
TECHNICAL REPORT CENG-2005-03 1

Efficient Asynchronous Bundled-data Pipelines for
DCT Matrix-Vector Multiplication

Sunan Tugsinavisut,Youpyo Hong, Daewook Kim, Kyeounsoo Kim and Peter A. Beerel,

Abstract— This paper demonstrates the design of efficient
asynchronous bundled-data pipelines for the matrix-vector mul-
tiplication core of discrete cosine transforms (DCTs). The archi-
tecture is optimized for both zero and small-valued data, typical
in DCT applications, yielding both high average performance
and low average power. The proposed bundled-data pipelines
include novel data-dependent delay lines with integrated control
circuitry to efficiently implement speculative completion sensing.
The control circuits are based on a novel control-circuit template
that simplifies the design of such nonlinear pipelines. Extensive
postlayout back-end timing analysis was performed to gain con-
fidence in the timing margins as well as to quantify performance
and energy. Comparison with a synchronous counterpart suggests
that our best asynchronous design yields 30% higher average
throughput with negligible energy overhead.

Index Terms— Asynchronous pipelines, bundled-data pipelines,
control circuit templates, discrete cosine transforms, matrix-
vector multiplication, precharged full buffer, true four-phase full
buffer.

I. I NTRODUCTION

T HE two-dimensional (2-D) discrete cosine transform
(DCT) and inverse DCT (IDCT) are essential tasks in

several data compression and decompression standards, such
as H.261, H.263, JPEG and MPEG [1]. With the simulta-
neous increase in demand for faster data rates and longer
battery lifetimes in portable multimedia devices, low power
and high-performance implementations of the DCT and IDCT
are increasingly important. A core operation within both of
these applications is the multiplication of a constant matrix
by an input vector, i.e., a matrix-vector multiplier, typically
implemented with a set of multiply-accumulation units [1]–
[4].

Many DCT/IDCT synchronous and asynchronous designs
have been explored targeting high-performance [2], [3], [5],
low-power [6], [7] or both [8]. Xanthopoulos et. al. observed
that typically a significant fraction of IDCT input data is
zero-valued [4]. This motivated the development of a data-
driven IDCT that skips operations involving zero-valued data,
thereby saving power. To also take advantage of small-valued
data, Canel et. al. and Nielsen et. al. proposed data com-
pression methods that maintain only significant data portions
and suppress the remaining insignificant portions [6], [7].
These designs yield low average power but, because they
are synchronous, offer no average-case performance benefit.
Lastly, Manohar [5] et. al. introduced an asynchronous width
adaptive data architecture that activates operations only in

This work was supported by a large-scale NSF ITR Award No.CCR-00-
86036.

significant data portions and adjusts the position of sign bit
dynamically. This architectural approach yields good average-
case performance and reduces power consumption, but the
representative implementation is based on the quasi-delay-
insensitive asynchronous design style which is known to be
area expensive.

We propose an area-efficient asynchronous DCT design
optimized for both zero and small numbers yielding both
good average-case power and performance. The key idea is
to partition the datapath into a staircase bit-sliced bundled-
data architecture in which groups of bit-slices involving only
sign-extension bits are dynamically turned off to save power.
We also propose efficient speculative completion sensing delay
lines with integrated control circuitry that activate shorter
delay lines when various bit slices are turned off, thereby
achieving high average-case performance. Lastly, we propose
three novel control circuit templates that efficiently handle
control of such complex nonlinear pipelines simplifying the
logic design problems. The first control template is a straight
forward adaptation from Lines’s precharged full buffer (PCFB)
[9] but suffers from large control overhead inherent in the
underlying handshaking protocol when applied to bundled-data
designs. The second control template, called the true 4-phase
full buffer (T4PFB), uses the true 4-phase protocol [10] to
significantly reduce this overhead. The last control template,
called the zero-overhead true 4-phase full buffer (ZOT4PFB),
completely hides the control overhead at the cost of more strict
timing constraints.

To quantify the advantages of our proposed designs, four al-
ternative controllers were designed: a full-custom synchronous
design with gated-clocking, an asynchronous design with
PCFB control, an asynchronous design with T4PFB control
and finally an asynchronous version with ZOT4PFB control.
All designs were laid out with an identical datapath in a 0.35
micron CMOS process.

Simulations at 3.3V and25oC with typical DCT input statis-
tics suggest that the best asynchronous design (ZOT4PFB)
has 30% higher average throughput with comparable en-
ergy consumption. This paper thus demonstrates that for
matrix-multipliers within DCTs, full-custom gated-clocking
may achieve similar power savings as that of asynchronous
techniques but that the asynchronous techniques can yield a
significant increase in average throughput not possible using
standard synchronous techniques.

