Constrained Flow Optimization with Applications to Data
Gathering in Sensor Networks*

Bo Hong and Viktor K. Prasanna
University of Southern California, Los Angeles CA 90089-2562
{bohong, prasanna}@usc.edu

Abstract

We focus on data gathering problems in energy-constrained wireless sensor networks. We study store-
and-gather problems where data are locally stored on the sensors before the data gathering starts, and
continuous sensing and gathering problems that model time critical applications. We show that these
problems reduce to maximization of network flow under vertex capacity constraint, which reduces to
a standard network flow problem. We develop a distributed and adaptive algorithm to optimize data
gathering. This algorithm leads to a simple protocol that coordinates the sensor nodes in the system.
Our approach provides a unified framework to study a variety of data gathering problems in sensor
networks. The efficiency of the proposed method is illustrated through simulations.

1 Introduction

A major application of the sensor networks is to periodically monitor the environment, such as vehicle
tracking and classification in the battle field, patient health monitoring, pollution detection, etc. The
basic operation in such applications is to sense the environment and eventually transmit the sensed data
to the base station for further processing. The data gathering processes are usually implemented using
multi-hop packet transmissions, since short range communications can save energy and also reduce
communication interferences in high density WSNs [1].

Although the applications may be designed for different functionalities, the underlying data gather-
ing processes share a common characteristic: compared with sensing and computing, transferring data
between the sensors is the most expensive (in terms of energy consumption) operation [1]. In this pa-
per, we study the energy efficiency of data gathering in the WSNs from an algorithmic perspective. By
modeling the energy consumption associated with each send and receive operation, we formulate the
data gathering problem as a constrained network flow optimization problem where each each vertex u is
associated with a capacity constraint w,, so that the total amount of flow going through u (incoming plus
outgoing flow) does not exceed w,. We show that such a formulation models a variety of data gathering
problems (with energy constraint on the sensor nodes).

“Supported by the National Science Foundation under award No. 11S-0330445 and in part by DARPA under contract
F33615-02-2-4005.

1 CENG 2004-~07

Some variations of the data gathering problem have been studied recently. In [6], the data gathering
is assumed to be performed in rounds and each sensor can communicate (in a single hop) with the
base station and all other sensors. The total number of rounds is then maximized under a given energy
constraint on the sensors. In [9], a non-linear programing formulation is proposed to explore the trade-
off between energy consumed and the transmission bandwidth, which models the radio transmission
energy according to Shannon’s theorem. In [10], the data gathering problem is formulated as a linear
programing problem and a 1 + w approximation algorithm is proposed. This algorithm further leads to
a distributed heuristic.

Our study departs from the above with respect to the problem definition as well as the solution tech-
nique. For short-range communications, the difference in the energy consumption between sending and
receiving data packets is almost negligible. We adopt the reasonable approximation that sending a data
packet consumes the same amount energy as receiving a data packet [1]. The study in [9] and [10]
differentiate the energy dissipated for sending and receiving data. Although the resulting problem for-
mulations are indeed more accurate than ours, the improvement in accuracy is marginal for short-range
communications.

In [6], each sensor generates exactly one data packet per round (a round corresponds to the occur-
rence of an event in the environment) to be transmitted to the base station. The system is assumed to
be fully connected. The study in [6] also considers a very simple model of data aggregation where any
sensor can aggregate all the received data packets into a single output data packet. In our sensor network
model, each sensor communicates with a limited number of neighbors due to the short range of the com-
munications, resulting in a general graph topology for the system. We study store-and-gather problems
where data are locally stored on the sensors before the data gathering starts, and continuous sensing and
gathering problems that models time critical applications. A unified flow optimization formulation is
developed for the two classes of problems.

The constrained flow problem reduces to the standard network flow problem, which is a classical flow
optimization problem. Many efficient algorithms have been developed ([2]) for the standard network
flow problem. However, in terms of decentralization and adaptation (two properties desirable for WSNs),
these well known algorithms are not suitable for data gathering problems in WSNs. In this paper, we
develop a decentralized and adaptive algorithm for the maximum network flow problem. This algorithm
is a modified version of the Push-Relabel algorithm [3]. In contrast to the Push-Relabel algorithm, it
is adaptive to changes in the system. It finds the maximum flow in O(n? - |V|? - |E|) time, where n is
the number of adaptation operations, |V| is the number of nodes, and | E| is the number of links. With
the algorithm thus established, we further develop a simple distributed protocol for data gathering. The
performance of this protocol is studied through simulations.

The rest of the paper is organized as follows. The data gathering problems are discussed in Section 2.
We show that these problems reduce to network flow problems with constraint on the vertices. In Sec-
tion 3, we develop a mathematical formulation of the constrained network flow problem and show that
it reduces to a standard network flow problem. In Section 4, we derive a relaxed form for the network
flow problem. A distributed and adaptive algorithm is then developed for this relaxed problem. A sim-
ple protocol based on this algorithm is presented in Section 4.3. Experimental results are presented in
Section 5. Section 6 concludes this paper.

2 Data Gathering Problems in Sensor Networks with Energy Constraint

2.1 Sensor Network Model

Suppose a network of sensors is deployed over a region. The location of the sensors are fixed and
known a priori. The sensor network is represented by a graph G(V, E), where V is the set of sensor
nodes. (u,v) € Eifu € V, v € V and u is within the communication range of v. oy, the set of
successors of u, is defined as o, = {v € V|(u,v) € E}. Similarly, 1y, the set of predecessors of u is
defined as ¥, = {v € V|(v,u) € E}. The event is sensed by a subset of sensors V, C V.. r is the base
station to which the sensed data are transmitted. Sensors V — V, — {r} in the network does not sense the
event but can relay the data sensed by V..

Data transfers are assumed to be performed via multi-hop communications where each hop is a short-
range communication. This is due to the well known fact that long-distance wireless communication
is expensive in terms of both implementation complexity and energy dissipation, especially when using
the low-lying antennae and near-ground channels typically found in sensor networks [1]. Additionally,
short-range communication enables efficient spatial frequency re-use in sensor networks [1].

