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ABSTRACT

Bandwidth is allocated to a flow in today’s Internet due
to actions by transport protocols at end-systems and queue
management schemes at routers. While the nature of this
bandwidth allocation is not yet well understood, to minimize
the average flow delay, it would be ideal to allocate band-
width according to a policy like SRPT (shortest remaining
processing time). Given the heavy-tailed nature of Internet
flow size distribution, the corresponding reduction in aver-
age flow delay would be particularly pronounced. But, this
ideal is impractical: to decide which packet to transmit next
a router would now need to know the residual data in the
flow corresponding to each currently buffered packet. Even
a less complex cousin of SRPT, like SFF (Shortest Flow
First), is unimplementable since it would require a knowl-
edge of flow sizes at routers.

In this paper, we introduce a randomized algorithm called
SIFT, for separating the packets of long and short flows. It
is based on the simple observation that a randomly sam-
pled arriving packet is much more likely to belong to a large
flow, allowing a router to differentially allocate link band-
width to large and small flows. We analyze the performance
of SIFT using queueing models, comparing its performance
with FIFO and PS (processor sharing). We also compare
its performance with packet-level FIFO, the current prac-
tice in Internet routers, via ns simulations. We find that
SIFT reduces the delay of the vast majority of flows by one
to two orders of magnitude without significantly increasing
the delay of the longest flows. We comment on the imple-
mentability of SIFT and argue that it is feasible to deploy
it in today’s Internet.

1. INTRODUCTION

Scheduling policies significantly affect the performance of
resource allocation systems. The policy that services the
job with the shortest remaining processing time (SRPT) is
known to minimize average response times [19]; the improve-
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ment over the first-in-first-out (FIFO) discipline is tremen-
dous, especially when job sizes are drawn from a heavy-tailed
distribution. SRPT is also significantly better than the pro-
cessor sharing (PS) discipline. Indeed, SRPT has been used
by researchers to exploit the heavy-tailed nature of web traf-
fic [7] and the CPU requirements of processes [12, 15], to
yield orders of magnitude improvement in the mean delay
of real systems compared with the FIFO and PS discplines
[11].

Given the heavy-tailed nature of Internet flow-size distri-
bution [21], one hopes that scheduling the packets of flows
using SRPT at routers would lead to a significant reduction
in the delay of Internet flows. But, it is not obvious what
it means to employ SRPT in the Internet. For example,
in contrast to the web server and CPU environments, flows
don’t just share a single resource: they share bandwidth at
multiple links, and with different sets of flows at each link.
One sensible interpretation of SRPT in the Internet might
be for each router to next transmit a packet from that flow
which has the least residual amount of data. This scheme
is clearly impractical: It would require routers to know how
much data is left in the flow corresponding to each currently
buffered packet.

Recognizing this difficulty, researchers have considered ser-
vicing a packet from the flow that has the least attained ser-
vice (LAS) [23],[18]. This policy has also been considered in
detail in the classical queueing literature, where it has been
referred to as the Foreground-Background (FB) scheduler
[13], [20]. While not performing as well as SRPT, it has
been shown that LAS and FB work well in reducing average
delay when job or flow sizes are heavy-tailed. But, the FB
and LAS policies require routers to maintain per-flow state,
and potentially maintain per-flow queues. The sheer num-
ber of flows on a high speed link is so large [6, 9] as to make
it impractical for routers to keep per-flow state.

A packet service policy like shortest flow first (SFF) is sim-
pler than SRPT or LAS because the classification of flows is
a one-time affair, there is no need to dynamically update the
residual or attained service. However, routers don’t know
flow sizes! And, even if they did, per-flow queueing may be
required to serve the next packet by consulting a list of flows
sorted by size.

In this paper we propose a novel randomized scheme called
SIFT that separates the packets of long and short flows
(this explains its name), and preferentially serves the lat-
ter. Flows are distinguished by randomly sampling arriving
packets. Since large flows have many packets, SIFT will



identify them with a very high probability. Once identi-
fied, the packets of long flows are enqueued in a low priority
buffer, while the packets of short flows are preferentially
served from a high priority buffer. If a packet has been put
into the low priority buffer, to avoid mis-sequencing, further
packets from its flow will also be put into the low priority
queue.?

Having thus described our scheme, we note that its im-
plementation requirements are pretty low (implementation
is discussed in detail in Section 5). Indeed, the scheme re-
quires two queues, a priority mechanism for servicing them,
and a sampling mechanism at the packet level. It assumes
that the router where it is deployed can identify which flow
each packet belongs to.?

The major problem is to understand how well SIFT per-
forms in reducing the average delay. We compare perfor-
mance in two ways: via queueing analysis and via ns simu-
lations. Analyzing a single queue at which heavy-tailed jobs
arrive, we find that SIFT performs orders of magnitude bet-
ter than FIFO, significantly better than PS, and that it is
closer to SRPT than it is to FIFO or PS.? Simulations per-
formed with ns tell us that, in the context of Internet flows
and depending on the load, SIFT reduces the average delay
of short flows between one and two orders of magnitude, and
the overall average delay between two and ten times.