The remaining of this paper is organized as follows.
Section II provides an overview of relevant background on
asynchronous design. Section III highlights the design and
analysis of the proposed control circuit templates and delay

TECHNICAL REPORT CENG-2005-03 2

ReceiverSender Req

Info (single rail)

Ack/En

ReceiverSender
Ack/En

Info (1-of-N)

(a) Bundled data channel

(b) 1-of-N channel

Fig. 1. Two types of asynchronous channels.

matching templates. Section IV describes the details of our
asynchronous matrix-vector multiplier, including a discussion
of the four different controllers adopted for comparison. The
performance-energy comparison of the designs is presented in
Section V, followed by some conclusions given in Section VI.

II. BACKGROUND

An asynchronous circuit typically consists of a set of
functional components that locally communicate using a set
of handshaking protocols across channels. A plethora of
asynchronous design styles exists which vary the size of
functional components, the parallelism in the handshaking
protocols, the data encoding across the channels, and the
degree of timing assumptions needed to ensure correctness.
In this section, we review asynchronous channels, as well as
linear and nonlinear pipeline architectures, including related
control circuit functionality and timing constraints.

A. Channels: bundled-data vs 1-of-N rail

A communication channel is a bundle of wires between
a sender and receiver and a protocol for communicating
information discretized into tokens (representing data, control,
or a mixture). In a bundled-data channel, as illustrated in Fig.
1(a), tokens are encoded using one wire per bit of information,
a request line (Req) is used to tell the receiver when the token
is valid, and an acknowledge line (Ack) is used to tell the
sender when the token has been received. In other words, the
data is bundled with the request line. In a 1-of-N channel, as
illustrated in Fig. 1(b), on the other hand, N wires are used to
encodelog2 N bits and no request line is needed. In particular,
a widely used form of 1-of-N encoding is 1-of-2 (also called
dual-rail encoding) in which two wires are used to encode
one bit of information. In 1-of-N encoding, also called one-
hot encoding, the validity of the data is encoded in the values
of the N wires; all zeros indicate that the bundle of wires is
reset and holds no token.

Both two and four-phase handshaking protocols exist across
communication channels. In this paper, we restrict ourselves
to four-phase protocols in which after the sender sends the

DPU

Lreq

Len

�
�

delay line (D)

CIs

lclk(s)

AC

��������

�� ��

Linfo

CIs : Conditional inputs

RinfoDPU
�
�

delay line (D)

CIs

lclk(s)

AC

��������

�� �� Rreq

Ren
req

en

info

Fig. 2. Bundled-data linear pipeline.

data (the first phase), the acknowledgement is asserted by
the receiver (the second phase). Next, the sender resets the
data (the third phase), followed by the receiver resetting the
acknowledgement (the fourth phase). If the acknowledgement
is active low, it is often referred to as an enable (En).

B. QDI versus bundled-data design styles

One common asynchronous design style maintains quasi-
delay-insensitivity (QDI) within pipeline stages and delay-
insensitivity (DI) communication between stages [9]. Within
a pipeline stage, the delay of any gate can be arbitrary but
some wire forks must be isochronic. Between pipeline stages,
however, 1-of-N rail signaling is used to obtain complete in-
sensitivity to variations in wire delay [11]. A recently proposed
QDI/DI implementation style based on circuit templates has
been developed for fine-grain nonlinear pipeline stages. These
templates simplify micro-architecture design, remove much of
the need for automated controller synthesis, and ease physical
verification requirements [9].

A second common design style is bundled-data design [12].
Fig. 2 shows an example of bundled-data linear pipeline. Each
stage communicates with its neighboring stages by left and
right communication channels. A channel contains transmit-
ting information (data) and control signals that synchronize
communication between stages by a defined handshaking
protocol. In contrast to the QDI design, since data and control
are sent separately, several relative timing constraints must
be verified to ensure correct data transmission. A pipeline
stage consists of a standard synchronous datapath (DPU)
in which a combination of a delay line and asynchronous
control circuit (AC) controls an output flip-flop (FF). The
setup and hold requirements on the flip-flop are often called
bundling constraints. Additional setup and hold requirements
on the conditional inputs (CIs) from the datapath to the asyn-
chronous control may also exist. The controller is responsible
for triggering the FF via the local clocks (lclk) and generating
an output control token to communicate with the next pipeline
stage.

Compared to QDI/DI templates bundled-data design styles
can be significantly smaller, can consume less energy at equal
supply voltages, and have the ability to reuse synchronous
design methodologies for datapath design [13]. The major
disadvantage is that the methodology and tool support for
analyzing and guaranteeing margins on all timing constraints
is immature, yielding higher risk and longer design times.
Another disadvantage is that the timing margin lengthens
the latency of the pipeline which is often critical to system
performance.