Among the three categories (sensing, communication, and data processing) of power consumption,
typically, a sensor node spends most of its energy in data communication. This includes both data
transmission and reception. Our energy model for the sensors is based on the first order radio model
described in [4]. The energy consumed by sensor u to transmit a k—bit data packet to sensor v is
Tuv = €etec X k + Eamp X d2, X k, Where €. is the energy required for transceiver circuitry to process
one bit of data, £,m, is the energy required per bit of data for transmitter amplifier, and d.,, is the distance
between u and v. Transmitter amplifier is not needed by w to receive data and the energy consumed by u
to receive a k—bit data packet is R, = e,e X k. Typically, £uee = 50nJ /bit and & gmp = 0.1nJ/bit/m?>.
This effectively translates to £4mp X d2, < £, especially when short transmission ranges (~ 1m) are
considered. For the discussion in the rest of this paper, we adopt the approximation that T,,, = R, for
Vu,v € V. We further assume that no data aggregation is performed during the transmission of the
data.

We consider two classes of data gathering problems: store-and-gather problems and continuous sens-
ing and gathering problems. An energy(power) budget B, is imposed on each sensor node u. We assume
that there is no energy constraint on base station r. We can normalize T,,, and R, to 1. For the store-
and-gather problems, B, represents the total number of data packets that u can send and receive. For the
continuous sensing and gathering problems, B, represents the total number of data packets that » can
send and receive in one unit of time. To simplify our discussions, we ignore the energy consumption of
the sensors when sensing the environment. However, the rate at which sensor u € V. can collect data
from the environment is limited by the maximum sensing frequency g,.

Communication link (u,v) has transmission bandwidth ¢,,. We do not require the communication
links to be identical. Two communication links may have different transmission latencies and/or band-
width. Symmetry is not required either. It may be the case that ¢,, # cy,. If (u,v) € E, then we define
Cuy = 0.

2.2 Store-and-Gather Problems

In store-and-gather problems, the information from the environment is sensed (possibly during a pro-
longed period) and stored locally at the sensors. These locally stored data are then transferred to the base

3

station during the data gathering stage. This represents those data-oriented applications (e.g. counting
the occurrences of endangered birds in a particular region) where the environment changes slowly. There
is typically no deadline (or the deadline is loose enough to be ignored) on the duration of data gathering
for such problems, and we are not interested in the speed at which the data is gathered. But due to the
energy constraint, not all the stored data can be gathered by the base station, and we want to maximize
the amount of data gathered.

For each u € V,, we assume that u has stored d,, data packet before the data gathering starts. Let
f(u, v) represent the number of data packets sent from w to v.

For the simplified scenario where V, contains a single node s, we have the following problem formu-
lation:

Single Source Maximum Data Volume (SMaxDV) Problem:

Given: A graph G(V,E). Source s € V and sink 7 € V. Each node v € V - {r}

has energy budget B,,.
Find: A real valued function f : E — R
Maximize: 3, ., f(s,v)

Subject to:
flu,v) 20 forV (u,v) € E (1)
Y veos F(:0) + D iep, f(v,u) < By foru e V —{r} (2)
Zuegu f(u1 U) = zvewu f('U: u) forueV — {S,T} (3)

B, is the energy budget of . Since we have normalized both 77, and R, to 1, the total number of data
packets that can be sent and received by u is bounded from above by B,. Condition 2 above represents
the energy constraint of the sensors. Sensors V — {s,7} do not generate sensed data, nor should they
posses any data packets upon the completion of the data gathering. This is reflected in Condition 3
above. We do not model d;, the number of data packets stored at s before the data gathering starts. This
is because d, is an obvious upper bound for the SMaxDV problem, and can be handled trivially.

|Vi| > 1 represents the general scenario where the event is sensed by multiple sensors. This multi-
source data gathering problem is formulated as follows:

Multiple Source Maximum Data Volume (MMaxDV) Problem:

Given: A graph G(V,E). The set of source nodes V., ¢ V and sink r € V. Each

node v € V — {r} has energy budget B,. Each node v € V. has d, data
packets that are locally stored before the data gathering starts.

Find: A real valued function f : E — R

Maximize: Y, f(s,v)

Subject to:
flu,v) 20 forV (u,v) € £ (D
Zan’u f(u’ U) + Zvewu f(’U, ‘U,) < Bu forueV — {7'} (2)
S ocon f:0) = X ey, fv,0) forucV-V.—{r} 3
S veo, F0,0) € Tpey, F,u) +dy foru€Se (4)

Similar to the SMaxDV problem, the net flow out of the intermediate nodes (V — V., — {r})is O in the
MMaxDV problem, as is specified in Condition 3. For each source node u € V., the net flow out of u
cannot exceed the number of data packets previously stored at u. This is specified in Condition 4.

2.3 Continuous Sensing and Gathering Problems

The continuous sensing and gathering problems model those time critical applications that need to
gather as much information as possible from the environment while the nodes are sensing. Examples
of such applications include battle field surveillance, target tracking, etc. We want to maximize the
total number of data packets that can be gathered by the base station 7 in one unit of time. We assume
that the communications are scheduled by time/frequency division multiplexing or channel assignment
techniques. We consider the scenario in which B,, is the maximum power consumption rate allowed by
u. Let f(u,v) denote the number of data packets sent from u to v in one unit of time.

Similar to the store-and-gather problem, we have the following mathematical formulation when V;
contains a single node s.

Single Source Maximum Data Throughput (SMaxDT) Problem:

Given: A graph G(V,E). Source s € V and sink r € V. Each node u € V — {r}

has energy budget B,. Each edge (u,v) € E has capacity cy,.

Find: A real valued function f : E — R

Maximize:) ., f(s,v)

Subject to:
0 £ Flu.w) £ ey forV (u,v) € E @)
S oeon F@,0) + ey, f(v,u) < By forueV —{r} 2)
Zveau f(u? U) = ZvEyﬁ!u f(’l), 'U,) fOI' ue€ VY - {S:T} (3)

The major difference between the SMaxDV and the SMaxDT problem is the consideration of link
capacities. In the SMaxDV problem, since there is no deadline for the data gathering, the primary factor
that affects the maximum number of gathered data is the energy budgets of the sensors. But for the
SMaxDT problem, the number of data packets that can be transferred over a link in one unit of time is
not only affected by the energy budget, but also bounded from above by the capacity of that link, as is
specified in Condition 1 above. For the SMaxDT problem, we do not model the impact of g, because g,
is an obvious upper bound of the throughput and can be handled trivially.

Similarly, we can formulate the multiple source maximum data throughput problem as follows.

