusters)
since the register files are duplicated. Sufficient bandwidth
needs to be supplied by the operand network to support this.
The Multiscalar and Superthreaded processor chips implement
a unidirectional ring as the operand network since traffic flows
only in one direction from producers to consumers. The Grid
and Raw processor chips implement a mesh network, while
the Trace processor and the M-Machine use a bus and cross-
bar operand network, respectively. The Hydra, Alpha 21264,
Trace, and Grid processor chips interconnect L1 caches to the
shared L2 cache using a bus memory network. IBM POWER4,
Compagq Piranha, and M-Machine’s MAP use a crossbar as
the memory network. The Sun MAJC implements a bus or a
crossbar, and the Raw processor implements a separate mesh
as the memory network.

E. Summary

Table II summarizes the various types and degrees of parti-
tioning applied to recently proposed or implemented processor
architectures. The SMT architectures would likely benefit from
an on-chip switched network to replace the dedicated links
used for communicating global control signals and bypassing

data across the chip even though no explicit operand or mem-
ory network is required for the monolithic microsystem. Like-
wise, the multiclustered architectures that support intercluster
operand transport using dedicated links (which offer severely
limited scalability of only two clusters) similarly could benefit
from a switched network. Some multiclustered and CMP
architectures implement operand and memory networks using
buses and crossbars, allowing as many as four clusters and
eight processors. However, in addition to having their own
scaling limitations, these centralize interconnecting structures
are inconsistent with the underlying design objective behind
partitioning the architecture—that of localizing communica-
tion within groups of high-affinity functional blocks that span
a small geographical area. Chip-crossing wiring delays may
be suffered with each access to these networks. In contrast,
switched networks like rings and meshes not only localize
communication and increase scalability of tiled microsystems,
they also better enable modular design of on-chip operand and
memory networks. The Raw processor, for instance, currently
implements 16 mesh-connected tiles but scales to 64 tiles in
100nm technology, and supports glueless connection of up
to 64 Raw chips connected in a rectangular mesh topology,
allowing Raw macrosystems of 1K to 4K total tiles [8], [23].

IV. FUTURE RESEARCH DIRECTIONS

Chip-crossing wire delays and logic design/verification
complexity will continue to play an increasingly important
role in the way future processor microsystems are designed.
With integration densities soon to surpass the billion transistor
mark, the way in which power consumption, device defects
and failures are dealt with will also be important factors
which define the architecture of these microsystems. Given
the criticality of these issues, a number of interesting research
directions are being pursued.

One interesting line of research is the exploration of ways
to partition other monolithic architectural structures to further
reduce the frequency of chip-crossing communication events.
The L2 cache shown in Figures 11-13, for instance, is cur-
rently implemented as a monolithic or banked structure that
resides at the periphery of the partitioned array of clusters

