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Abstract

The increasing size of web-server farms and the sheer volume of HTTP

requests, makes hard to collect performance measurements and monitor the

state of a farm in real time. Further, it increases the cost of a bad algorithmic

or architectural decision, while predicting the performance of new algorithms

and architectures is also hard.

We propose a way to side-step these problems, by intelligently combining

small-scale experiments and analysis. Our hypothesis is this: if we take a

sample of the incoming requests, and feed it into a suitably scaled version of

the web farm, we can extrapolate from the performance of the scaled system

to that of the original.

Our main �nding is that when we suitably scale a web-server farm, then

performance measures such as mean response time and throughput are left

virtually unchanged. We show this using experiments and simple analysis.

Keywords: Performance prediction, Web Farms.
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1 Introduction

Monitoring the performance of a large system like a web-server farm, and pre-

dicting its behavior under novel algorithms, architectures and load conditions are

important research problems. Operators �nd it useful to look at a live represen-

tation of their entire farm: this lets them identify potential problems at a glance,

ensure reliable operation, and monitor their service level agreements. Researchers

like to evaluate the e�ect of design changes on performance. As a result, these

problems have inspired research [2, 4] and industrial products [10].

Large web-server farms consist of thousands of servers and may handle millions

of HTTP requests per second. While operators are just about able to collect de-

tailed traÆc statistics, the very detail and volume make them nearly impossible to

analyze. As a result, performance prediction, monitoring, and performance mea-

surement are rendered increasingly complicated. To keep the size of web traces

manageable, researchers record traces corresponding only to a couple of minutes

real time. Hence, trace-driven simulations cannot accurately predict the perfor-

mance of novel algorithms.

To solve these problems, in this paper we explore a new method which combines

sampling, small-scale experiments, and simple analysis. Our basic hypothesis,

which we call SHRiNK1, is this: if we take a sample of the traÆc, and feed it into

a suitably scaled version of the system, we can extrapolate from the performance of

the scaled system to that of the original. Note that SHRiNK may apply to other

large-scale systems as well, e.g. to IP networks [8, 9].

This has two bene�ts. First, by relying only on a sample of the traÆc, SHRiNK

reduces the amount of data we need to work with. Second, by using samples of

actual traÆc, it short-cuts the traÆc characterization and model-building process

while ensuring the relevance of the results.

This approach also presents challenges. At �rst glance, it appears optimistic: might

not the behavior of a large farm with many servers be intrinsically di�erent to that

of a smaller one? Somewhat surprisingly we �nd that one can mimic a large farm

using a suitably scaled-down version. The key is to �nd suitable ways to sample

the traÆc, scale down the farm, and extrapolate performance. In particular, we

�nd that when we suitably scale a web-server farm, then performance measures

such as mean response time and total throughput are left virtually unchanged.

1SHRiNK: Small-scale Hi-�delity Reproduction of Network Kinetics
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Practitioners sometimes use such scaling techniques in an ad-hoc manner when

they want to test a novel architecture or new software in a large farm. However,

to the best of our knowledge there is no systematic study of the scaling properties

of todays web-servers and web-server farms. We attempt to do such a study, give

guidelines on how to scale a farm, and explain the reasons why scaling works using

simple analysis.

2 Scaling Web Server Farms

Load-Balancing

Sampling

A(t)

“αA(t)” αN servers

speed s

N servers
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Load-Balancing

Load-Balancing
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Figure 1: Scaling a web server farm:2 (i) scaling the number of servers, (ii) scaling

the speed of the servers.

Consider a web server farm with N servers each having speed s, as in Figure 1.

Sample in an i.i.d. fashion with probability � the requests destined for the original

farm. (We elaborate more on sampling in the following sections, where for every

experiment we discuss whether sampling takes place at the session, document, or

embedded request level. A web browsing session is a series of document requests

initiated by a user, with small silent periods between consecutive requests. Each

document request usually initiates a bunch of embedded requests. These requests

are usually for images embedded in the document.)

Feed the sampled traÆc into a farm consisting of either (i) a fraction � of the

original web servers, or (ii) the same number of servers each having speed �s (see

2This is a simpli�ed picture of a farm, since the application-servers, the databases, and the

switches used to interconnect the various components are absent.
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(i) and (ii) of Figure 1). We wish to investigate how close the average response

time, the server throughput, and the capacity (maximum throughput) in the scaled

system are to those in the original system.