A common concern with SRPT, or other pre-emptive dis-
ciplines, is the danger of starving long jobs. The authors in
[3] show that this is rarely the case for SRPT under realistic
heavy-tailed distributions. Our simulations also show that
SIFT increases the delays of long flows by at most a factor of
2 or 3. To completely eliminate the possibility of starvation,
we modify SIFT so that the low priority queue is guaran-
teed a small percentage of the link capacity. Interestingly,
simulations show that this modification doesn’t degrade the
performance of SIFT.

The organization of the paper is as follows: In Section 2
we describe SIFT in detail. Section 3 provides an analysis
of the proposed scheme using queueing theory. In Section
4 we present the results of simulations with TCP flows us-
ing ns-2 [17]. Section 5 comments on the implementation
requirements of SIFT and deployment issues, and Section 6
concludes the paper.

2. DESIGNING A LOW-DELAY SCHEDULER

FOR INTERNET FLOWS

In this section we discuss in detail the difficulties with im-
plementing schemes like SRPT, LAS, or SFF in today’s In-
ternet. This discussion motivates the design of SIFT, which
we describe at the end of the section.

We start with the obstacles faced when attempting to im-

'This is reminiscent of the “sample and hold” strategy ad-
vanced in [5] for identifying and counting the packets of high
bandwidth flows.

*Notice that in accordance with the usual practice [6, 8,
9], packets are said to belong to the same flow if they have
the same source and destination IP address, and source and
destination port number. A flow is “on” if its packets arrive
more frequently than a certain “timeout” number of seconds.
The timeout is usually set to something less than 60 seconds.
3Tt is to be remembered that while implementability im-
proves in moving from SRPT to SFF to SIFT, the reduc-
tion in average delay drops. Thus, the performance of SIFT
cannot be expected to be comparable to that of SRPT.

plement SRPT. First, it is not clear what it means to deploy
SRPT in the Internet. In the following discussion we envi-
sion a router that implements SRPT by keeping track of the
number of the remaining packets to be serviced for each flow
that goes through it.

To determine this number, the router needs to know the
size of the flow at the time of arrival of its first packet,
and to maintain throughout the duration of the flow’s life
the number of its packets that have already been serviced.
However, as mentioned in the introduction, flow sizes are
not known at the time of arrival, and the logistics asso-
ciated with counting packets for every flow are enormous.
Even if the remaining processing time of all flows could be
determined, it is possible that the flow with the shortest re-
maining processing time does not have any packets queued
at the router at some point in time, and hence its remaining
packets are not available for service.

Suppose even that the number of remaining packets of a
flow was known, and that the scheduler would service the
packets of the flow with the shortest remaining processing
time among the flows that currently have packets in the
router (rather than among all active flows). Then, one would
implement SRPT by maintaining a separate queue for each
active flow, and employing a strict priority rule between
the queues. The highest priority queue would be the one
that corresponds to the flow with the shortest remaining
processing time, the second highest priority queue would
correspond to the flow with the second shortest remaining
processing time, and so on. If at some point in time the
highest priority queue were empty, the router would service
packets from the second highest, etc. But this scenario also
has a problem: the number of concurrently active flows on
the Internet is so large that per-flow queueing is impractical.
For all of these reasons, it is not possible to implement exact
SRPT in the context of Internet flows.

The LAS scheme does not require the knowledge of flow
sizes. However, it does require to maintain per-flow state, in
particular, to keep track of the number of packets that have
been serviced so far from each flow. SFF does not require
to maintain per-flow state, but it needs the knowledge of
flow sizes. Finally, both LAS and SFF would require per-
flow queueing in order to be implemented, similar to SRPT.
Hence, it is not feasible to use either of these schemes in the
Internet.

We will now address the problems mentioned above: per-
flow queueing requirement, non-availability of packets at ser-
vice times, per-flow state maintenance, and unknown flow
sizes at arrival times.

A simple solution to the per-flow queueing problem is
to reduce the number of queues to two; one high priority
queue for the “short” flows and one low priority queue for
the “long” flows. Having only two queues will not hurt the
performance much for the following reason: since the flow
size distribution is heavy-tailed, the troublesome flows are
the few very long ones. Hence, it suffices to place these flows
on a low priority queue to significantly reduce delays.

Notice that by using two queues in this fashion, one can
sidestep the non-availability of packets problem as follows:
The scheme now prioritizes queues rather than flows. For
serving each individual queue, one can choose a work con-
serving service discipline that serves currently enqueued pack-
ets, rather than a discipline which might wait to serve pack-
ets of a particular flow.



Schemes maintain per-flow state and require the knowl-
edge of flow sizes in order to decide which flow to service
first. To simplify matters, we follow the spirit of SFF and
consider only flow sizes to order flows. To decide which flow
is short and which is long, we sample every arriving packet
independently with the same probability and store the flow
id of the sampled flows together with the total number of
sampled packets of each sampled flow. Once this number
exceeds some threshold, we forward all future packets of the
flow to the low priority queue. We call such a flow long.
Short flows are the flows all of whose packets stay in the
high priority queue. From an implementation point of view,
choosing a sample threshold equal to one is the best. In
Section 3.2 we investigate how different sample thresholds
affect the performance of the scheme. It turns out that a
threshold of one has quite good performance, hence, this is
what we use.