JO 1821) WL paAoLual 2q 01 $a|n pajie) 3uljqeu? aquordde
2q Avwt [/+] ‘[9%] ‘[SF] Ul paquosap asoy) se yans sanbiuyodn
uonemsyuooal SIeUAp 921)-)00[peap ‘sudisap paseq-2[n uf
‘PAaIRI2[0] puB paAAB[OS! A[ISBD 2I0W 2 0] SHNE} pue s1)p
Surjqeus ul seyq udisap Je[NpoW JBY) 1YaUaq I SAQUISIP D
-II uonaag ‘[rej uaad 10 ‘Appood uwojad 01 1 asned ASIM
-I9YI0 PINOM JBI) SOLIBUIDS 1[NBJ PUE ‘1OLID ‘123Jap AAIAINS
0] SEB [[om SE SPUBWApP uonedununuod furdueyd o) wdepe o)
yromiau digo-uo apy Surqeud ‘Anpiqepuadap pue soueunojrad
§,LU2)SASOIDIW AU ASEAIDUL PINom 0s Juro(] 21els WaIsAs0Iom
JO/pue JOIABYAQ UONEIIUNWIWOD ul safueyd o) asuodsar ur
JuunSyuooar jo ajqudes aq OS[E PINOYS SWASASOIINUW 2IMY
-nJ Jo aumoayore 2y ‘wsigjered uvoneoidde o) asuodsas
ur Aqeonueudp am3yuodar 01 AIIqe S 01 uonIppe uj
“BAIR SU[ul suondaup 2qissod
amny 01 siutod ‘ajdwexa 10) ‘[++] aamaanyaie SATL 2 Aq
pasnodse wSipered arydiowdjod ayy, -2uming ay) ul anuRUOd
s sIyY (stossaooug praqdpy D-II1 uonoas 2as) s1ossaooid
a1md u pajuawajdun Sutaq Apeare ale suuoj pLqAy snoLeA
pue Jossasordnnur digd 0] PAIASNANNW WOL pug Ipow
JIL ©1 2pow J] WIOI} SINSLI2IORIRYD 2p0o2 ul sagueyd o)
asuodsar ur ampayoe s wasAsoldu 2yl Sutmiyuosal 1)
senbruyoay, 'uonemsyuosas onurukp s1 (s1apo Auew Fuowe)
swasAsordmu paylomiau diyo-uo jo evare ay ut pansind Suraq
Apuaumo uonoanp yoreasal funsaiaul £12A IAIoUT 19X
"SUSISap YJomiau d0y-pe 01 paredwod SB PIAIISQD UIIQ JARY
s3uraes A319u2 9,76~ ‘[et] ul i[1] 18qsSso1d € 01 paredwod se
uonepeidap aouruniopad 21qIS§au A[uo iim ‘110) puE SaLSAW
01 paredulod Se Papadu UL SIIINOSAT YUI| PUB YINIMS JIMA)
9500 01 dn ‘suoneoypdde swos Jo.g "sytomiau diyo-uo asytoads
-uonearjdde are ‘sniy ‘pue peopyiom uonesrdde 1981w v woiy
PR10B1IX2 JOIARYRQ UONERIIUNWWOd Nojdxa sylomiau pajerauad
Ay, "ASIaU? UONEIIUNIILIOD PUE 1SOD 22IN0SAI JUIZIWIUILL
se yons ‘saanoalqo ufisop urewad aznundo jeyl suonouny
Sunnos pue saidojodol ylomiau 221-)o0[pEap Funonnsuod
10} padojaaap are sunpuos[e pue saiSojopoyiaw usisap [¢t]

‘[61] ur -sesen awos ui ndydnonp-Louaie] pascrdiur usaa pue
aouewtoprad Somiau up uonepridap ou MM g5ch= o) dn
Jo 1amod jlomjau Ul UONONPAI B MOYS yorym palojdxa 2w
saqna ssaxdxa uo paseq saimoayare yromiau diyo-uo ‘(1] uf
'sansst uoneznundo 2say) ssaIppe 01 AemIapun SI YoIeasay
‘[z#] Jemod s diyo a1 Jo 950z Noqe sawnsuod +9¢1z eydpy
ap Jo syur pue J;nor omew diyo-uo pajeidaul Ay pue
Syromau diyo-uo 2y 01 vase diyd su Jo 9508 Aleau sajedo|e
10ssa001d mey 2 ‘apdurex? 1o, ‘paziundo jou J1 somod pue
vore diyo jo uoptod afIe] v awnsuod Kewl SYUI| PUB SIYNIMS
‘saopjaul se sytomiau diga-uo Joj juepodun Aprenonded si
saounosar paimbar a1 SuiziumdQ "pesn Apuatogjaun aq [[im
1B §324N0SAT JUNIILILIOD-IDA0 JOU J[IYm WI)SASOIoMUI)
uo Sumun: suonesidde a1 jo swawaIMbal uonesIUNUWILIOD
Al J[puey 01 YIPLMpurq 1uddLNs aptaoid pmoys yiomiau
diyo-uo 2y1 -2010ud 152q 2 SAEM[E 10U 2Ie (SIUSIAW puw
s3urr “2°1) pauawduw sauo waLmd ay ‘[gz] suosear Auew
10] SNOAFEIUBAPE AIB SYI0MIdu paydnms-1ayoed ofiypy uon
-dumsuod somod pue 9502 20mosar ‘AOUB] UONEBIIUNLIIOD
Mo Suraamyoe 10j saimoenyore yiomilau diys-uo paziundo
Jo wawdofaaap ay st aidoy yoreasar Sunsasul Japouy