TECHNICAL REPORT CENG-2005-03 3

(a) Non-linear pipeline with fork

Fork P1

P2

Info

En1
En2

Req P3

P4

Join
Info

Req2
Req1
En

(b) Non-linear pipeline with join

Fig. 3. Examples of nonlinear pipelines.

C. Control circuits for nonlinear pipelines

Control circuits for nonlinear pipelines, such as forks and
joins illustrated in Fig. 3, must handle the reading of multiple
input channels and the writing of multiple output channels
[9]. In addition, in both linear and nonlinear pipelines, more
complicated behavior can occur when channels are condition-
ally read or written depending on the data on input control
channels and/or the value ofCIs from the datapath. One
common conditionally writing output operation is askip [9], in
which based on the value of theCIs, the triggering of the FF
and/or the generation of an output control token is suppressed.
This is particularly useful for low power application.

D. Performance metrics

To compare among different synchronous/asynchronous de-
signs, the following metrics are used to analyze the perfor-
mance of bundled-data pipelines.

I: Forward latency (FL) is defined as the delay of the
request of the current stage to the request of the next
stage. In other words, it indicates the evaluation time of
the datapath.

II: Overhead (OH) is defined as the delay beginning from
the request of the next stage to the next request of the
current stage. In other words, it is the overhead associated
with resetting the control circuits.

III: Cycle time (τ) is defined to be the maximum delay from
the processing of current token to the same processing
of the next token. By definitions, the cycle time is the
sum ofFL andOH.

In bundled-data pipeline design, the forward latency (FL)
of the control is matched with the datapath delay to guarantee
that data is stable before latching it in the next pipeline
stage. Consequently, the forward latency is relatively fixed.
The remaining part of the cycle time is the control overhead
(OH) and thus, a control template that has smaller overhead
will achieve higher throughput.

The ideal synchronous design has zero overhead since each
pipeline stage latches data simultaneously at every clock edge
and thus it can use the whole cycle for evaluation i.e.τ =
FL. In practice, however, synchronous designs must provide
enough timing margin/overhead to compensate for clock skew
and uncertainty in gate and wire delay.

III. A SYNCHRONOUSCONTROL CIRCUIT TEMPLATES

The largest design challenge for bundled-data design is in
the development of efficient control circuits. We address two
major control circuit design challenges. First, due to the large
control overhead, bundled-data designs are generally slower
than their synchronous counterparts. The proposed control
protocols reduce this overhead significantly. Second, most
existing methodologies are limited to simple linear pipeline
design and the adaptation to more complex control is generally
difficult and error-prone.

Furber [14] proposed circuits for simple linear pipelines.
New true 4-phase circuits that better hide control overhead
have also been developed and proposed by [10], [15]. Both
of these works, however, do not address the design of more
complicated control circuits required for nonlinear pipelines,
such as forks, joins, splits and merges [12]. For these nonlin-
ear pipelines, synthesis-based approaches using Burst-Mode
Diagrams (BM) and/or Signal Transition Graphs (STG) are
required [16]–[19]. These approaches, however, rely on the
designer to produce correct and efficient specifications, which
are often difficult and error-prone [20]. Initial efforts to auto-
mate this approach are presented in [21] and [22].

In this section, we propose to adopt and extend 1-of-N rail
circuit templates developed for QDI circuits to design the
control for bundled-data pipelines. These templates provide
a unified block-level decomposition of complex control cir-
cuits where the implementation of each block can be easily
manually derived from the overall specification. The templates
greatly simplify the complex and error-prone process of com-
plex control circuit design using STGs or BM machines. Ad-
ditionally, the design of efficient templates would simplify the
task of future synthesis tools to a mapping process that maps
the designs to the target templates instead of performing logic
synthesis in [21], [22]. We thus exploit both the low area and
power of single-rail datapaths and the simplicity of a template-
based control design methodology. Specifically, we show how
to adopt an existing QDI template called precharged full-buffer
[9] to bundled-data pipelines, develop a new advanced true 4-
phase full-buffer template that better hides control overhead,
and further optimize the T4PFB template into a zero-overhead
T4PFB template which completely hides control overhead.

A. PCFB template for bundled-data

The adopted PCFB template for 1-of-N linear pipelines is
shown in Fig. 4. Our template is different from the original
PCFB in that the conditional inputsCIs can be single-rail
and that the local clock signal(s)lclk(s) has no associated
acknowledgement. There is one Rgen block for each output
rail Ri, as depicted in Fig. 4 (b). The local clock signal can
be generated like any otherRi output or be generated via
combinational logic withRi’s as inputs. The iLCD and iRCD
blocks are inverting left and right completion sensing circuits
[9].