As mentioned in the introduction, we shall refer to the
proposed scheme as SIFT. Figure 1 shows the scheme in
pseudo-code and Figure 2 presents it schematically. Note
that if the original queue has size B, the size of the high
plus the low priority queue should not exceed B.

if (packet_arrival) {

flow_id = get_flowid_from_packet;

if (sampled_packets(flow_id) > threshold) {
forward_to_low_priority_queue;

} else {
forward_to_high_priority_queue;
if (sample_flow == true)

sampled_packets (flow_id)++;

Figure 1: SIFT in pseudo-code.

Remarks: When the flow data arrive in a packetized fash-
ion spread in time, scheduling decisions based only on flow
sizes, or on the number of the remaining packets requiring
service, are suboptimal. To see this, suppose an oracle knows
the arrival times of all future packets of all flows. Then, to
minimize delays, the oracle would assign the highest priority
to the packets of the flow that would finish service nearest
in the future than any other flow under this priority. Which
flow this is depends on both the number and the arrival

B
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Figure 2: (i) original queue, (ii) SIFT.

times of its remaining packets. If, for example, some of the
packets of the shortest flow were to arrive late, then servic-
ing the packets of the second shortest flow first might yield
lower average delay.

Even though SIFT is a flow scheduling mechanism, it has
implications to congestion control. To see this, consider the
deterministic version of SIFT, that is, a scheme that uses a
size threshold 7', and forwards the packets of the flows with
size less than T to the high priority queue, and the rest to
the low priority queue. Then, depending on the value of T,
this scheme treats differentially flows that stay in slow start
phase throughout their existence, from flows that enter con-
gestion avoidance. Further, since SIFT starts forwarding
packets of a flow to the low priority queue only after one
packet has been sampled, it can also be thought of as ran-
domizing the deterministic scheme that forwards the first
T — 1 packets of all flows to the high priority queue and
the rest to the low priority queue. Such a scheme treats
preferentially all packets that are sent during slow start. It
is outside the scope of this paper to further investigate the
connections between SIFT and congestion control. We leave
this as future work.

3. ANALYZING SIFT

In this section, we analyze the performance of SIFT using
queueing theory. The goal is to investigate the gains from
sifting short flows from the rest of the traffic* under the
simplifying assumption that all the packets of a flow arrive
at the same time. We use a single link setup to compare
the average response time of SIFT to that of a FIFO or PS
queue. We also compare its performance to that of SRPT
in order to understand how far it is from the optimum.

Even though this analysis cannot substitute for simula-
tions that capture in detail TCP and network dynamics, it
is not irrelevant to practice since the flow scheduling disci-
pline for flows in slow start (congestion avoidance) can be
roughly approximated by FIFO (PS) [10].

3.1 The Model

Flows arrive to the link as a Poisson process of rate A.
The size of a flow, measured in number of packets, follows a
bounded Pareto distribution specified by three parameters:
m, the smallest flow size, M, the largest flow size, and «,
the shape parameter. The probability that an arriving flow
has size (equivalently, service requirement) z is given by

—a—1

Py(z) = cpx m<z<M, (1)

where ¢, is a normalization constant, chosen so that )~ = P, (x)

1. As with the unbounded Pareto distribution, the value of
«a determines how heavy-tailed the distribution is: the closer
a is to 1, the more heavy-tailed the distribution. Since we
use a bounded distribution, both the mean and the vari-
ance of the flow sizes are finite. (Note that the unbounded
Pareto distribution has finite mean but infinite variance for
a between 1 and 2.)

We will now obtain the arrival rate and the size distribu-
tion of flows for the high and the low priority queues.

Without loss of generality, assume the sampling threshold
equals one. A flow is said to be sampled if at least one
of its packets are sampled. Let p be the packet sampling

“We will use “Hows” instead of the more common term
“jobs”.



probability. Then, the probability that a flow of size z is
sampled equals

P(z)=1-(1-p)" (2)

Now, assume that all the packets of a sampled flow join
the low priority queue while the rest join the high priority
queue. The flows of a given size, say z, form a Poisson arrival
process with rate AP,(z). Since a flow of size z is sampled
with probability Ps(z) independent of all else, the arrival
rate of flows of size x into the low priority queue is Az o
= AP,(z)Ps(z). The total arrival rate into the low priority
queue is therefore

X = S AP(2)P, (@),

and the arrival rate into the high priority queue is
M
A =X=X = A1-Py(z))Ps().

The above analysis makes two unrealistic assumptions.
First, it assumes that all the packets of a flow arrive at the
same time, that is, TCP dynamics are ignored. Second, it
assumes that all the packets of a sampled flow join the low
priority queue. It is very hard to account for TCP dynamics,
but getting rid of the second assumption is actually easy.

Recall that under SIF'T, once a packet of a flow is sampled,
then that packet and further packets from the flow are put
into the low priority queue, while preceding packets are put
into the high priority queue. Thus, the probability that a
flow arriving to the low priority queue has size z is

P(x) = Po(y)(1-p)" " "p. ®3)

y>z

This is because a flow of size y (y > x) has only x of its
packets in the low priority queue if the (y — 2 + 1)th packet
is the first one to be sampled. Similarly, the probability that
a flow arriving to the high priority queue has size z is

Py(z) = Pp(a)(1=p)" + ) Pp(y)(1—p)°p.  (4)
y>x

In the above analysis, it is as if we partition sampled flows
into two parts. The first part corresponds to packets arriving
before the sampled packet and constitutes a flow that joins
the high priority queue, and the second part corresponds to
the rest of the packets and constitutes a flow that joins the
low priority queue.