‘suonearjdde jo toiaeyaq Surouasajar Aynjeoo] 2 nojdxa [[us
19K ASojouyod) yum a[ess Jeyl (SYDN) SIMIdAIYIIL IIEd
uuojiun-uou omueufp ‘aandepe jo 2oeds uSisop a1 asojdxa
K]2AN0® 01 SI2UDIES2L $IBATIOUI SIYT "S[0AD L SB Auew se
2B Y S Yurq 0 ISAYLIRJ A yM 5242 $ AJuo Jo awn
$S200E JUEQ [BI0] B ATY PINOD $$2004d wUQE © Ul 1[Ing aded
71 gN9T diyo-uo ue 1y parewnsa St 11 ‘[14] Ul "2AnBWIAR
pauajaid e sy uSisap pajn © ug Sa[N Ay} SSOIOE SYULq AYOLI T
oyl Sunnguusip pue SuonnIe ‘g-I UON23g Ul PassnasIp SUos
-val 10} satdojouyoar uoneviuawajdwr aamng Ut Aqqeasapun e
S2UNI29)YoIR AIOWAW pUe IR SSAOIL-WLIOJIUN ‘adie] yong
“awun) dn-j00] A10WalL 0) UONIPPE UL “SSADIE OB U PAIAUNOD
-ud s1 Kefap Sumnm Suissoro-diyd se Louare] ySiy LjuLiojiun sey
AV 10 7T Wolj pue 0] $490[q AIOWaul JO UONEIIUNWUIO))
VYA Jo uuoj a1 ur diyd-jjo sapisar 11 10 ‘s1ossadord 10

‘(s1ossasoad om1 sey 0OZS-DIVIAD 11 st pauoddns are siossasoud omy ueyy asow [g¢] o1 Supiosoy m
SI2ISN[D IO SPEAIYL PAIB|MLLIS JO I2QUINU WNLIUIU YL, ¢
PRI 2[3UIS s [2a]-1asn[3 ¢ Sumoniued earsdyd Luo |

snq Suu nprun puqAH e s101sn[2 10 ‘soxd 4 urer3-asieod;dooj t [Lg)xajdniniy
ysotu ysaw pLQAH e Sa[n [¥101 91 UIRI3-2SIR00 9] > [g]001d mey
Jegssonn/sng yulp "pap PUqsH (321502) X W ¥ 11T UIIE-28100) 11T [9€]1DIVIN ung
IRQSsoId — AWD e — g UIRIE-281800 7€ [of]eredeiN ung
Jeqsso1d — dND e = 4 ujes3-281e00 b4 [celeuamod Wl
sng = dIND e = t UIeIE-a8I09 t [EleIpAl
Je(ssoId — AND Ie — g UIRIS-251200] [zleyueng bedwon
1eQsso1d — dND e — Z uieIs-28Ie0d 4 [011r¥IMOd WAl
JBqss01d JBQSSOLD dOW XH 9 AL tr I uress-asre0y/doog 91 [zeldvin
sng juil pap dOW X Y 1e8aul z 1 UIRIE-381809 t [6zlroric eudiy
snq Suu spun | JOW X4 S ‘aiHl 1T I doog 1T [g€]o01d papramuadng
snq snq dOW Xd 2 i [a0en i [og]01d 201y,
1SS0 Fuu Jipun dOW Xd 9y A/l i I aunnoiqns;dooy i [1€]201d reEasn
ysawysng ysauw 1dOW Ay ened fxy 19 I UIRI3-28I202 I [£2]20ud pun
snq yuij pap WOW X4 'y 1080 z 1 urei3-9s1e0d 1 lal+ogiT vydiy
snq Uil 'pap WdDOW Xd Y s C I UIRIE-251800 1 [9zlroTiz eydiy
— — LINS — — I UIRI3-aS1800 z [STld 121
[Kowawr [puwiado £108010 | safms pavonnied [siosnpo 4 | rooud # 2Z1s peanyj) [speaap # dyo
[yromiau diyd-up Yoy Juruonnuud [eaisiyg Fuwonied [ea13o] 10853201

VINTAVOY 4O AMLSNANI A€ ISOd0¥d ¥O ATLNIWTTINI STANLITLIHIYY YOSSAD0Ud TANOILLLLA VA 40 AMVINWNNS
IT AT9VL

(a) Microsystem with on-chip mesh
network which uses XY dimension-

order routing. of 5 links).

(b) The network in (a) with a failed
tile and an additional failed link (lotal

(c) Network is reconfigured from mesh
with XY to irregular with up/down
routing.

(d) The irregular network in (c) in-
curs a subsequent fault involving the
up/down root.

by the fault.

Fig. 14.

the functioning microsystem efficiently. Figure 14 illustrates
an example of this for a 16 tile processor microsystem.