The abstract protocol of this template is defined by the
STG in Fig. 5. When a left token arrives (L+), the Rgen
dynamic logic blocks evaluate, generating a valid output token,
the local clock will fire (∼ Ri−, Ri+), and simultaneously

TECHNICAL REPORT CENG-2005-03 4

����

����

R_gen

������

aC
�

����

iLCD iRCD

��
��……		

�� ��

��……��

��

�
�
��……��

��

�������� ��������

��������

(b) R_gen circuit for the ith output rail

����……		

��

������

���� ����

����

N-stacks

��������������

����

(a) PCFB circuit template for 1-of-N
input and 1-of-M output channels

C

Fig. 4. PCFB template and a detailed circuit.

���� �������� ����
� �

��	
��	
����	
��	
��

�

������

������

������

����������

��	
��	
������

�

������

��	
��	
��

������
������

���
�����

�

 �

 �����
���

����
�����

�

�

��

����

���

Fig. 5. STG of the abstract PCFB protocol where each edge is labeled with
its delay (# of gate delays).

the iLCD block detects the token arrival (ilcd−). Next, the
iRCD block detects that right data is valid (ircd−), which
causes the left enable to be deasserted (Le−), and the internal
state to be reset (en−). Once the left data is reset (L−),
the iLCD block detects that the data is null (ilcd+) and,
together with the reset of enable, causes the left enable to
be re-asserted (Le+). This completes the cycle for the left
environment, allowing it to send a new token, even if the right
environment is slow or stalled thereby avoiding a significant
performance penalty [14]1. The right environment operates
concurrently. After receiving valid data, the right environment
will deassert the right enable (Re−), allowing the Rgen
blocks to precharge. This allows the right environment to re-
assert the right enable (Re+) and, simultaneously, the internal
enable to be re-asserted (en+). This in turn allows the Rgen

1This property of full buffer [9] or fully-decoupled [14] that allows the left
environment to reset immediately without waiting for the right environment to
reset is well-suited to bundled-data pipeline design since bundled-data design
usually involves a slow right environment associated with the datapath delay
of the next pipeline stage.

en

R1e

R_t

R2e

R_f

R2e

R1e

en

L_f L_t

Fig. 6. Rgen circuit of the PCFB fork stage.

blocks to re-evaluate in response to a new token.
It is important to note that this STG is a description of

the abstract protocol and, while useful to convey the level
of parallelism and the timing assumptions inherent in the
protocol, it is insufficient for the purposes of synthesizing
control circuits. The principle reason is that it does not
explicitly describe the functionality of the Rgen blocks, which
can be quite complex and difficult to specify using the STG
(often involving OR causality) [23]. The STG also does not
describe how the conditional inputs from the datapath can
induce a skip.

1) Nonlinear PCFB pipelines:Fork stages need to wait for
all output enable signals to set/reset before setting/resetting
the output tokens. A solution, adopted from standard PCFB,
is to insert a C-element to combine all output enable signals.
If the number of fork stages is small, the C-element can be
integrated into the Rgen circuit, as illustrated in Fig. 6.

Join stages need to wait for all input data to be set/reset
before setting/resetting the input enable. One solution is to
combine the iLCD of all input channels with a C-element to
detect completion of all input data. An example of the OR of
L1 and L2 dual-rail channels is shown in Fig. 7. If one of

TECHNICAL REPORT CENG-2005-03 5

Ri

CIs

d

ilcdRe

~Ri

to RCD

N-stacks

(b) Latch circuit for the jth input rail (left) and
R_gen circuit for the ith output rail (right)

rcd ilcd

lt j~Lj

CIs

CL R_gen
L0…N-1

Le Re

latch

iLCD

dlt i
~R0…M-1

~Le

RCD

Latch output (ltj) from
other left channels

R0…M-1

iaC
-

rcdilcd

lclk

~L0…N-1

(a) T4PFB circuit template for many 1-of-N input
channels and one 1-of-M output channels

lt j

+

Fig. 8. T4PFB circuit template and detailed circuits.

��

��

������

��

��

���� �	������

�	��

(a) R_gen circuit implementing L1 OR L2

C

L1_t
L1_f

L2_t
L2_f

ilcd

(b) iLCD circuit

Fig. 7. Circuits of the PCFB join stage.

the true rails ofL1 or L2 is asserted, the true rail ofR is
asserted. However, both false rails ofL1 and L2 need to be
asserted to cause the false rail ofR to be asserted. The iLCD
circuit combines the completion detection of both input data
(L1, L2) with a C-element shown in Fig. 7(b). Interestingly,
this type of join causes significant timing problems with other
pipeline design styles, such as PS0 [24], [25].