Multiple Source Maximum Data Throughput (MMaxDT) Problem:

Given: A graph G(V,E). The set of source nodes V. C V and sink r € V. Each
node u € V — {r} has energy budget B,. Each edge (u,v) € FE has capacity
Cuuys

Find: A real valued function f : £ — R

Maximize: Y .. f(s,v)

Subject to:

0 < fu,v) < cuw forV (u,v) € E (D
Y veos £ (@ 0) + X ien, flv,u) < B, forue V — {r} (2)
Y ver, fV) = p f(v,u) forue V-V.—{r} (3)
Y veo, F(4,0) £ Y vey, SV 4) + gu foru eV, 4)

Condition 4 in the above problem formulation reflects the maximum sensing frequency of the sensors.
By associating a certain amount of energy dissipation with each data packet sensed from the environ-
ment, we can even model the energy consumption in sensing the environment. Actually, our algorithm
(discussed next) is capable of handling this scenario with a few minor modifications. The detailed dis-
cussion is omitted here due to space limitations.

3 Flow Maximization with Constraint on Vertices

3.1 Problem Reductions

In this section, we present the formulation of the constrained flow maximization problem where the
vertices have limited capacities (CFM problem). The CFM problem is an abstraction of the four prob-
lems discussed in Section 2.

In the CFM problem, we are given a directed graph G(V, E) with vertex set ' and edge set E. Vertex
u has capacity constraint w, > 0. Edge (u, v) starts from vertex u, ends at vertex v, and has capacity
constraint ¢y, > 0. If (u,v) ¢ E, we define ¢,,, = 0. We distinguish two vertices in G, source s, and
sink 7. A flow in G is a real valued function f : E — R that satisfies the following constraints:

L. 0 < f(u,v) < ey for ¥ (u,v) € E. This is the capacity constraint on edge (u, v).

2. Y veon fw,0) =3y f(v,u) forVu € V — {s,7}. This represents the flow conservation. The
net amount of flow that goes through any of the vertices, except s and ¢, is zero.

3. D veon S 0)+ 30, f(v,u) < wy forVu € V. This is the capacity constraint of vertex u. The
total amount of flow going through u cannot exceed w,. This condition differentiates the CFM
problem from the standard network flow problem.

The value of a flow f, denoted as ||, is defined as |f| = }° ., f(s,v), which is the net flow that
leaves 5. In the CFM problem, we are given a graph with vertex and edge constraint, a source s, and a
sink 7, and we wish to find a flow with the maximum value.,

It is straight forward to show that the SMaxDV and the SMaxDT problems reduce to the CFM prob-
lem. By adding a hypothetical super source node, the MMaxDV and the MMaxDT problems can also
be reduced to SMaxDV and SMaxDT, respectively.

The CFM problem has been studied before [7]. Our focus in this paper is to design a distributed
and adaptive algorithm for the proposed problem. It can be shown that the CFM problem reduces to
a standard network flow problem. Due to the existence of condition 1, condition 3 is equivalent to
D vea, f(u,) < wy/2 foru € V — {s,7}. This means that the total amount of flow out of vertex
u cannot exceed w, /2. Suppose we splitu (u € V — {s,7}) into two nodes u, and u,, re-direct all
incoming links to u to arrive at «; and all the outgoing links from w to leave from us, and add a link from
u; to uy with capacity w, /2, then the vertex constraint w, is fully represented by the capacity of link
(w1, u3). Actually, such a split transforms all the vertex constraints to the corresponding link capacities,
and effectively reduces the CFM problem to a standard network flow problem. A similar reduction can
be found in [7].

The standard network flow problem is stated below:

Given: graph G(V, E), source node s € V, and sink node 7 € V. Link (u, v) has capacity c,,.

Maximize:), f(s,v)

Subject to:
0< flu,v) < cuw forV (u,v) € E (1)
D ovea, fWv) =3 0 flu,u) forueV —{s,r} (2)

3.2 Relationship to Sensor Network Scenarios

The vertex capacity w, in the CFM problem models the energy(power) budget B, of the sensor
nodes. B, does not have to be the total remaining energy of u. For example, when the remaining
battery power of a sensor is lower than a particular level, the sensor may limit its contribution to the data
gathering operation by setting a small value for B,, (so that this sensor still has enough energy for future
operations). For another example, if a sensor is deployed in a critical location so that it is utilized as a
gateway to relay data packets to a group of sensors, then it may limit its energy budget for a particular
data gathering operation, thereby conserving energy for future operations. These considerations can be
captured by vertex capacity w,, in the CFM problem.

The edge capacity in the CFM problem models the communication rate (meaningful for continuous
sensing and gathering problems) between adjacent sensor nodes. The edge capacity captures the avail-
able communication bandwidth between two nodes, which may be less than the the maximum available
rate. For example, a node may reduce its radio transmission power to save energy, resulting in a less
than maximum communication rate. This capacity can also vary over time based on environmental
conditions. Our decentralized protocol results in an on-line algorithm for this scenario.

Because energy efficiency is a key consideration in WSNs, various techniques have been proposed to
explore the trade-offs between processing/communication speed and energy consumption. This results
in the continuous variation of the performance of the nodes. For example, the processing capabilities
may change as a result of dynamic voltage scaling [8]. The data communication rate may change as a
result of modulation scaling [11]. As proposed by various studies on energy efficiency, it is necessary for
sensors to maintain a power management scheme, which continuously monitors and adjusts the energy
consumption and hence changes the computation and communication performance of the sensors. In
data gathering problems, these energy related adjustments translate to changes of parameters (node/link
capacities) in the problem formulations. Determining the exact reasons and mechanisms behind such
changes is beyond the scope of this paper. Instead, we focus on the development of data gathering
algorithms that can adapt to such changes.

4 Distributed and Adaptive Algorithm To Maximize Flow

In this section, we first show that the maximum flow remains the same even if we relax the flow
conservation constraint. Then we develop a distributed and adaptive algorithm based on this relaxation.

4.1 Relaxed Flow Maximization Problem

Consider the simple example in Figure 1 where s is the source, r is the sink, and u is the only
intermediate node. Obviously, the flow is maximized when f(s,u) = f(u,r) = 10. Suppose s, u, and r
form an actual system and s has sent 10 data packets to u. Then u can send no more than 10 data packets
to r even if we permit u to transfer more to r, because u has received only 10 data packets. This means
the actual system still works as if f(u,r) = 10 even if we set f(u,7) > 10.

(Dtp(—2—()

Figure 1. An example of the relaxed network flow problem where ¢, = 10 and ¢, = 20.