In Figure 14(a), the tiles are initially interconnected using
a rectangular mesh network which routes packets in XY
dimension order to avoid deadlock. In Figure 14(b), one of the
tiles has become faulty, which disables its router and its four
links to routers in neighboring tiles. In addition, a link fault
occurs in the east-west link of the tile in the upper righthand
corner of the chip. In response to these faults, the network is
reconfigured in Figure 14(c) to an irregular topology on which
packets route in an up*/down* fashion, traversing zero or more
links in the up direction followed by zero or more links in the
down direction to reach their destinations in a deadlock-free
manner. The processes defined in [45], [46], [47] enable this
transformation of the routing function to be done dynamically
and in a deadlock-free manner. Subsequent faults can be
handled similarly, causing the network to be reconfigured into
a different irregular topology that reconnects all functioning
tiles and communication links, as shown in Figures 14(d)—(f).
By demarcating a “skyline” region, as described in [48], it is
possible to confine the reconfiguration process to only a subset

(e) Only the up/down link directions
within the skyline region are affected

(f) New reconfiguration of the network
that re-establishes microsystem con-
nectivity.

Illustration of on-chip network reconfiguration in response to defects or faults which may occur at different times during a chip’s life cycle.

of the network resources to improve reconfiguration response
time. Just how effective these proposed techniques are when
applied to on-chip networks has yet to be fully investigated.

These and many other approaches for improving cost,
performance, and fault resilience of billion transistor, highly
parallel and partitioned, on-chip networked microsystems ap-
pear to be promising areas of future research.

V. CONCLUSION

Trends in application, implementation technology, and pro-
cess architecture are highlighted in this work. A taxonomy of
partitioned processor microsystem architectures is presented,
and the communication needs of various classes of these
architectures is also briefly surveyed. While this is not an
exhaustive study, a clear conclusion is that interconnect delay
and integrity issues have risen to the point of criticality and
are now first-class citizens in a microsystem’s architecture.

There is a trend toward designing on-chip networked mi-
crosystems derived from logically and physically partitioning
the processor architecture. Partitioning the architecture enables
the parallelism offered by growing application workloads

to be well exploited. It also enables the scaling properties
of the underlying implementation technology to continue to
provide increasing performance and not be encumbered by
chip-crossing wire delay, which no longer is a negligible factor.
A consequence of partitioning the architecture is that an inter-
connecting subsystem must be provided that enables efficient
communication between the various partitions. The resulting
on-chip network should conform to a modular, switch-based
design approach to ease design/verification complexity as well
as to allow upward scalability both at the microsystem level
and, if possible, at the macrosystem level.

While the above stated conclusion seems evident, the defini-
tive solutions to the various partitioning and on-chip network
issues mentioned in this paper remain to be discovered. Several
ongoing and future research directions show promise while
many others have yet to be identified. A future publication
may provide some answers [49], but it seems likely that an
active debate on the subject will continue for many years to
come, or at least until the end of the CMOS technology era.

ACKNOWLEDGMENT

We thank a couple of members from the SMART Intercon-
nects Group, Wai Hong Ho and Bilal Zafar, who reviewed an
earlier draft of this work.

REFERENCES
[

The International Technology Roadmap for Semiconductors:
2003 Update. Semiconductor Industry Association,
http://public.itrs.nct/home.htm, 2003.

L. A. Barroso, K. Gharachorloo, R. McNamara, A. Nowatzyk, S. Qadeer,
B. Sano, S. Smith, R. Stets, and B. Verghese, “Piranha: A Scalable
Architecture Based on Single-Chip Multiprocessing,” in Proceedings of
the 27th Annual International Symposium on Computer Architecture,
June 2000, pp. 282-293.

L. A. Barroso, J. Dean, and U. Holzle, “Web Serach for a Planet:
The Google Cluster Architecture,” IEEE Micro, pp. 22-28, March-April
2003.

R. Ho, K. W. Mai, and M. A. Horowitz, “The Future of Wires,”
Proceedings of the IEEE, vol. 89, no. 4, pp. 490-504, April 2001.

V. Zyuban and P. Kogge, “Optimization of High-performance Super-
scalar architectures for energy efficiency,” in Proceedings of Interna-
tional symposium on Low power electronics and design, July 2000, pp.
84-89.