By taking into account that some of the packets of the
sampled flows join the high priority queue, we introduce de-
pendencies in the arrival times of flows that join the high
and the low priority queues. To keep the analysis tractable,
we ignore this dependency and assume independent flow ar-
rival times. In particular, we assume that low priority flows
arrive as a Poisson process with rate \; as before, and high
priority flows arrive as a Poisson process with rate A\, = A,
with size distributions given by Equations (3) and (4) re-
spectively.

3.2 Preliminary Analysis

In this section we study the effect that different values of
the sampling threshold have on SIFT’s performance. Then,
we compute the probability that SIFT misclassifies short
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Figure 3: Flow sampling probability as a function of
flow size.

flows as long flows and visa versa. (Note that in the rest of
the paper, when we refer to a short flow, we refer to a flow
all of whose packets are not sampled, while in this section, a
short flow is a flow with size less than a given size threshold.)

Let T denote the size threshold used by a deterministic
scheme to partition flows in short and long. Since SIFT clas-
sifies flows in a randomized fashion, it is reasonable to choose
the packet sampling probability and the sampling threshold
such that it takes T packets on average for a flow to be
sampled, or equivalently, such that the expected number of
packets till a flow is sampled equals T

Let Ts denote the sampling threshold, and N denote the
number of packets till a flow is sampled. For T; = 1 it
is easy to see that NV follows a geometric distribution with
average 1/p. Hence, p should equal 1/T. For T, > 1, a
flow is sampled if at least 75 of its packets are sampled.
It is easy to see that in this case E(N) = Ts/p and hence
p=T,/T. As T, further increases this procedure converges
to the deterministic scheme that “samples”’, i.e. forwards
to the low priority queue, all flows whose size is at least T,
since for Ts = T the sampling probability equals one.

Figure 3 plots Ps(z), the probability that a flow of size
is sampled, as a function of x for various values of Ts. T is
set to 100. Note that Ps(z) =1— Zf;gl #ll),pl(l —p)=t
which reduces to Equation (2) for Ts = 1. From the figure
it is evident that the higher the value of T, the better the
classification.

From an implementation point of view it is best to use
Ts = 1. However, small values of T increase the probability
that SIFT misclassifies flows. Let P,, denote this probabil-
ity. P, equals the probability that short flows are sampled
plus the probability that long flows are not sampled, that
is,

Pn =Y Py(x)Py(x)+ Y _ (1= Ps(z))Pp(x).

z<T z>T

For heavy-tailed flow size distributions P, is quite small
even for small values of Ts. For example, for Ts, = 1,
p=Ts/T =001, m=1, M =105 and a = 1.1, P,, equals
2.6%, that is, the fraction of misclassified flows is only 2.6%.
The fraction of short misclassified flows among all short
flows can be computed by Y, Ps(x)Pp(x)/ Y, o Po(x)
and it equals 2.5%, and the fraction of long misclassified



flows among all long flows, computed in a similar manner, is
15.8%. The reason why there are so few flows that get mis-
classified, despite the non-negligible probability of sampling
a flow of size less than T, is that the vast majority of flows
are quite small, and the sampling probability for these flows
is very small. Further, the sizeable fraction of misclassified
long flows does not hurt performance much; as long as the
very long flows are sampled performance is good, and this
occurs with very high probability. For these reasons, in the
rest of the paper we use a sample threshold equal to one.

3.3 Delay under SIFT with FIFO queues

In this section we compare the total, short-flow, and long-
flow average delays under SIFT when it uses FIFO within
each of its two queues, versus that under a single queue
employing FIFO. We assume strict, preemptive priority be-
tween the high and low priority queues and do not place any
limit on the buffer size of either queue.

Recall that S ~ P,(.), S, ~ Pn(.) and S; ~ Pi(.) are,
respectively, the size distributions of a generic flow, a high-
priority flow and a low-priority flow. Let D;, and D; denote
the delay of a high-priority flow and a low-priority flow,
respectively.

When all flows are queued at a single FIFO queue, by the
Pollaczek-Khintchine formula [22], the mean waiting time of

each flow (short or long) equals ;ﬁ(f;)), where p = AE(S).
The mean delay for each of type of flow is easy to compute

and is stated in the proposition below.

PROPOSITION 1. The short-flow and long-flow average de-
lays in an M/G/1 FIFO queue are as follows:
Eriro(Dyn) = E(Sp)+AE(S?)/2(1 - p), and
Errro(D)) = E(S)+ AE(S%)/2(1 — p),
where p = AE(S).

We now consider the mean delays under SIFT.

PROPOSITION 2. The short flow (high priority) and long
flow (low priority) average delays in an M/G/1 queue with
a preemptive-resume discipline, and FIFO within each class
are as follows:

Estrrriro(Dy) = E(Sk) +AE(S7)/2(1 — pr), and
AE(S?) E(S)
20 =pr)A=p) (1 —=pn)’

Esirr,riro(Dr) =

where pr, = A E(Sh).