3 Scaling the Speed of Servers

Web-server 1

Web-server 2

Client

Client

Client 1

Client 2

(i)

(ii)

Web-server

Figure 2: Experimental setup: (i) the unscaled system, and (ii) e�ectively running

a server at a fraction � = :5 the speed, by running two servers on a single machine.

In practice, it is not straightforward to simply run a server at a slower speed.

Instead, we use the setup shown in Figure 2: Three Linux machines, con�gured

with a Pentium II at 300MHz and 256MB of RAM, are connected to a 100Mbits/sec

switch. A variable number of Apache 1.3.9 [1] web servers is hosted at one of the

machines, and the other two machines run Surge [3] HTTP traÆc generators.

Running two web servers on a single machine has the e�ect of halving the speed

of each: when the load is light, speed is not a constraint either for the two web

servers or for one at half the speed; when load is heavy, each of the two servers

runs most of the time with its maximum number of concurrent httpd processes, so

they share the speed of the machine between them equally.

We compare the average response time of the following two systems:
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I. Original system, illustrated in Figure 2(i): The hosting machine hosts a single

web server, which serves requests from both client machines.

II. Scaled system, illustrated in Figure 2(ii): The hosting machine hosts two web

servers, each listening on a di�erent IP address. Each of the client machines

generates requests destined for only one of the servers. One client-server pair

is used only to consume half of the resources while the other pair is used to

record the results for the scaled system.

The web �les of both systems are generated using Surge, con�gured with the default

parameters. Surge generates web traÆc by creating a number of userequivalents,

each of which generates HTTP requests in the following manner: First, an HTTP

object is requested. Objects consist of a set of embedded requests and model

a user's \click", i.e. a request for a web document. Then, the user equivalent

waits till it receives the responses for all the embedded requests. After that, it

sleeps for some random time. Finally, a new object is requested and so on and so

forth. 3 Notice that in the scaled system described above, we essentially sample

user equivalents.

We have performed experiments with HTTP/1.0, HTTP/1.1 without pipelining,

and HTTP/1.1 with pipelining. The results are similar, so we only show results

for the latter case. Further, we show results for the cases where the bottleneck is

the maximum number of concurrent httpd processes, or the server CPU. Unless

otherwise stated, the Apache servers use the default con�guration parameters.

3.1 Experimental Results

Apache's default limit on the number of concurrent httpd processes is 150. In the

scaled system, we set a limit of 75 for each of the two servers. Figure 3 plots the

mean response time of HTTP objects as a function of the normalized load, that

is, the load multiplied by ��1. The load is measured in user equivalents. Figure

4 is the same plot zoomed in. We see that scaling the system leaves the mean

response time virtually unchanged. (So, for example, the mean response time

for the original system serving 200 user equivalents is the same as that for the

scaled system serving 100 user equivalents.) Figure 5 shows the normalized server

throughput and capacity, that is, the server throughput and capacity multiplied

3User equivalents are like web sessions with an important di�erence: they are all created at

the beginning of the experiment and terminate at the end, instead of arriving and terminating

at random times.

5



0 50 100 150 200 250 300
0

0.2

0.4

0.6

0.8

1

1.2

1.4

α−1 load (no. of user equivalents)

m
ea

n 
re

sp
on

se
 ti

m
e 

(s
ec

)

α=1: solid, o
α=0.5: dotted, +
α=1: solid, o
α=0.5: dotted, +
α=1: solid, o
α=0.5: dotted, +

Figure 3: Average response time, when the bottleneck is the number of concurrent

processes.

by ��1, as a function of the normalized load. Again, scaling the system changes

these quantities by very little.

To make the CPU the bottleneck, we recompile Apache to allow a large number of

concurrent httpd processes, and set their maximum number to 800 in the original

server and to 400 in each of the scaled servers. Figures 6 and 7 show the average

response time and the normalized server throughput as a function of the normalized

load. Again, scaling the system leaves these quantities virtually unchanged. Notice

that, as expected, the server capacity is increased due to allowing more concurrent

connections.