T. Mudge, “Power: A first-class architectural design constraint,” [EEE
Computer, vol. 34, no. 4, pp. 52-58, April 2001.

H. Wang, L.-S. Peh, and S. Malik, “Power-driven Design of Router Mi-
croarchitectures in On-chip Networks,” in Proceedings of the 36" An-
nual IEEE/ACM International Symposium on Microarchitecture. 1EEE
Computer Society, December 2003, pp. 105-116.

M. Taylor, J. Kim, J. Miller, D. Wentzlaff, F. Ghodrat, B. Greenwald,
H. Hoffman, P. Johnson, J.-W. Lee, W. Lee, A. Ma, A. Saraf, M. Seneski,
N. Shnidman, V. Strumpen, M. Frank, S. Amarasinghe, and A. Agar-
wal, “The Raw Microprocessor: A Computational Fabric for Software
Circuits and General-Purpose Programs," IEEE Micro, vol. 22, no. 2,
pp. 25-35, March/April 2002.

S. S. Mukherjee, P. Bannon, S. Lang, A. Spink, and D. Webb, “The Al-
pha 21364 Network Architecture,” in Symposium on High Performance
Interconnects (HOT Interconnects 9). 1EEE Computer Society Press,
August 2001, pp. 113-117.

1. M. Tendler, S. Dodson, S. Fields, H. Le, and B. Sinharoy, “POWER4
systern microarchitecture,” IBM Journal of Research and Development,
vol. 46, no. 1, pp. 5-26, January 2002.

L. Benini and G. D. Micheli, “Networks on Chip: A New SoC
Paradigm,” IEEE Computer, vol. 35, no. 1, pp. 70-80, January 2002.
V. Raghunathan, M. B. Srivastava, and R. K, Gupta, “A Survey of Tech-
niques for Energy Efficient On-Chip Communication,” in Proceedings
of Design Automation Conference, June 2003.

(3]

[4]

(5]

(6]

[7

—

18]

9

(10}

(11
(12]

(13]

(14]

(15]

[16]

[17]

(18]

[19]

(20]

(21

(22)

[23]

[24]

[26]

271

[28]

[29]

[30]

[31]

[32)

[33]

[34]

[35]

M. Sgroi, M. Sheets, A. Mihal, K. Keutzer, S. Malik, J. M. Rabacy, and
A. L. Sangiovanni-Vincentelli, “Addressing the system-on-a-chip inter-
connect woes through communication-based design,” in Proceedings of
Design Automation Conference, June 2001, pp. 667-672.

J. Liang, 8. Swaminathan, and R. Tessier, “aSoC: A scalable, singlechip
communications architecture,” in International Conference on Parallel
Architectures and Compilation Techniques, October 2000, pp. 37-46.
N. Swaminathan and R. Mahapatra, “Communication Architecture Syn-
thesis of Packet-Switched Network-on-Chip, Tech. Rep. TR-CS-2002-
08-0, 2002.

P. Guerrier and A. Greiner, “A Generic Architecture for On-Chip Packet-
Switched Interconnections,” in Proceedings of the Design Awtomation
and Test in Ewrope, March 2000, pp. 250-256.

J.-M. Parcerisa, J. Sahuquillo, A. Gonzalez, and J. Duato, “Efficient
Interconnects for Clustered Microarchitectures,” in Proceedings of 2002
International Conference on Parallel Architectures and Compilation
Techniques, September 2002.

A, Aggarwal and M. Franklin, “Hierarchical Interconnects for On-chip
Clustering,” in Proceedings of International Parallel and Distributed
Processing Symposium, April 2002.

W. H. Ho and T. M. Pinkston, “A Methodology for Designing Efficient
On-Chip Interconnects on Well-Behaved Communication Patierns,” in
Proceedings of the 9" International Symposium on High-Performance
Computer Architecture. IEEE Computer Society Press, February 2003,
pp. 377-388.

T. M. P. (Panel Moderator), “*What Will Have The Greatest Impact
In 2010: Processor, Memory, or Interconnnect Architecture?” in Pro-
ceedings of the 8" Int’t Symp. on High Performance Computer Archi-
tecture. www.usc.eduw/dept/ceng/pinkston/presentations/statistic.html,
February 2002,

W. 1. Dally, “Interconnect limited VLSI architecture,” in Proceedings of
International Interconnect Technology Conference, May 1999, pp. 15—
17.

W. 1. Dally and B. Towles, “Route Packets, Not Wires: On-Chip
Interconnection Networks,” in Proceedings of the Design Automation
Conference (DAC). ACM, June 2001, pp. 684-689.