Proof: Follows directly from Chapter 10 in [22]. [ |

Note that the average delay for the high priority flows
under SIFT (Proposition 2) involves the second moment of
the high priority flows, whereas in the single queue FIFO
(Proposition 1) it involves the second moment of the entire
distribution, which is very high for heavy-tailed distribu-
tions. Hence, SIFT makes a large reduction in the aver-
age delay of short flows. Also note that Esrrr,rrro(D;) =
Eriro(Dy)/(1—psn). Therefore, the average delay for a long
flow under SIFT is worse by a factor (1—1ph) than under a
single FIFO.

A quantitative sense for the above formulas may be ob-
tained from Figure 4. The values of the parameters are

chosen as: m =1, M = 10%, o = 1.1, and p = 0.01. The
maximum value of the load, p, equals 0.9986.

With this parameter choice, 97.2% of the flows are short.
As evident from the plot, SIFT with FIFO queues yields
orders of magnitude lower delays for short flows without
noticeably increasing the delays of long flows. Its overall
average delay is significantly lower than that of FIFO.

3.4 Delay under SIFT with PS queues

Let us now consider the case where each of the two queues
in SIFT uses PS as its service discipline. We will compare
the average delays obtained in this case with the average
delays under a single PS queue.

ProPOSITION 3. The short flow and long flow average de-
lays in a single M/G/1 PS queue are as follows:

Eps(Dy) = E(Sn)/(1—p), and
Eps(Di) = E(S)/(1-p).

Proof: It is well known that the expected delay of a flow
of size z under PS equals z/(1 — p) (see, for example, [22]).
The result follows by averaging over the appropriate sizes.
|

To the best of our knowledge, there is no known expression
for the average delay of the low priority jobs in an M/G/1
queue with strict, preemptive priorities, and that uses PS
within priority classes. In the following proposition we will
derive a simple approximation to this expression using a very
similar methodology to that used in Chapter 10 of [22] for
the FIFO case.

We first state the following useful lemma whose proof can
be found in Chapter 8 of [22]:

LEMMA 1. The ezxpected duration of an exceptional first
service busy period (EFSBP), Be, for an M/G/1 queue with
an exceptional first service Se, ordinary service S and traffic
intensity p = AE(S) equals

E(B:) = E(S:)/(1 = p). (5)

PROPOSITION 4. The average delays of short (high pri-
ority) and long (low priority) flows in an M/G/1 queue
with preemptive-resume priority discipline, and that uses PS
within each priority class are:

Estrr,ps(Dr) = E(Sw)/(1—pr), and
E(S) M E(S?)
(1=p)  2(1—pn)*

Esrirr,ps(Dy) =

Proof: As far as the high priority flows are concerned, this
system is the same as a standard M/G/1 queue with PS,
where the only traffic that matters is the short flows. The
average response time for these flows is therefore E(Sy)/(1—
Ph)-

Let T; be the duration of time from when a tagged low
priority flow arrives to the system until it is serviced for the
first time, and R; be the duration of time from when it is
serviced for the first time until it completes service. Thus,
D, =T+ R.



T; is the first time the system becomes clear of high pri-
ority flows after the tagged low priority flow arrived to the
system. T is therefore an EFSBP. The exceptional first ser-
vice is the time it takes to empty the high-priority work, V},,
seen by the tagged flow upon arrival. The relevant traffic
intensity is py, since it is the new high priority flows that ex-
tend the busy period. Now, for any work conserving queue
discipline, V}, is the same with that under FIFO. Hence, by
Pollaczek-Khintchine, E(Vi) = A E(S7)/2(1 — pr). There-
fore,

2
(L—=pr)  2(1—pn)’

R; can begin only when the system is clear of high priority
flows, and ends when the tagged flow has finished service
and the system is clear of high priority flows. So R; is also
an EFSBP with exceptional first service equal to the time
the tagged flow spends being served, and relevant traffic
intensity p; as before.

The time spent by a low priority flow being serviced would
have expected value E(S;)/(1 — pi), where p; = AE(Si), if
the server were working at rate 1. ®> However, because of the
preemptive priorities, the server works on the low priority
flows at a rate (1 — pr). So, the mean time spent by a low

. . . E(S
priority flow being serviced is m, and

E(S) 1 _ B(S)
A= (/L =pn) (L=pr)  (1=p)

The result is now obtained from combining Equations (6)
and (7).

We use the formulae from Propositions 3 and 4 to plot the
short-flow and long-flow average delays under a single PS
queue, and under SIFT with PS queues. We also average
over the two classes of flows to obtain the overall delay for
both schemes. Figure 5 plots the results for 0 < p < 1,
m =1, M = 105 and a = 1.1. As before, 97.2% of the
flows are short, and the rest are long.

SIFT is significantly better than PS for short flows under
heavy load. This is expected since the average delay for
the high priority flows under PS is larger by a factor (1 —
pr)/(1—p) than under SIFT, and this factor is very large for
p close to 1. The performance of the two schemes for long
flows is very similar. Finally, SIFT performs better than PS
with respect to overall delay at all loads, though the relative
gains are not as large as they were in Section 3.3.