This leads to the following relaxed network flow problem:
Given: graph G(V, E'), source node s € V, and sink node r € V. Link (u, v) has capacity cy,.
Maximize: |f| < D ves, F(8:0)

Subject to:
0 S f(u:'v) S Cup forV (u, 'U) cF (1)
Zveau f(u: U) > Zuem f(’U,U) forueV — {S,’I‘} (2)

Condition 2 differentiates the relaxed and the standard network flow problem. In the relaxed problem,
the total flow out of a node is larger than or equal to the total flow into the node, and flow conservation
is not required. A feasible function f (which satisfies the two constraints above) to the relaxed flow
problem is called a relaxed flow in graph G. | f| denotes the net amount of flow out of source s and is

called the value of the realxed flow. The following theorem shows the relation between the relaxed and
the standard network flow problem.

Theorem 1. Given graph G(V, E), source s and sink v. If f* is an optimal solution to the relaxed
network flow problem, then there exists an optimal solution f' to the standard network flow problem
such that f'(u,v) < f*(u,v) forV (u,v) € E. Additionally, |f*| = |f|.

Proof of the theorem is not difficult and omitted here due to space limitations. If we interpret f*(u, v)
as the number of data units that we ask u to transfer and f’(u,v) as the number of data units that u
actually transfers, then this theorem essentially indicates that the solution to a relaxed flow problem can
have an actual implementation that satisfies flow conservation!

4.2 The Algorithm

In this section, we develop a decentralized and adaptive algorithm for the relaxed network flow maxi-
mization problem. This algorithm is a modified version of the Push-Relabel algorithm [2] and is denoted
as the Relaxed Incremental Push-Relabel (RIPR) algorithm.

The Push-Relabel algorithm is a well known algorithm for network flow maximization. It has a
decentralized implementation where every node only needs to exchange messages with its immediate
neighbors and makes decisions locally. But in order to be adaptive to the changes in the system, this
algorithm has to be re-initialized and re-run from scratch each time when some parameters (weight
of the nodes and edges in the graph) of the flow maximization problem change. Each time before
starting to search for the new optimal solution, the algorithm needs to make sure that every node has
finished its local initialization, which requires a global synchronization and compromises the property
of decentralization.

In contrast to the Push-Relabel algorithm, our algorithm introduces the adaptation operation, which
is performed upon the current values of f(u,v) and h(u) for Vu,v € V. In other words, our algorithm
performs incremental optimization as the parameters of the system change. Our algorithm does not need
global synchronizations. Another difference is that our algorithm applies to the relaxed network flow
problem, rather than the standard one.

For the discussion below, let us first briefly re-state some notations for the network flow maximization
problem. For notational convenience, if edge (u,v) ¢ E, we define ¢, = 0; if the actual data transfer is
from u to v, we define f(v, u) = — f(u, v). With these two definitions, if neither (u, v) nor (v, «) belongs
to E, then ¢y, = ¢y = 0, which implies that f(u,v) = f(v,u) = 0. Of course, f(u,u) = — f(u, u)

implies that f(u,u) = 0, which essentially says that a node cannot send flow to itself. In this way,
we can define f(u,v) over V x V, rather than being restricted to E. f(u,v) = —f(v, u) also allows
us to compute the total amount of flow into u as Y cy.uo, f (v 1), which equals 3, i, f(v, u) since
f(v,u) = flu,v) = 0if (u,v) ¢ E and (v,u) ¢ E. With the definition of f(u,v) thus extended, it is
easy to show that the relaxed network flow problem is equivalent to the following formulation:

Given: graph G(V, E), source node s € V, and sink node r € V. Link (u,v) has capacity cy,.
Cuw = 0if (u,v) & E.

Maximize: | f| et > ey f(s,0)

Subject to:

flu,v) = —f(v,u) foru,v e V (1)
flu,v) < ey foru,v €V (2)
> ey f(v,u) <0 foru eV — {s,r} (3)

Given a direct graph G(V, E), function f is called a flow if it satisfies the three conditioins in the
above problem; function f is called a pre-flow if it satisfies conditions 1 and 2. Given G(V, E) and f,
the residual capacity cg(u,v) is given by ¢y, — f(u,v), and the residual network of G induced by f is
Gs(V, Ey), where Ey = {(u,v)|u € V,v € V,¢p(u,v) > 0}. For each node u € V, e(u) is defined as
e(u) = > ,ev f(v,u), which is the total amount of flow into u.

The algorithm is as follows:

1. Initialization: h(u), and f(u,v) are initialized as follows:

h(u) = forVueV
f(u,v) =0 forVu,v € F
his) =V
fla,w) =l forVoeV
flv,8) = —lys forVveeV
e(u) = ey f(v,u) forVueV

2. Search for maximum flow:

Each node u € V' — {s, 7} conducts one of the following three operations as long as e(u) # 0:

(a) Push(u,v): applies when e(u) > 0 and 3(u,v) € Ef s.t. h(u) > h(v),

d = min(e(uv), ¢s(u, v))
flu,v) = fu,v) +d

f(Uv u) = ‘—'f(u,'b‘)

e(u) =e(u)—d

e(v) =e(v) +d

(b) Relabel(u): applies when e(u) > 0 and h(u) < h(v) forV (u,v) € Ey,

h(u) = ming, e, h(v) + 1

3. Adaptation to changes in the system: For the flow maximization problem, the only possible change
that can occur in the system is the increase or decrease of the capacity of some edges. Suppose

the value of I, changes to [,,,, the following four scenarios are considered when performing the
Adaptation (u, v) operation:

(a) if E:w > lyy and f(u,v) < lyy, do nothing.
(b) if I, > lyy and f(u, v) = Ly, then

h(s) = h(s)+3|V]|

J(s;0) = lu forVv € o

f(v,s8) =—lw forV v € o,

e(v) =3 ey flv,v) forVoveV
() ifz;m < lyy and f(u,v) < tw, do nothing.
(d) if I, < lyy and f(u,v) > lw, then

h(s) =h(s)+3|V]

f(s,v) =l forV v € o,

Flv,8) = —lg forVuv € o,

e(v) = Zuevf(v v) forVveV

flu,v) = l

flo,u) =

e(w) = B(U) (luw = L)

o) = efv) = (lun — L)

The above algorithm defines an integer valued auxiliary function h(u) for v € V, which will be
discussed below. The ‘adaptation’ is activated when some link capacity changes in the relaxed flow
problem. Because link capacities in the relaxed flow problem map to either vertex or link capacities in
the corresponding CFM problem, the adaptation operation actually reacts to capacity changes in both
vertex and link capacities. The ‘Push’ and ‘Relabel” operations are called the basic operations. Every
node in the graph determines its own behavior based on the knowledge about itself and its neighbors (as
can be seen, the Push and Relabel operations are triggered by variables whose value are locally known by
the nodes). No central coordinator or global information about the system is needed. More importantly,
unlike the Push-Relabel algorithm, no global synchronization is needed when the RIPR algorithm adapts
to the changes in the system.