An intuitive way to see why performance scaling occurs in these experiments is

the following: Let s be the speed of the server and n be the number of concurrent

httpd processes in the original system. Then, since in the scaled system there are

two web servers hosted on the same machine that receive half of the traÆc each,

each server has speed s=2, and the number of concurrent httpd processes on each

server is n=2. Hence, since CPU operates in a processor sharing manner, each job

gets the same service rate in the two systems and mean response times remain

unchanged.
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Figure 4: Average response time, when the bottleneck is the number of concurrent

processes (zoomed in).
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Figure 5: Server throughput, when the bottleneck is the number of concurrent

processes.
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Figure 6: Average response time, when the CPU is the bottleneck.
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Figure 7: Server throughput, when the CPU is the bottleneck.
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4 Scaling the Number of Servers

We investigate the validity of SHRiNK in server farms when one scales the number

of servers of the farm.

Consider the farm illustrated in Figure 1. When servers are identical, it is straight-

forward to scale their number. If there areK types of servers, we simply scale down

by the same proportion the servers of each type.

Sampling is more involved. There are two levels at which one may perform the

sampling, namely at the object or the user-equivalent level. 4 When HTTP1.1 is

used, it is important to sample at the same level at which load balancing takes

place. To see this, suppose load balancing takes place at the user-equivalent level,

but sampling takes place at the object level (see Figure 1). Then, since HTTP1.1

maintains persistent connections between the clients and the servers, a server will

have more concurrent connections in the scaled system than in the original system.

(This is because there are more user equivalents per server in the scaled system

than in the original.) We perform experiments and verify that SHRiNK is valid

when load-balancing and sampling take place at the same level, while when this

constraint is not met the mean response time in the two systems di�er. This

is not an issue when HTTP1.0 is used, since HTTP1.0 does not use persistent

connections.

We illustrate the above points by presenting some experimental results. In the

experiments we use eight Linux machines con�gured with a Pentium III at 550MHz

and 384MB of RAM, connected to a 100Mbits/sec switch. Machines acting as

servers host one Apache 1.3.9 web server, and machines acting as clients run Surge

to generate HTTP requests.

4.1 Experimental Results

In the �rst experiment the clients use HTTP1.1. Load-balancing is a simple round-

robin scheme. Both load-balancing and sampling take place at the user-equivalent

level. We compare the average response time of the following two systems:

I. Original system, illustrated in Figure 8(i): Four machines act as servers, and

4Sampling at the embedded request level would not work well because the sample doesn't

capture the structure of the traÆc.
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Figure 8: Experimental setup using HTTP1.1: (i) the unscaled system, and (ii)

scaling the number of servers and sampling incoming user equivalents, � = :25.

four as clients.

II. Scaled system, illustrated in Figure 8(ii): The user equivalents of the four

clients are sampled in an i.i.d. fashion with probability 1/4 and are directed

to a single server machine.

Figures 9 and 10 show the average response time and the normalized server through-

put as a function of the normalized load. Again, scaling the system leaves these

quantities virtually unchanged. Note that we treat the farm of the four servers as

a single entity. The normalized load is the total normalized load directed into the

farm, and the normalized throughput is the sum of the normalized throughputs of

the servers of the farm.

Intuitively, performance scaling occurs in this experiment because the total number

of user equivalents directed to the stand-alone server of the scaled system is the

same with the total number of user equivalents directed to each of the servers of

the original farm.

In the second experiment the servers receive HTTP1.0 requests. In practice, this

happens either when clients use HTTP1.0., or more frequently due to a proxy that

10



800 1000 1200 1400 1600 1800 2000 2200 2400
0

0.05

0.1

0.15

0.2

0.25

α−1 load (no. of user equivalents)

m
ea

n 
re

sp
on

se
 ti

m
e 

(s
ec

)

α=1: solid, o
α=0.25: dotted, +

Figure 9: Average response time, when sampling user equivalents.
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Figure 10: Server throughput, when sampling user equivalents.
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may reside at the entry point of a farm and convert HTTP1.1 requests to HTTP1.0

requests.

(The rational of using this proxy is the following: The persistent connections that

HTTP1.1 maintain reduce the average response time, when the network delay

between the client and the server is large. However, if the client and the server are

connected at the same LAN, it is faster to use HTTP1.0 because as the number

of clients increases the overhead of persistent connections is large. Hence, using

a proxy at the entry point of a farm to convert HTTP1.1 requests to HTTP1.0

requests and visa versa, exploits the advantages of both versions of the HTTP

protocol.)