3.5 Closeness to SRPT

It is interesting to investigate how far SIFT is from SRPT.
To this end, we evaluate the overall average delay under
SRPT using the formulas derived in [16] for the expected
response time of a flow of size z. We also evaluate the short-
flow, respectively long-flow, average delay under SRPT by
averaging the expected response time of a flow of size = over
the size distribution of short flows (Equation (4)), respec-
tively long flows (Equation (3)).

Figure 6 plots the short-flow, long-flow and overall average
delay under SIFT with FIFO queues, and SRPT, for the
same parameters as before. The corresponding results for

E(R) =~ (7

5Notice that here we ignore the accumulation of low priority
flows while the server works on high priority flows, hence the
derived expression is approximate. For a way to take this
into account, see Section 4.7 of [14].

Figure 8: Network topology.

single-queue FIFO are also presented for comparison. SIFT
is quite close to SRPT for the short flows and both are
orders of magnitude better than FIFO. In terms of overall
average delay, SIFT performs somewhere in between the two
other schemes. For small p it is closer to SRPT, and for
large p it is closer to FIFO. It is interesting that SRPT
does a lot better than SIFT for long flows. This counter-
intuitive result is actually expected for the following reason:
under both schemes, long flows are only serviced after short
flows, but among long flows, SIFT uses FIFO which yields a
much larger average delay than SRPT. Figure 7 shows the
corresponding plots for SIFT with PS queues, single-queue
PS, and SRPT.

It is important to recall that the implementation com-
plexity of SIFT is far less than that of SRPT. This comes at
the cost of performance; one cannot reasonably expect the
performance of SIFT to be comparable to that of SRPT for
all flows.

4. SIMULATIONS

This section evaluates the performance of SIFT in an
Internet-like environment using ns-2 simulations [17]. Fig-
ure 8 shows the topology we use. There are n source nodes,
m destination nodes, and two internal nodes, R; and Ra.
The link capacity and the propagation delay between the
source/destination nodes and internal nodes will vary from
experiment to experiment. The capacity of the link between
nodes R; and R, is 10Mbits/s and the propagation delay of
this link is set to 0.1ms. SIFT is deployed on this link.

The two queues of SIFT and the strict priority mechanism
between them is implemented using the CBQ functionality
of ns-2. We also run simulations where the low priority
queue is guaranteed a proportion of the link capacity. We
call this scheme SIFTapw. Each of the two queues use
either DropTail or RED. Their size is set to 100 packets.
When SIFT is not used, the corresponding single queue has
size equal to 200 packets. Throughout the experiments we
use a sampling probability equal to 0.01.

The traffic is generated using the built-in sessions in ns-2.
300.000 web sessions are generated at random times at each
experiment, each session consisting of a single object. This
object is called a flow in the discussion below. All flows
are transfered using TCP. Each flow consists of a Pareto-
distributed number of packets with sizes varying between 1
and 108, and shape parameter equal to 1.1. (This is moti-
vated by the well-known result that the size distribution of
Internet flows is heavy-tailed, see, for example, [2, 21].) The
packet size is set to 1000 bytes.

By varying the rate by which sources generate flows, we
study the performance of SIFT at various levels of conges-
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Figure 9: Average delay of short flows (95% of all
flows) as a function of the load.

tion. In the rest of the section we characterize the conges-
tion level of each experiment by the traffic intensity in the
bottleneck link, defined as p = AE(S)/C, where X is the
aggregate average arrival rate, E(S) is the average flow size,
and C is the link capacity. The percentage of drops in the
experiments varies from 0 to 9% depending on the load.

4.1 Basic setup

We start with the simplest topology, where we have just
one source destination pair (n = m = 1). The link capacities
between the source/destination and the internal nodes are
100Mbits/s and the propagation delay of these links equals
1ms.%

We first present results when RED is used. In this ex-
periment, we find that approximately 95% of all flows are
“short”, i.e., they are never sampled, and 5% of all flows are
“long”. (This fraction is, of course, a function of the sam-
pling probability as well as the job size distribution; we have
not attempted to optimize the sampling probability for the
best average delays.) Figure 9 compares the average delay of
the short flows with and without SIFT for p = 0.6, 0.7, 0.9,
1.2, and 1.5. It is evident from the plot that with SIFT, the
short flows can have a delay close to two orders of magnitude
less than without SIFT. Figure 10 shows that this gain does
not significantly increase the delay of the rest of the flows:
the average delay of long flows is at worst doubled under
SIFT. Finally, Figure 11 compares the overall average delay
of flows, and shows a 2x to 4x improvement, depending on
the load.

Figure 12 shows the short-flow, long-flow, and overall av-
erage delays when the queues use DropTail instead of RED.
The results show gains similar to the previous case.

Remark: It is worth mentioning that unequal partition-

In order to better observe the effect of SIFT on queue-
ing delay, we choose a small propagation delay here. This
makes queueing delay the dominant component of total de-
lay . Later in this section we also present results correspond-
ing to larger propagation delays.
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Figure 10: Average delay of large flows (5% of all
flows) as a function of the load.

ing of the total buffer space between the two queues might
yield better performance than setting B, = B; = B/2. For
example, because the high priority queue has strict priority,
one expects its buffer space requirement to be relatively low,
and there is no need to allocate B/2 buffer space to it.