An intuitive explanation of the RIPR is as follows. h(u) represents, intuitively, the shortest distance
from u to t when h(u) < h(s). When h(u) > h(s), h(u) — h(s) represents the shortest distance from u
to 5. Hence the RIPR algorithm attempts to push more flow from s to ¢ along the shortest path; excessive
flow of intermediate nodes are pushed back to s along the shortest path. Similar to the Edmonds-Karp
algorithm[2], such a choice of paths can lead to an optimal solution.

Lemma 1. During the execution of the RIPR Algorithm, for¥u € V, h(w) never decreases.

Proof: h(s) is only changed by the Adaptation operation, during which h(s) is increased by 2|V|. h(r)
never changes. When u # s and u # r, h(u) is only changed by Relabel(u). Relabel(u) is applied
when e(u) > 0 and h(u) < h(v) for ¥ v € {v|ef(u,v) > 0}. And h(w;) = ming)ek; h(v) + 1 after
Relabel(u). Hence h(u) is increased at least by 1. O

10

Lemma 2. During the execution of the RIPR Algorithm, for Yu € V st
e(u) > O, there exists a simple path in E; from u to a node v s.t. e(v) < 0.

Proof: Suppose e(u) > 0. Let V denotes the set of nodes that can be reached by u through a simple
path in E;. Note that u € V. For sake of condiction, suppose e(v) > OforVv e V. LetV =V — V.

We claim that if z € V and y € V, then f(z,y) < 0. Otherwise if f(z,y) > 0, then ¢;(y,z) =
¢yz — f(Y,%) = ¢ye + f(z,y) > 0, which means = can be reached from y in Ey, hence there exists a
path from u to = in EY;. But this contradicts the choice that z € V.

It is fairly easy to show that) . e(v) = P 2 yeir f(2,9). Hence 3, e(v) < 0. But this
contradicts the assumption that e(v) > 0 for ¥V v € V and e(u) > 0. O

Lemma 3. During the execution of the RIPR, for ¥V u € V, if e(u) > 0, then either Relabel (u), or
Push(u,v) (where v € V) can be applied.

Proof: When e(u) > 0, if v s.t. ¢(u,v) > 0 and h(u) > h(v), then Push(u,v) can be applied;
otherwise, h(u) < h(v) for ¥V v € {v|cs(u,v) > 0}, which means Relabel(u) can be applied. O

Lemma 4. During the execution of the RIPR algorithm,
h(u) < max(h(v) + 1, h(s) — |V| - 1) for¥ (u,v) € Ey,
h(u) < h(s)+|V] -1 forVueV

Proof: We prove by induction on the number of adaptation operations.

e Base case:

Before any changes occur in the system, the adaptation operation will not be applied. At this
stage, the Incremental Push-Relabel algorithm performs the exact operations as the Push-Relabel
algorithm, hence we have

h(u) < max(h(v) + 1, h(s) — [V]| = 1) forV (u,v) € Ey,
<h(s)+|V|-1 forvueV

before any adaptation operation is applied.

e Induction step:

Suppose after the adaptation has been applied n — 1 times and we still have

max(h(v) + 1, h(s) — |V]| = 1) forV (u,v) € Ey,

h(u) <
u) < h(s)+|V|-1 forVueV

h(
and then the n'” adaptation, Adaptation(u®,v*), is applied.

1. We first show that A(u) < max(h(v)+1, h(s)—|V|-1) forV (v, v) € Ey after Adaptation(u*,v*).
Considering Adaptation(u*, v*), if either scenario (a) or (c) occurs, no residual edge is added
or removed, no node w € V" has its h(w) changed, either. If scenario (d) occurs, the change
in the system removes (u*, v*) from E 7 and hence the corresponding constraint on A(u*)

11

and h(v*). If scenario (b) occurs, (u*,v*) is added to the E;. By induction assumption,

h(u*) < h(s) + |V| — 1 before the adaptation operation. Because h(u") does not change

and h(s) increases by 2|V| after the operation, h(u*) < h(s) — [V/| — 1 after the adaption

operation. In summary, after the adaptation operation, h(u) < max(h(v)+1, h(s)—|V|-1)

forV (u,v) € Ef.

Adaptation(u*,v*) changes the values of some e(w), allowing new Push and Relabel opera-

tions to be applied. Yet these operations preserve the property that

h(v) < max(h(v) + 1,h(s) — |[V| = 1) for V (u,v) € E;. This is shown by induction

on the number of Push and Relabel operations.

(a) SupposePush(u,v) is applied.
This may add edge (v, u) into E; or remove the edge (u,v) from Ey. In the former
case, for edge (v,u) € Ej, we have h(v) < h(u) because otherwise the push will not
be applied. In the latter case, the removal of (u, v) from E; removes the corresponding
constraint on h(u) and h(v). In both cases, we still have h(u) < max(h(v) + 1, h(s) —
|V| — 1) for any (u,v) € Ej.

(b) Suppose Relabel(u) is applied.
For a residual edge (u,v) that leaves u, we have h(u) = minye(w|(u.w)eEy) h(w) + 1
after the Relabel operation, which means h(u) < h(v) + 1. For a residual edge (w, u)
that enters u, h(w) < max(h(u) + 1,h(s) — |[V| — 1) before the relabel operation.
According to Lemma 1, h(w) < max(h(u)+1, h(s)—[V|—1) after the relabel operation.
Therefore, after a relabel operation, we have h(u) < max(h(v) + 1, h(s) — |[V| = 1) for
any (u,v) € Ej.