Clients

(i)

(ii)

Web-servers

Load-Balancing

Sampling
objects, w.p. ½

Figure 11: Experimental setup using HTTP1.0: (i) the unscaled system, and (ii)

scaling the number of servers and sampling incoming HTTP objects, � = :5.

Load-balancing is again a simple round-robin scheme at the user-equivalent level,

while sampling takes place at the object level. 5

We compare the average response time of the following two systems:

I. Original system, illustrated in Figure 11(i): Two machines act as servers,

5Due to the close-loop manner by which Surge generates requests, when an object is not

sampled, we make the corresponding user equivalent to sleep for some time to account for the

object service time and the sleep time that it would wait if the object were requested.
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Figure 12: Average response time, when sampling HTTP objects.

and six machines act as clients. (We want to be able to saturate the servers.

In the previous experiment four client machines are enough to achieve that,

since HTTP1.1 is used and we arti�cially saturate the farm by setting the

maximum number of concurrent connections to 500. Here, since HTTP1.0

is used, we need to saturate the CPU utilization of the server machines and

hence we need more client machines.)

II. Scaled system, illustrated in Figure 11(ii): The HTTP objects of the six

clients are sampled in an i.i.d. fashion with probability 1/2 and are directed

to a single server machine.

Figures 12 and 13 show the average response time and the normalized server

throughput as a function of the load. 6 Again, these quantities remain virtu-

ally unchanged after scaling. Note that we treat the farm of the two servers as a

single entity.

6The number of user equivalents sending requests at the two systems is now the same hence

the horizontal axis is not multiplied with ��1 as before. It is the number of objects and requests

directed at the two systems that di�er due to object sampling.
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Figure 13: Server throughput, when sampling HTTP objects.

4.2 Simple Analysis

Consider the special case where the servers of the original farm operate indepen-

dently and one samples web sessions. If the load-balancer assigns sessions to servers

uniformly at random then SHRiNK is valid. To see this, note that web sessions

are Poisson[5] and let the session arrival rate be �. Sample a proportion � of the

sessions, and keep a proportion � of the N servers in the original web farm. Then

the arrival process to each server in the original system is Poisson with rate �=N ,

and the arrival process to each server in the scaled system is Poisson with the same

rate ��=�N = �=N . Hence, mean response times are the same.

Is this analysis relevant to practice? Web servers may not be independent, either

by virtue of sharing resources such as databases and bandwidth, or due to load

balancing. However, usually databases and bandwidth are not the bottleneck on

a farm. Further, the most commonly used load-balancing scheme is round-robin.

Hence, the dependencies among web servers are usually insigni�cant. Another ele-

ment of real web farms that is missing from our experiments is large network delays

and packet losses due to slow or congested connections between the clients and the

servers. Recently [7], researchers have shown that these factors may signi�cantly

a�ect server performance and response times. We believe the validity of SHRiNK
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will not be a�ected by wide-area conditions, since both the original and scaled

web-farms face the same conditions.

The analysis above can be also used to shed light on the experimental results when

one samples HTTP objects. First, the round-robin load balancing mechanism that

is used does not introduce signi�cant dependencies among the servers. Second,

the sampled traÆc is close to Poisson. To see this, note that HTTP objects are

generated by independent user equivalents. Further, since the sleep time is usually

signi�cantly larger than the transfer time, the object interarrival times can be

considered more or less independent. Hence, the aggregate object arrival times are

close to Poisson, and the analysis goes through.

As a �nal comment, note that Figure 1 implies that one fast server is equivalent to

many slow servers. This is not always the case. For example, if incoming requests

are serviced in a FIFO manner, the fast single server can be clogged up by a

large job and hence give larger mean transfer times than the many slow servers,

especially when service requirements are heavy-tailed [6]. However, web servers

service requests in a processor sharing manner and server clogging does not occur.

5 Conclusions and Future Work

In this paper we have presented a method, SHRiNK, to reduce the complexity

of web-server farm performance prediction and measurement. Our �nding is that

when one suitably samples the incoming HTTP requests and appropriately scales

the farm resources to create a small-scale replica of the original farm, performance

measures such as mean response time, throughput, and the capacity of the farm

can be accurately predicted by the small-scale replica. Hence, researchers and

practitioners may experiment with smaller-scale prototype farms and extrapolate

the performance of larger-scale farms. To address some limitations of our experi-

mental testbeds, we plan to gain access to a real large-scale farm and test SHRiNK

there.
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