Figure 13 plots the instantaneous queue sizes when Drop-
Tail is used and p = 0.9. It is evident that if the high priority
queue had a size of 50 instead of 100, the results would have
been identical. This is true not because the system is never
congested; the original queue does get full at some point in
time. For larger p, this is even more pronounced. For exam-
ple, for p = 1.2, the original and the low priority queues are
nearly always full, while the high priority queue has never
more than 60 packets. Interestingly, this is a general trend in
all experiments: the original 200-packet and the low priority
100-packet queue face similar levels of congestion, while the
high priority 100-packet queue faces significantly lower con-
gestion or no congestion at all. (Due to limitations of space
we don’t present more plots with queue dynamics.) Hence,
it is plausible that in addition to significantly reducing aver-
age flow delays, SIFT also leads to sizable buffer savings at
the packet level. Since the focus of this work is on reducing
delays, we leave as future work to further investigate SIFT’s
potential for buffer savings.

4.2 Guaranteeing bandwidth for long flows

We also run simulations where a fraction of the total link
bandwidth (10% in this particular experiment) is dedicated
to the low priority queues containing the long flows. This
ensures that long flows are not starved. Figures 9, 10 and
11 show that the performance of SIFTgpw is very similar
to that of SIFT which uses strict priority. As expected, the
average delays for long flows are smaller when bandwidth is
guaranteed to the low priority queue, and the average delays
for short flows are larger. It is evident that the difference
between the delays is small enough to be negligible. So, at
least on an average, we need not fear starvation for long
flows with SIFT. Alternatively, if it is a concern, we could

1.5



10 T T T T T T

—-— SIFT

—— Original

-
(=]
©

Overall average delay (sec)

10_2 1 1 1 1 1
0.7 0.8 0.9 1 1.1

Load ( p)

1.2 1.3 1.4

Figure 11: Overall average delay as a function of the
load.

implement SIFT¢ew .

Note that under this scenario packet reordering is possible.
This occurs when the last packet to join the high priority
queue from a long flow, leaves the router after subsequent
packets of the flow. However, this is very unlikely to occur
since subsequent packets join the low priority queue, and
this queue is not only larger on average, but also is serviced
by a very small fraction of the total link capacity.

4.3 Multiple propagation delays

It is known [1] that when several large TCP flows share a
link, bandwidth is shared between them in inverse propor-
tion to their round trip times (RTTs). Given this, one worry
might be that SIFT in conjunction with TCP would exces-
sively penalize large flows with large RTTs, and drastically
reduce their throughput. To investigate this, we run simula-
tions with three source destination pairs (n = m = 3). For
the first source-destination pair, we use a propagation delay
of 0.1ms on the links from source/destination to the internal
nodes; 1 ms on each link for the second, and 5 ms for the
third pair. The speeds of these links are all 100Mbits/s.

It is clear from Figures 14, 15 and 16 that each of these
sets of flows has lower average delays under SIFT. Of course,
the values of these delays are higher for the flows with large
RTTs than for the ones with small RTTs, but SIFT consis-
tently provides gains for all three classes of flows.

4.4 Fast and slow flows

Suppose now that the following two kinds of flows share
a link: Turtles, with low bit rates, and Cheetahs, with high
bit rates. Note that it is possible to have a large turtle and
a small cheetah; the former is a large-sized flow from which
packets arrive at a small rate, while the latter is a small-sized
high rate flow. One worry might be that in this situation
SIFT would further slow down the already slow, large tur-
tles, since the sampling mechanism here is packet based, and
hence responds only to flow sizes without taking flow rates
into account. A temporal (rather than a packet-based) sam-
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pling scheme, like the one suggested in [5], could be used
if differentiation based on rate is also desirable. A combi-
nation of packet-based and temporal sampling can protect
large turtles from being further slowed down. Another ben-
efit of this setup is that it could identify small turtles whose
rate is so slow that there is no delay gain from forwarding
their packets in the high priority queue.

To study the effect of SIFT on average delays for turtles
as well as cheetahs (in particular, to see how badly a packet-
based sampling scheme would hurt large turtles), we use a
simulation scenario with two source-destination pairs, both
passing through the bottleneck link. One link, on which
turtle flows arrive, has a speed of 5Mbits/s, and the other,
on which cheetah flows arrive, runs at 495Mbits/s. The
speed of the bottleneck link, as always, is 10Mbits/s. We
ensure, by appropriately choosing the rate for the two sets
of flows, that the turtles’ link is never congested.

From Figure 17, it is clear that the average delays for
turtles with SIFT is less than that without SIFT. That is,
sharing a link with the cheetahs under SIFT does not in-
crease the delays for the turtles, as feared earlier. Further,
Figure 18 shows that the average delays for the cheetahs also
reduces with SIFT, and the gain is greater for the cheetahs
than for the turtles. In both cases, SIFT leads to lower aver-
age delays overall, and an order of magnitude improvement
for most flows.

4.5 Many slow links

Finally, we consider the case where we have a large num-
ber of slow links feeding the bottleneck link. This is meant
to capture the case, for example, when a large number of
users connect to the Internet through slow modem links.
We simulate this scenario using 10 source destination pairs,
with each input and output link having a speed of 3Mbits/s.
The bottleneck link has a speed of 10Mbits/s, as usual. In
this case also, Figure 19 shows that using SIFT leads to sig-
nificant improvements in performance for most flows, at the
expense of only a small increase in delay for the large flows.