. Now we need to show that h(u) < h(s) + |V| —1forVu e V.
Let I denote the set of u € V s.t. there exists a simple path from u to s in Ej. V=V-V.
For any node u € V, suppose the simple path to s in By is {u, u, ..., uy}, where uy = s and
k < |V]|—1. We have

h(u) < max(h(w)+1,h(s) = V| —1)

h(uy) < max(h(ug) +1,h(s) —[V]—1)

B{ug) max(h(ug)+ 1,5(s) = (V] - 1)

Combining these inequalities, we have

h(v) < max(h(ux) + k&, h(s) = |[V|-1+k—1)
= max(h(s) + k, h(s) — |[V]+k —2)
< max(h(s) + |V| — 1, h(s) = 3)
=h(s)+|V] -1

For any node u € V, according to Lemma 2, there exist a simple path in £ from u to a node
zst e(z) < 0and z # s. Suppose the simple path is {u,uy, ..., ux}, where ux = z and
k < |V| - 1. We have

h(u) < max(h(u) +1,h(s) = [V][—1)
h(uy) < max(h(us) +1,h(s) — V] -1)

12

B(u_1)< max(h(ug) + 1, h(s) — [V] = 1)

Note that e(u) > 0 immediately after the initialization for ¥ v € V. The only operation
that can bring e(z) below 0 is the adaptation operation (when scenario (d) occurs). Suppose
e(z) becomes negative as the result of m?" adaptation operation (m < n). Since the Relabel
operation (which is the only operation that can increase the value of h(z)) is applied only if
e(z) > 0, then e(2) < 0 means that h(z) has not been increased after the m'™ and hence the
n‘* adaptation operation. Therefore, h(z) < h(s) + |V| — 1 before the n*" adaptation means
that h(z) < h(s) — |V'| — 1 thereafter, since A(s) is increased by 2|V|.

Combining these inequalities, we have

h(u) < max(h(V;,) +k,h(s) = |V| =1+ k —1)

= max(h(V;) + k, h(s) — |V]| = 2 + k)
< max(h(Vo) = [V = L+ [V] = 1,A(s) — |V| = 2+ |V| = 1)
< h(Vo) + V] -1

O

Corollary 1. During the execution of the RIPR algorithm, for any node w € V, if e(u) < 0, then
h(u) < h(s) = [V] - 1.

The proof of Corollary 1 is included in the proof of Lemma 4.

Lemma 5. During the execution of the RIPR algorithm, JorVu eV — {s,r}, if there exists a simple
path from s to w in Ey, then e(u) > 0.

Proof: Suppose for the sake of contradiction that there exists anode u € V — {s,7} such that e(u) <0
and there exists a simple path {s, uy, ..., ug, u} in E;. Without loss of generality, this is a simple path
and k < |V| - 2.

According to Lemma 4,

h(ui) < max(h(ug) +1,h(s) — |[V]| = 1)

max(h(ug) + 1, h(s) — |V| - 1)
< max(h(u) + 1, h(s) — |V]| = 1)

According to Corollary 1, h(u) < h(s) — |V| — 1 since e(u) < 0. Combining these inequalities, we
can see that

h(u) < max(h(u) + k&, h(s) — [V]| - 2+ k)
< max(h(s) — |[V| =14k, h(s) = |V| =2+ k)
Sh(s)=|V|-1+|V]-2
< h(s)

On the other hand, consider the first hop (s, u;) along this path. (s, u,) € E; implies that f(s, u)) <
Csu, - Recall that the value of f(s,u;) is set to ¢y, after the initialization and each adaptation operation.

13

The only operation that can reduce the value of f(s,u;) is a push from u, to s. However, Push(uy, s)
is applied only when h(u;) > h(s). This contradicts the claim h(u;) < h(s) that we just derived.
O
Similar to the standard flow problem, for the relaxed flow problem, a cut is defined as a binary partition
(S,R) of Vsuchthat SUR=V,SNR=0,s € Sandr € R. The capacity csr of a cut (S, R) is
defined as cgg = Zue SweR Cuv: The next lemma shows that the value of a relaxed flow cannot exceed
the capacity of any cuts.

Lemma 6. Given graph G(V, E) with source s and sink, a relaxed flow f, and an arbitrary cut (S, R)
OfG! ZUEV f(S, U) S CSR'

Proof: we have e(u) < 0 foru € V — {s,7}. Therefore

ZuES—{s} E(U) = Zve\f,ues—{s} f('u,u) <0

= Y esues—{s F (v u) + Y verues—(s f (1) <0

= ZuES—{s} f(s,u) * ZveS—{a}.uES—{s} f('v,u) + ZvER,uES—{s} f(U, u) <0
= EHES—{S} f(S,'U.) T ZvES—{s},ueS—{s} f(’U! u’) < ZvER,uES—{s} f(“’: 'U)

= ZuES—{s} f(S, u) 5 Zveﬂ,uES—{s} -f(u1 ’U)

= zuES—{s} f(sv u) + Zueﬁ f(S, u) < EUGR,uES—{s} f('“'%'”) T ZuER f(S, u)
= ZuEV—{s} f(s,u) < ZuES,uER flu,v)

Since f(u,v) < ¢y forVu,v eV, additionally, because f(s,s) = 0, we have

ZUEV f(S, 'U) = ZuGV—{s} f(S, U’) S ZuES,uERCUU = CSR

Lemma 7. If the RIPR algorithm terminates, it finds the maximum relaxed flow.

Proof:

According to Lemma 3, if the algorithm terminates, then e(u) < 0forVu eV — {s,r}. Hence f is
a flow if the algorithm terminates.

Given such an f, we construct a cut of G as follows:

S = {u € V|there exits a simple path from s to u in Ef}

R=V-S
According to Lemma 5, e(u) > 0 foru € § — {s}. Note that e(u) < 0for¥u eV —{s,7} upon

terminiation of the algorithm. Hence e(u) = 0 (i.e. 3.,y f(v,u) = 0) forVu € S — {s}. Thenitis

easy to show that 3° < f(5,4) = D ues—(s) F(s,0) = Yues—s)wer S (s 0)-
Therefore,

ZUEV f(sa U) = ZueS f(S, ’U) + ZueR f(S, 'U)
= Z1.{ES—{5},U€R f(u’ 'U) + ZﬂGR f(S, L')
=Y ueswer S (W V)

14

We claim that f(u,v) = ¢, forVu € s,v € R, because otherwise f(u,v) < ¢, implies that edge
(u,v) € Ey, hence v can be reached by s in Ey. But this contradicts the definition of R.
Therefore,

ZUEV f(S, U) = ZILES,UER C(U, U) = CsRr

Accordign to Lemma 6, such a relaxed flow f is a maximum relaxed flow. O

Lemma 8. [f the adaptation is applied n (n > 0) times, then the number of Relabel operations that can
be performed is less than ((2n + 2)|V |2

Proof: If the adaptation is applied n times, then h(s) = (2n + 1)|V|. According to Lemma 4, h(u) <
h(s) +|V|—1= (2n +2)|V| — 1 forV u € V. Each time Relabel(u) is applied, h(s) is increased at
least by 1. Since h(s) = 0 initially, Relabel(v) is applied at most (2n + 2)|V| — 1 times. There are |V|
nodes in the system, hence then the total number of Relabel operations that can be performed is at most
((2n +2)|V| = 1)|V], which is less than (2n + 2)|V|2. O

If a Push(u,v) operation removes (u,v) from E; (i.. cf(u,v) = 0 after the operation), it is a
saturated push, otherwise it is a non-saturated push.