M. B. Taylor, W. Lee, S. Amarasinghe, and A. Agarwal, “Scalar Operand
Networks: On-Chip Interconnect for ILP in Partitioned Architectures,” in
Proceedings of the 9" International Symposium on High-Performance
Computer Architecture. 1EEE Computer Society Press, February 2003,
pp. 341-353.

D. M. Tullsen, S. Eggers, and H. M. Levy, “Simultaneous Multithread-
ing: Maximizing On-Chip Parallelism,” in Proceedings of the 22rd
International Symposium on Computer Architecture, June 1995, pp. 392-
403.

D. Koufaty and D. T. Marr, “Hyperthreading Technology in the Netburst
Microarchitecture,” IEEE Micro, vol. 23, no. 2, pp. 56—65, March/April
2003.

R. E. Kessler, “The Alpha 21264 microprocessor,” IEEE Micro, vol. 19,
no. 2, pp. 24-36, March/April 1999.

R. Nagarajan, K. Sankaralingam, D. Burger, and S. W. Keckler, “A
design space evaluation of grid processor architectures,” in Proceedings
of the 34th Annual International Symposium on Microarchitecture,
December 2001, pp. 40-51.

S. Palacharla, N. P. Jouppi, and J. E. Smith, “Quantifying the Complexity
of Superscalar Processors,” University of Wisconsin, Madison, Tech.
Rep. CS-TR-1996-1328, November 1996.

K. Diefendorff, “Compaq Chooses SMT for Alpha,” Microprocessor
Report, vol. 13, no. 16, pp. 5-11, December 1999.

J. E. Smith and S. Vajapeyam, “Trace Processors: Moving to Fourth-
Generation Microarchitectures,” IEEE Computer, vol. 30, no. 9, pp. 68—
74, September 1997.

G. S, Sohi, 8. E. Breach, and T. N. Vijaykumar, “Multiscalar Proces-
sors,” in Proceedings of the 22nd Annual International Symposium on
Computer Architecture, June 1995, pp. 414-425.

M. Fillo, S. W. Keckler, W. 1. Dally, N. P. Carter, A. Chang, Y. Gurevich,
and W. S. Lee, “The M-Machine Multicomputer,” in Praceedings of the
28th International Symposium Microarchitecture, December 1995, pp.
146-156.

J-Y. Tsai, J. Huang, C. Amlo, D. J. Lilja, and P-C. Yew, “The Su-
perthreaded Processor Architecture,” JEEE Transactions on Computers,
vol. 48, no. 9, pp. 881-902, September 1999.

L. Hammond, B. A. Hubbert, M. Siu, M. K. Prabhu, M. Chen, and
K. Olukotun, “The Stanford Hydra CMP," IEEE Micro, vol. 20, no. 2,
pp. 71-84, February 2000.

P. N. Glaskowsky, “IBM rasies curtain on Power5" Microprocessor
Report, vol. 17, no. 10, pp. 13-14, October 2003.

[36] “MAIC architecture tutorial,” white paper, Sun microsystems, September
1999.
[37] S. W. Kim, C.-L. Ooi, . Park, R. Eigenmann, B. Falsafi, and T. N. Vi-
jaykumar, “Multiplex: unifying conventional and speculative thread-level
parallelism on a chip multiprocessor,” in Praceedings of International
Conference on Supercomputing, June 2001, pp. 368-380.
K. I. Farkas, P. Chow, N. P. Jouppi, and Z. G. Vranesic, “The Mul-
ticluster Architecture: Reducing Cycle Time Through Partitioning,” in
Proceedings of International Symposium on Microarchitecture, Decem-
ber 1997, pp. 149-159.
J.-M. Parcerisa and A. Gonzalez, “Reducing wire delay penalty through
value prediction,” in Proceedings of International Symposiwn on Mi-
croarchitecture, December 2000, pp. 317-326.
K. Krewell, “Sun’s Niagara Pours on the Cores,” Microprocessor Report,
pp. 1-3, September 2004.
C. Kim, D. Burger, and S. W. Keckler, “An Adaptive, Non-Uniform
Cache Structure for Wire-Dominated On-Chip Caches,” in Proceedings
of International Conference on Architectural Support for Programming
Languages and Operating Systems, October 2002, pp. 211-222.
L. Shang, L.-S. Peh, and N, K. Jha, “Power-Efficient Interconnection
Networks: Dynamic Voltage Scaling with Links,” Computer Architecture
Letters, vol. 1, no. 2, pp. 1-4, May 2002.
J. Hu and R. Marculescu, “Exploiting the Routing Flexibility for
Energy/Performance Aware Mapping of Regular NoC Architectures,”
in Proceedings of Design, Automation and Test in Europe Conference.
Munich, Germany, March 2003.
K. Sankaralingam, R. Nagarajan, H. Liu, C. Kim, J. Huh, D. Burger,
S. W. Keckler, and C. R. Moore, “Exploiting ILP, TLP, and DLP with the
polymorphous TRIPS architecture” in Proceedings of the International
Svmpostuan on Computer Architecture, June 2003, pp. 422-433.
T. M. Pinkston, R. Pang, and J. Duato, “Deadlock-free Dynamic
Reconfiguration Schemes for Increased Network Dependability,” I1EEE
Transactions on Parallel and Distributed Systems, vol. 14, no. 8, pp.
780-794, August 2003.
O. Lysne, T. M. Pinkston, and J. Duato, “A Methodology for Developing
Dynamic Network Reconfiguration Processes,” in Proceedings aof the
International Conference on Parallel Processing (ICPP'03). 1EEE
Press, October 2003, pp. 77-86.