Supporting conditional reading and writing is only slightly
more complex. To conditionally read a channel, the associated
Le generation block generates a left enable only if a channel
is read. To conditionally write a channel, the Rgen block
must conditionally evaluate and handshake with the right
enable only when it evaluates. In particular, a skip can be
implemented by triggering the evaluation of a separate output
signal (not routed out of the controller) that acts like an M+1
output rail and immediately sending acknowledge back to the
left environment without waiting for the right environment.

2) Timing and performance analysis:The original PCFB
template is robust in that there are no internal timing assump-
tions on gate delays [26], i.e., it is quasi-delay-insensitive.
Our adaptations, however, have setup and hold constraints
on the conditional inputs, typical of bundled-data designs.
Additionally, the local clock signal must have sufficient pulse
width to transfer information across the flip-flops. In particular,
the pulse width of the clock is the same as the pulse width
of the Rgen circuits if implemented as combinational logic
of R signals. If it is implemented using an Rgen circuit, the

Re PMOS transistor is optional. If removed, the pulse width
reduces to the sum of the delays of the iRCD (ircd−), left
enable (Le−), enable (en−), and Rgen clock circuits. It is
assumed that this pulse width is sufficient to latch the outputs,
which is easily satisfied if the flip-flops are properly designed.

A quantitative performance analysis is based on the fol-
lowing assumptions. First, the delay is calculated by counting
latency in term of gate (unit) delays. The abstract STG shown
in Fig. 5 illustrates the sequencing of events for a PCFB
pipeline stage where each edge is labeled with the above
delays. Second, the analysis is performed on a homogeneous
linear pipeline assuming the completion sensing of each stage
takes only one gate delay which is a reasonable assumption
for a single input/output channel of up to four rails (a 1of4
channel). Third, the delay calculation includes the set (DLset)
and reset (DLreset) delays of the delay line attached to the
left request input of the controller as shown in Fig. 2.

Thus, the performance analysis of PCFB template is as
follows.

FL = R+cur ⇒ R+next

= DLset + (L+ ⇒ R+)
= DLset + 2

OH = R+next ⇒ R+cur nextcycle

= (R+next ⇒ Le−)+
(Le− ⇒ L− ⇒ ilcd+ ⇒ Le+ ⇒ R+cur nextcycle)

= DLreset + 10
τ = FL + OH

= DLset + DLreset + 12

The main disadvantage of this protocol is its large overhead.
The second drawback is that the forward latency contains only
the set phase of the delay line. This means that the reset phase
of the delay line must be minimized, motivating the use of
asymmetric delay lines [27]. Lastly, the combinational logic
necessary to determineR outputs is limited to what can be
implemented in a single Rgen gate.

TECHNICAL REPORT CENG-2005-03 6

����

����������

�

�	�	��
�

����

�

��������

������

����

����������

�

������

�

��
����

������

����

�

��
����

������

����

�

������

��������

������ ������

�	�	������

�

�

�
�

�

�

�

�

�

�

�

������

�

�

�

�

�

���
��	

���

���	

����

���	

����
��	

�

�

�

�

�

Fig. 9. STG of the abstract T4PFB protocol where gray edges represent
timing constraints and dashed edges indicate ordering maintained by the
environment.

B. T4PFB templates for bundled-data

To reduce control overhead, we propose a new circuit
template that follows the true 4-phase handshaking protocol. In
particular, our template, as illustrated in Fig. 8, differs from
PCFB template in that it waits until the left token arrives,
the left enable to be sent back, and the left token to reset,
before generating a right token. In other words, the T4PFB
explicitly decouples the control by forcing the handshaking
with the left environment to essentially finish before beginning
to communicate with the right environment. Consequently,
the forward latency includes both phases of the delay line,
enabling the use of either asymmetric or symmetric delay lines
and facilitating lower control overhead.