Lemma 9. If the adaptation is applied n (n > 0) times, then the number of saturated push operations
that can be performed is less than (n + 1)|V| - |E|.

Proof: Consider edge (u,v) € E. Suppose a saturated push Push(u,v) is first applied. For a second
saturated push to be applied over (u, v), Push(v,u) must be applied before the second saturated push.
Because h(u) > h(v) for the first push (otherwise the first push will not be applied), then h(v) must be
increased at least by 2, otherwise h(v) < h(u) then Push(v,u) will not be applied. Similarily, h(u)
must be increased at least by 2 for the second saturated push to occur over edge (u,v). So on so force.
Because h(u) < h(s) + [V| — 1 = (2n +2)|V| — 1, h(u) and h(v) cannot increase to infinity. It is easy
to show that saturated push can occur at most ((2n + 2)|V| — 1)/2 times for edge (u,v). There are | E|
edges in the graph. The total number of saturated push operations is less than ((2n +2)[V| - 1)/2 - |E|,
which is less than (n + 1)|V] - | E]|. O

Lemma 10. If the adaptation is applied n (n > 0) times, then the number of non-saturated push opera-
tions that can be performed is less than (n* + 2n + 1) - (4|V[* + 2|V || E|).

Proof: Define a potential function ® = 37\ A(u). ® = 0 initially. Obviously, & > 0.

According to Lemma 4, h(u) < h(s)+|V|—1 = (2n+2)|V|—1, hence a relabel operation increases ®
by at most (2n.+2)[V|—1. According to Lemma 8, there can be at most (2n+2)|V|? Relabel operations.
The increase in ® induced by all relabel operations is at most ((2n+2)|V|—1)-(2n+2)|V|2 A saturated
push Push(u,v) increases @ by at most (21 + 2)|V| — 1 since e(v) may become positive after the push,
and (2n + 2)|V| — 1 is the highest value that h(v) can be. According to Lemma 9, the increase in ®
induced by all saturated push is at most ((2n + 2)|V| — 1) - ((n + 1)|V| - | E]).

For a non-saturated push Push(u,v), e(u) > 0 before the push and e(u) = 0 after the push, hence
h(u) is excluded from @ after the push. If e(v) > 0 after the push, ® is decreased at least by 1 because
h(u) = h(v) > 0. If e(v) < 0 after the push, then @ is decreased by h(u) > 1.

Therefore, the total increase in @ is at most ((2n + 2)[V'| — 1) - (2n + 2)|V|> + ((2n + 2)|V| = 1) -
(n+ DIV |E]) < (n® +2n+ 1) - (4]V[* + 2|[V|*|E|), while each non-saturated push decreases ®
at least by 1. Therefore, the total number of non-saturated push operations that can be performed is at
most (n® + 2n + 1) - (4|V|3 + 2|V || E]). O

15

3 4
5410 1,5%10
045 w16
= =
3 g
g 4 21.4
g z
Q 0l2
a 35 @
8 o
2 |
G 3 g
g 8
0.8
5 25 5
208
2
1 2 3 3 5 o 2 3 4 5
Number of adaptation operations Number of adaptation operations

(a) systems with 40nodes and 120 (b) systems with 60 nodes and 180
edges edges

Figure 2. Complexity of the RIPR algorithm. Number of basic operations vs number of adaptations

Theorem 2. The RIPR algorithm finds the maximum flow for the relaxed flow problem with O(n* - |V|?-
|E|) basic operations, where n is the number of adaptation operations performed, |V| is the number of
nodes in the graph, and | E| is the number of edges in the graph.

Proof: Immediate from Lemma 7, 8, 9, and 10. O

We have proved above that the RIPR algorithm needs O(n? - |V|? - | E|) basic operations to find the
maximum flow. However, experiments show that the average performance is better than the bound stated
in Theorem 2. Figure 2 shows the experimental results. Both Figure 2 (a) and (b) report results averaged
over 50 randomly generated systems. The z-axis represents the number of adaptation operations. The
y-axis shows the average number of basic operations performed by the algorithm to find the maximum
flow. These simulation results suggest that, instead of n2, there may be a linear relation between the total
number of basic operations and the number of adaptations. We are currently investigating the possibility
of a better complexity bound.

4.3 A Simple Protocol for Data Gathering

In this section, we show a simple on-line protocol for SMaxDT problem based on the RIPR algorithm
in Section 4.

The maximum flow obtained using the RIPR algorithm does not tell us how to transfer the data through
the network. It only contains information such as “u needs to transfer 0.38 unit of data to v in one unit of
time’. But the actual system needs to deal with integer number of data packets. Furthermore, before the
RIPR algorithm finds the maximum flow, a node, say 1, may have a positive valued e(u), which means
u is accumulating data at that time instance. Yet such a node u should not keep accumulating data as
e(u) will eventually be driven to zero.

These issues are addressed by maintaining a data buffer at each node. Initially, all the data buffers are
empty. The source node s senses the environment and fills its buffer continuously. At any time instance,
let 3, denote the amount of buffer used by node u. Each node u € V operates as follows:

|. Contact the adjacent node(s) and execute the RIPR algorithm.

16

2. While 8, > 0, send message ‘request to send’ to all successors v of 4 s.t. f(u,v) > 0. If ‘clear to
send’ is received from v, then set By + B, — 1 and send a data packet to v.

3. Upon receiving ‘request to send’, u acknowledges ‘clear to send’ if 5, < U. Here U is a pre-set
threshold that limits the maximum number of data packets a buffer can hold.

For node s, it stops sensing if 3, > U. Two types of data are transferred in the system: the control
messages that are used by the RIPR algorithm, and the sensed data themselves. The control messages are
exchanged among the nodes to query and update the values of f (u,v) and h, etc. The ‘request to send’
and ‘clear to send’ messages are also control messages, though they are more related to data transfer.
The control messages and the sensed data are transmitted over the same links and higher priority is given
to the control messages in case of a conflict.