[38)

(391

[40]

[41]

[42]

[43]

(44]

[43]

[46]

[47] J. Duato, O. Lysne, R. Pang, and T. M. Pinkston, “A
theory for deadlock-free dynamic network reconfiguration,”
USC Technical Report CENG-2003-06, vol. (available at
www.usc.edw/dept/ceng/pinkston/SMART.html), pp. pages 1-30,

2003.

O. Lysne and J. Duato, “Fast Dynamic Reconfiguration in Irregular Net-
works," in The 2000 International Conference on Parallel Processing.
IEEE Computer Society, August 2000, pp. 449-458.

L.-S. Peh and . M. Pinkston, “Special Issue on On-Chip Networks,”
[EEE Transactions on Parallel and Distributed Systems, vol. 16, no. 2,
February 2005.

[48]

[49]

14

Timothy Mark Pinkston completed his B.S.E.E.
degree from The Ohio State University in 1985 and
his M.S. and Ph.D. degrees in electrical engineering
from Stanford University in 1986 and 1993, respec-
tively. Prior to joining the University of Southemn
California (USC) in 1993, he was a Member of
Technical Staff at Bell Laboratories, a Hughes Doc-
toral Fellow at Hughes Research Laboratory, and a
visiting researcher at IBM T. J. Watson Research
Laboratory. Presently, Dr. Pinkston is a Professor
and Director of the Computer Engineering Division
of the EE-Systems Department at the University of Southern California, and
he heads the SMART Interconnects Group. His current research interests in-
clude the development of deadlock-free adaptive routing techniques, dynamic
reconfiguration technigues, and on-chip network and router architectures for
achieving high-performance communication in microprocessor and parallel
computer systems—scalable parallel processor and cluster computing systems.
Dr. Pinkston has authored over seventy refereed technical papers and has
received numerous awards, including the Zumberge Fellow Award, the Na-
tional Science Foundation Research Initiation Award, and the National Science
Foundation Carcer Award. Dr. Pinkston is a member of the ACM and a Senior
Member of the IEEE. He has also been a member of the Program Commitlee
for several major conferences (ISCA, HPCA, ICPP, IPPS/IPDPS, ICDCS, SC,
CS&l, CAC, PCRCW, OC, MPPOI, LEOS, WOCS, and WON), the Program
Chair for HiPC'03, the Program Vice-chair for EuroPar'03 and ICPADS'04,
the Program Co-chair for MPPOI'97, the Tutorials Chair for ISCA'04, the
Workshops Chair for ICPP'01, and the Finance Chair for Cluster 2001. He
recently concluded two 2-year terms as an Associate Editor for the IEEE
Transactions on Parallel and Distributed Systems (TPDS) and is currently
serving as a Guest Editor of TPDS for a Special Issue on On-Chip Networks
(due out February, 2005).

Jeonghee Shin received her BS and MS degrees in
computer engineering from Pusan National Univer-
sity in 1999 and 2001, respectively. She is currently
pursuing the PhD degree in computer engineering at
the University of Southern California. Her research
interests include the design of high-performance
on-chip interconnection networks for chip multi-
processors, the development of network simulators,
performance analysis, and parallel processing.