The STG of the abstract protocol for this template is shown
in Fig. 9. When a left token arrives (L+), the iLCD detects that
token is valid (ilcd−) and opens the dynamic latches allowing
the token to propagate (lt+). At the same time, the inverting
asymmetric C-element (iaC) deasserts the left enable (∼ Le+,
Le−). While waiting for the left token to reset, the CL block
can perform precomputation with control tokens from other
input channels as needed (d+). Once the left token is reset,
the iLCD detects that the token is reset (ilcd+) and isolates the
latches from the arrival of new tokens. At this step, the iLCD
triggers two concurrent operations. First, the iLCD triggers
the functional blocks to evaluate and generate a right token
(∼ R−, R+). After a right token is generated, the right token
validity is detected (rcd+), causing the internal signals to
reset (lt−, d−) preparing to accept a new token. Second, the
iLCD also triggers the left enable to re-assert (∼ Le−, Le+)
acknowledging the left environment. This completes the left
environment protocol, allowing the left environment to send a
new token. Concurrently with the left environment, when the
right token is consumed, the right enable is deasserted (Re−)

����

��������

����������

	��	��

Fig. 10. The modified Legen circuit.

��������

������������

�	�	

����

������ ������

R_gen circuit

�	�	

����

Fig. 11. Circuits of the T4PFB fork stage.

and the right token is reset to null (∼ R+, R−). Then, the
right environment will re-assert the right enable (Re+) thereby
making the circuit ready to accept a new input token.

The significant overhead reduction comes from concurrent
assertion of a right token (R+) and a left enable (Le+)
enabling the left environment to latch a new data as soon as
it receives the left enable signalLe+.

We can also improve performance by allowing the right
token to reset (R−) concurrently with the resetting of the
left enable (Le−). This is implemented with two parallel
transistors connected in the PMOS stack shown in Fig. 10.
A transistor connected to the input signalrcd enablesLe− in
the first cycle after global reset. A transistor connected to the
Re input signal drivesLe− in the remaining cycles without
waiting for rcd−, thereby reducing the delay in the longest
cycle i.e.Le− → L− → R+ → Re− → Le− from 12 to
10 gate delays (not including the delay line delay). However,
this additional concurrency introduces timing margins TM7
discussed later in timing analysis section. A more robust
but lower performance version of T4PFB template with no
concurrency betweenR andLe is discussed in [28].

Compared to the PCFB template, the functional block
(R gen) has the same complexity of NMOS networks, but
has one less PMOS transistor. However, the T4PFB template
provides an additional CL block that allows precomputation
while waiting for the left environment to reset. This may
further simplify the NMOS network in the Rgen block.
Implementation and timing issues of conditional input/output
signals to/from datapath (CIs, lclk andskip) are the same as
discussed in the PCFB template.

1) Nonlinear T4PFB pipelines:The same techniques dis-
cussed in Section III-A.1 are applicable to the design of
T4PFB templates for fork and join stages. An example of a

TECHNICAL REPORT CENG-2005-03 7

��������

������������

��		

��
����
��

����������

��
����
��

����������

��		

Fig. 12. R genand CL circuit (in dash boxes) of the T4PFB join stage.

fork stage implementing a copy of input tokens to two output
stages is shown in Fig. 11. TheRe1 and Re2 are connected
directly to both PMOS and NMOS networks in the Rgen
circuit. An alternative is to combineRe1 andRe2 with a C-
element before controlling the Rgen circuits. An example of
a nonlinear join stage implementing the OR of two dual-rail
inputs,L1 and L2, is depicted in Fig. 12. The iLCD circuit
for this template is depicted in Fig. 7(b). The OR functionality
is precomputed within the CL block. The left CL block is
asserted only when the false rails oflt0 f and lt1 f are
asserted and the right CL block is asserted when eitherlt0 t
or lt1 t is asserted. More complex nonlinear control circuits
(e.g., merge and split) are derived in the same manner as their
PCFB counterparts.

2) Timing and performance analysis:The T4PFB template
has several easily-met timing assumptions that were needed
to ensure high performance. These assumptions, identified by
the gray ordering edges in the STG shown in Fig. 9, are now
analyzed in detail.

The first four timing assumptions are timing related to the
validity of local data stored in the latches. The remaining
three timing assumptions are due to the concurrent setting and
resetting ofR andLe.

1. Latch propagation timing margin (TM1). The left token
must be properly stored in the dynamic latch (lt+) before the
data is reset by the left environment (∼ L+). In other words,
we have the following timing constraint:

TM1 = (L+ ⇒∼ L+)− (L+ ⇒ lt+)

where,

(L+ ⇒∼ L+) = (L+ ⇒ Le− ⇒ L− ⇒∼ L+)

= 6 + DLreset

(L+ ⇒ lt+) = max(L+ ⇒ ilcd− ⇒ lt+, L+ ⇒∼ L− ⇒ lt+)

= 2

So, TM1 = 4 + DLreset

2. Latch reset timing margin (TM2). After the RCD initiates
the reset of the latch, the latch should have enough time to
reset (lt−) before the RCD changes its output (rcd−). Thus,
we have that