For the MMaxDT problem, the situation is a bit more complicated. Since the MMaxDT problem is
reduced to the SMaxDT problem by adding a hypothetical super source node s, the RIPR algorithm
needs to maintain the flow out of s’ as well as the value of function h(s'). Additionally, the values of
f(s',v) (v € V) and h(s’) are needed by all nodes u € V, during the execution of the al gorithm. Because
s' is not an actual sensor, sensors in V, therefore need to maintain a consistent image of s'. This requires
some regional coordination among sensors in V, and may require some extra cost to actually implement
such a consistent image.

SMaxDV and MMaxDV are by nature off-line problems and hence we do not develop on-line pro-
tocols for them. Actually, we can approximate the optimal solution to SMaxDV and MMaxDV using
some simple heuristics. For example, we can find the shortest path (in terms of the number of hops)
from the source (or one of the sources) to the sink and push as many data packets as possible along the
path until the energy of some node(s) along the path is depleted. Then we find the second shortest path
and push data packets along this path. This is repeated till the source and sink are disconnected. Such
a heuristic is similar to the augmenting path method for the standard flow problem except that the paths
are searched in the original graph, rather than the residual graph. The heuristic may not find the optimal
solution. However, it can be shown experimentally that such a heuristic can achieve a close to optimal
performance [5].

5 Experimental Results

Simulations were conducted to illustrate the effectiveness of the proposed data gathering algorithm.
We focus on the continuous sensing and gathering problems where our simple protocol can be applied.

As we have already proved that the RIPR algorithm finds the maximum flow, we do not show here the
throughput achievable by our protocol, which is based on the RIPR algorithm. Actually, throughput up
to 95% of the optimal has been observed in the simulations.

As claimed in Section 4, adaptation is an important properties of the proposed algorithm and hence
the data gathering protocol. This is illustrated in the following simulations of the SMaxDT problem.

The simulated sensor network was generated by randomly scattering 40 sensor nodes in a unit square.
The base station was located at the left-corner of the square. The source node was randomly chosen
from the sensor nodes. The number of sensor nodes that can communicate directly to a specific node
is determined by a connectivity parameter, £ € (0, 1], such that the average number of neighbors of a
sensor node is 2007 x%. B,’s are uniformly distributed between 0 and B,,,q. Bimae Was set to 500 for the
simulations. We assume a signal decaying factor of r 2. the flow capacity between sensor nodes u and v

17

0 10 20 30 40
Time

Figure 3. Adaptation to changes in the system.

is determined by Shannon’s theorem as ., = W log(1 + P“—“,;":"z») where W is the bandwidth of the link,
T is the distance between u and v, Py, is the transmission power on link (u,v), and 7 is the noise in
the communication channel. In all the simulations, W was set to 1K Hz, P,, was set to 10~ 3mW, and
n was set to 107®mW. U was set to 2.

During the course of data gathering, the capacities of a set of randomly selected edges were reduced
by 50% at time instance t = 20s. The energy budgets of another set of randomly selected sensors were
reduced by 30% at t = 20s. The achieved data gathering throughput is shown in Figure 3 , where the
dotted line represents the optimal throughput calculated offline. Let N(t) represents the total number of
data packets received by the base station from time 0 to time instance . The instantaneous throughput
(reported in Figure 3) at time instance 7 is calculated as (N(7+0.1)—=N(r—0.1))/0.2. Various randomly
generated systems were simulated under such settings. The same adaptation trend was observed and only
one such result is shown in Figure 3. When the system parameters changed at ¢ = 20s, the adaptation
procedure was activated and the data gathering was adapted. As can be seen, the system operates at
(close to) the new optimal throughput after the adaptation was completed.

6 Conclusion

In this paper, we studied a set of data gathering problems in energy-constrained wireless sensor net-
works. We reduced such problems to a network flow maximization problem with vertex capacity con-
straint, which can be further reduced to the standard network flow problem. After deriving a relaxed
formulation for the standard network problem, we developed a distributed and adaptive algorithm to
maximize the flow. This algorithm can be implemented as a simple data gathering protocol for WSNs.

One of the future directions is to design distributed algorithms that do not generate excessive flow at
the nodes (i.e. e(u) does not become positive) during the execution. Our formulation of constrained flow
optimizations can be applied to problems beyond those four discussed in this paper. For example, the
system model considered in [6] gathers data in rounds. In each round, every sensor generates one data
packet and the data packets from all the sensors need to be collected by the sink. The goal is to maximize
the total number of rounds the system can operate under energy constraints of the nodes. This problem
can be described by our constrained flow formulation and an optimal solution can be developed [5].

18

Acknowledgment

We thank the anonymous reviewer for pointing out earlier work on constrained flow problems.

References

[1] L F Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cyirci. Wireless Sensor Networks: A Survey.
Computer Networks, 38(4):393-422, 2002.

[2] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms. MIT Press, 1992.

[3] A. V. Goldberg and R. E. Tarjan. A New Approach to the Maximum Flow Problem. Journal of
Association for Computing Machinery, 35:921-940, 1988.

[4] W.R. Heinzelman, A. Chandrakasan, and H. Balakrishnan. Energy Efficient Communication Pro-
tocol for Wireless Micro-sensor Networks. In Proceedings of IEEE Hawaii International Confer-
ence on System Sciences, 2000.

[5] B. Hong and V. K. Prasanna. Constrained Flow Optimization with Applications to Data Gathering
in Sensor Networks. Technical Report CENG-2004-07, Department of Electrical Engineering,
University of Southern California, http://www-scf.usc.edu/~bohong/report_may04.ps, May 2004.

[6] K. Kalpakis, K. Dasgupta, and P. Namjoshi. Maximum Lifetime Data Gathering and Aggregation
in Wireless Sensor Networks. IEEE Networks '02 Conference, 2002.

[7] E. L. Lawler. Combinatorial Optimization : Networks and Matroids. Holt, Rinehart and Winston,
1976.

[8] R. Min, T. Furrer, and A. Chandrakasan. Dynamic Voltage Scaling Techniques for Distributed
Microsensor Networks. Workshop on VLSI (WVLSI '00), April 2000.

[9] F. Ordonez and B. Krishnamachari. Optimal Information Extraction in Energy-Limited Wireless
Sensor Networks. to appear in IEEE Journal on Selected Areas in Communications, special issue
on Fundamental Performance Limits of Wireless Sensor Networks, 2004.

[10] N. Sadagopan and B. Krishnamachari. Maximizing Data Extraction in Energy-Limited Sensor
Networks. IEEE Infocom 2004, 2004.

[11] C. Schurgers, O. Aberthorne, and M. Srivastava. Modulation Scaling for Energy Aware Communi-

cation Systems. In International Symposium on Low Power Electronics and Design, pages 96-99,
2001.

19