IMPLEMENTATION AND DEPLOYMENT

In this section we asess the implementation requirements
of SIFT and comment on its deployability.

Compared to a traditional linecard, a SIFT-enabled linecard
requires the following additions: (i) maintaining two queues
instead of one in the physical buffer, (ii) implementing strict
priority between the two queues, (iii) sampling packets at
the time of their arrival, (iv) maintaining the flow id of the
sampled packets, and (iv) evaluating whether a flow is sam-
pled or not.

The first two requirements are clearly very simple. Main-
taining two queues only requires a second linked list, and
strict priority only requires to check if the head of the list
corresponding to the high priority queue is null or not. Also,
note that circular buffers may be used to make possible to
“lend” unused buffer space to the other queue. The last
requirement is also very easy to fulfill. Standard hashing
schemes can be used to evaluate if a flow is sampled or not
at a very low cost.

Sampling packets is also very inexpensive. A pseudo-
random number generator can be used to decide whether
to sample or not, or one may choose to “sample” every, say,
100" packet. The later is a common practice to avoid ran-
dom sampling; for example, it is used in Cisco’s Netflow

S.



monitoring tool [4].

Keeping the id of every sampled flow might be problem-
atic if the number of sampled flows is too large. However,
once a flow terminates, its flow id is removed. This keeps
the number of active sampled flows small. In all our simula-
tions this number was never more than a couple of thousand
flows. More specifically, Table 1 reports the number of sam-
pled flows (state size) for the simulation scenarios that were
presented in Section 4 for various loads. The second column
is the average state size over various loads (p varies from
0.6 to 1.5) and the third column is the maximum state size
(achieved for p = 1.5 in all cases). Recall that in all the
scenarios, the bottleneck link capacity equals 10Mbits/sec,
and the sampling probability equals 0.01.

( Experiment | Average state | Maximum state ||
Basic 797 1504
Various RTT's 812 1537
Fast and slow flows 755 1314
Many slow flows 806 1510

Table 1: State size (number of active sampled flows)
in the various simulation scenarios.

A router that deploys SIFT should have a mechanism to
identify which flow each packet belongs to. Such mecha-
nisms are widely available today in commercial routers and
many such routers operating at all but the fastest links have
them activated. Notice that in accordance with usual prac-
tice [6, 8, 9], packets are said to belong to the same flow if
they have the same source and destination IP address, and
source and destination port number. A flow is “on” if its
packets arrive more frequently than a timeout of some sec-
onds. This timeout is usually set to something less than 60
seconds.

SIFT-enabled nodes should be placed before bottlenecks,
for example, at access routers or wireless gateways. We
expect one such node per path to be enough for reducing
delays. More such nodes per path might penalize dispro-
portionally long flows. Finally, a SIFT-enabled node cannot
reside in places on the network where it is not possible to
keep track of flows, for example, in front of very fast links at
the core. Since these links are over provisioned and rarely
congested, this is not a limitation.

6. CONCLUSIONS

Motivated by the heavy-tailed sizes of Internet flows, we
propose SIFT, a scheme that behaves similarly to SRPT in
the sense that it services shorter flows before longer flows.
Using queueing theory, we show that the proposed scheme
reduces average delay by orders of magnitude in compari-
son to FIFO or PS, and performs close to SRPT for a vast
majority of flows.

The scheme is simple and easy to implement in practice.
Extensive network simulations reveal that SIFT can reduce
the average delay of short flows between one and two orders
of magnitude, and the overall average delay between two
and ten times, without increasing the delay of long flows by
more than a factor of two or three.

Future work: We plan to perform simulations in more
complex networks with multiple congested links, study the

extend at which SIFT can lead to buffer savings, and inves-
tigate in more detail the implications of SIFT to congestion
control.
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Figure 16: Average delays for small flows, large flows, and all flows with RTT = 20.2ms.
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Figure 17: Average delays for small flows, large flows, and all flows for turtles (link speed 5Mbits/s).

Average delay for small flows (~96%) (sec)

0

—e— SIFT
—— Original

AN

0.6 0.7 0.8

1 1.1 1.2 13 1.4 1.5
Load ( p)

0 10

0

Average delay for large flows (~4%) (sec)
an _‘_
Overall average delay (sec)
8\ ae

—e— SIFT
—— Original

1.2 13 1.4 1.5

—e— SIFT
B —— Original
0.6 0.7 0.8 0.9 12 13 14 15 0.6 0.7 0.8

[EE ERRRE
Load ( p) Load (p)

Figure 18: Average delays for small flows, large flows, and all flows for cheetahs (link speed 495 Mbits/s).

Average delay for small flows (~95%) (sec)

0

—e— SIFT
—— Original

0.6 0.7 0.8 0.9 1.2 13 1.4 1.5

1 1.1
Load ( p)

Figure 19: Average delays for

o 10

0

Average delay for large flows (~5%) (sec)
an _‘_
Overall average delay (sec)
5\ aa

—~ SIFT ’W‘
- —— Original L —+— Original
0.9

0.6 07 0.8 1 11 1.2 13 14 15 06 0.7 0.8 0.9 1 11 1.2 13 1.4 1.5
Load ( p) Load ( p)

small flows, large flows, and all flows (many slow links case).