TM2 = (rcd+ ⇒ rcd−)− (rcd+ ⇒ lt−)

where,

(rcd+ ⇒ rcd−) = 5 + DLset

(rcd+ ⇒ lt−) = 1

So, TM2 = 4 + DLset

3. Data reset timing margin (TM3). To avoid re-evaluation
of the Rgen block with stale input data, after Rgen is
evaluated the output of the CL block should reset (d−) before
a new arrival of ilcd (ilcd+). Thus, we have that

TM3 = (∼ R− ⇒ ilcd+)− (∼ R− ⇒ d−)

where,

(∼ R− ⇒ ilcd+) = 9 + DLset + DLreset

(∼ R− ⇒ d−) = 4

So, TM3 = 5 + DLset + DLreset

4. Data stable timing margin (TM4) 2. The output of the
CL blocks need to be stable (d+) before the output of iLCD
block is asserted (ilcd+) to prevent a glitch from CL block
from causing a spurious evaluation of an Rgen block. Thus,
we have that

TM4 = (ilcd− ⇒ ilcd+)− (ilcd− ⇒ d+)

where,

(ilcd− ⇒ ilcd+) = 5 + DLreset

(ilcd− ⇒ d+) = 3

So, TM4 = 2 + DLreset

5. Output validity timing margin (TM5). Since a right
token (R+) and left enable (Le+) are generated concurrently,
enough time must be given to ensure that the output validity
is detected (rcd+) before a new token arrives and deasserts
the left enable (∼ Le−). Thus, we have that

TM5 = (ilcd+ ⇒ ilcd−)− (ilcd+ ⇒ rcd+)

where,

(ilcd+ ⇒ ilcd−) = 5 + DLset

(ilcd+ ⇒ rcd+) = 2

So, TM5 = 3 + DLset

6. Left enable stable timing margin (TM6). Since a right
token (R+) and left enable (Le+) are generated at the same
time, the left enable must be stable (∼ Le−) before the right
enable is deasserted (Re−).

TM6 = (Re+ ⇒ Re−)− (Re+ ⇒∼ Le−)

where,

(Re+ ⇒ Re−) = 5 + DLset

(Re+ ⇒∼ Le−) = 1

So, TM6 = 4 + DLset

7. Left enable reset timing margin (TM7). Since a right
token (R−) and left enable (Le−) are reset at the same time,
the left enable must be stable (∼ Le+) before the right enable
is asserted (Re+).

TM7 = (Re− ⇒ Re+)− (Re− ⇒∼ Le+)

where,

(Re− ⇒ Re+) = 5 + DLreset

(Re+ ⇒∼ Le+) = 1

So, TM7 = 4 + DLreset

2Note that if the CL block is glitch free, this constraint can be ignored.

TECHNICAL REPORT CENG-2005-03 8

��

�

���

��

���

��

��

���

��

����	�

��

���

��

���

���

����	�

�
��

�

�

����	�

��

�

�

�

�

�

����	�

��

�

�

�
�

�

�

Fig. 14. The STG of the zero overhead T4PFB template.

This analysis indicates that the worst timing margin is
three or more gate delays not including the delay line3.
These are, thus, easily met with proper transistor sizing.
Timing constraints of the conditional inputs and the local
clock (CIs, lclk) are the same as PCFB’s and also easily
met with transistor sizing and delay line design. The same
performance metrics discussed in Section III-A.2 are derived
for the proposed T4PFB template as follows.

FL = R+cur ⇒ R+next

= DLset + (L+ ⇒ ilcd− ⇒ Le−)+
(Le− ⇒ L− ⇒ ilcd+ ⇒ R+)

= DLset + DLreset + 8
OH = R+next ⇒ R+cur nextcycle

= R+next ⇒ Le+ ⇒ R+cur nextcycle

= 2
τ = FL + OH

= DLset + DLreset + 10

The analysis shows that the overhead of T4PFB is indepen-
dent of the length of the delay line, supporting the use of both
asymmetric or symmetric delay line. Moreover compared to
PCFB, the control overhead is smaller by8 + DLreset gate
delays, a significant improvement.

C. Zero overhead T4PFB templates for bundled-data

The concurrent assertion of the right token (R+) and the
left enable (Le+) in the T4PFB control template demonstrates
that part of control overhead can be hidden in the forward
latency. However, the control overhead still consists of the 2
gate delay penalty associated with the right token generation of
the previous pipeline stage (fromLe+ to R+). A new protocol
called zero-overhead T4PFB extends the original T4PFB by
hiding the remaining overhead. In particular, by adding two
gate delays in the forward path of the T4PFB controller, the
new template illustrated in Fig. 13 achieves zero overhead.

The STG of the abstract protocol is shown in Fig. 14.
This control protocol functions similar to the T4PFB control
protocol as follows. First, a left token arrives, is acknowledged,
and then reset (L+, Le−, andL−). After this reset, an internal

3TM4 is generally easy to ignore

token and a right token (R+) are generated concurrently with
the assertion of the left enable (Le+). Notice that the assertion
of the left enable (Le+) occurs two gate delays earlier than the
generation of the right token (R+) (assuming the right enable
was previously asserted (Re+) before the arrival of the right
token (R+)). This enables both current and previous pipeline
stages to latch data at the same time achieving zero overhead.

1) Nonlinear pipeline:The zero overhead template can be
divided into two blocks: a Block1 withR gen1 and a Block2
with R gen2 as shown in Fig. 13 and 15(a). Nonlinear pipeline
functionality can be implemented in either theR gen1 and
R gen2 blocks. However, it is more robust to implement the
complex behavior inR gen2 block since the forward latency
may include the latency ofR gen1 block which can cause a
setup constraint violation. Thus, theR gen1 block is generally
used to implement a simple buffer and theR gen2 block is
used to handle nonlinear behaviors. Fig. 15 illustrates several
suggested implementations of nonlinear pipeline stages.

2) Timing and Performance analysis:Since this template
is adapted from T4PFB control template, timing assumptions
listed for the T4PFB template are also applied to this template
except thatTM2, TM6 and TM7 are more stringent since
there is no delay-line delay involved in the equations. The
performance metrics of the zero-overhead T4PFB template are
derived from the STG shown in Fig. 14 as follows.

FL = R+cur ⇒ R+next

= DLset + (L+ ⇒ Le−)+
(Le− ⇒ L− ⇒ M+ ⇒ R+)

= DLset + DLreset + 10
OH = R+next ⇒ R+cur nextcycle

= 0
τ = FL + OH

= DLset + DLreset + 10

Note that while the hold time in the datapath of this template
is more critical than that in the PCFB and T4PFB approaches,
it is no more stringent than that in the synchronous counterpart
since both designs are zero-overhead pipelines.

Additionally, by adding more forward latency, negative-
overhead pipeline in which more than one data is executed in a
pipeline stage can be derived with more aggressive constraints
on the hold time.

D. Comparison of control templates

The section compares and contrasts the advantages and
disadvantages of three different proposed control protocols:
PCFB, T4PFB and ZOT4PFB.

The following equations list the flip-flop’s setup time (Ts)
and hold time (Th) requirements of a bundled-data pipeline
design whereDmin and Dmax are the minimum and max-
imum delay of the datapath,Dclk to q is the clock to output
delay of the flip-flop andOH is the overhead of asynchronous
controller.

TECHNICAL REPORT CENG-2005-03 9

������

CL R_gen1
����……������

��		

		

latch

iLCD

���
�
��
����

��……������

RCD

��
�����
��
���

�
�������

�
�	���	�
������	��

��……

����

����������������

��������

����
��……������

(a) Zero-overhead T4PFB circuit template for many

1-of-N input channels and one 1-of-M output channels

�
�
��

R_gen2

RCD

��������

��		
Le_gen

����……

����

����
��……������

����

��		

 ����

��
����!��!

N-stacks
��		

��������

��		 � �		

������

		

(b) R_gen circuit for the ith output rail (left) and
Le_gen circuit (right)

	
��
� 	
��
�

Fig. 13. Zero-overhead T4PFB template and detailed circuit implementation.

Block1
(buf)

Block2
(buf)��

����

��

����

��

���� Block1
(buf)

Block2
(fork)��

����

��

����

������������

������

c ������

Block1
(buf) Block2

(join)
����

������

����

����

��

����

Block1
(buf)����

������

����

Block1
(buf)

Block2
(split)��

����

��

����

����

������

������

Block1
(buf)		

		��

����

(a) Buffer stage (b) Fork stage

(c) Join stage (d) Split stage

Fig. 15. Examples of nonlinear pipeline stages.

Ts < τ −Dmax (1)

Th < Dmin + Dclk to q + OH (2)

Eq. (1) states that the setup time (Ts) must be less than
the cycle time (τ) minus maximum delay of the datapath
(Dmax) and Eq. (2) states that the hold time (Th) must be
less than accumulated delay of the minimum delay of the
datapath (Dmin), the clock to output delay (Dclk to q) and the
control overhead delay (OH). Notice that hold time constraint
is generally easy to meet particularly if the overhead delay is
positive.

Table I compares the performance, and robustness spectrum
of the three proposed protocols. The PCFB controller offers the
best robustness, area and energy, but suffers from the largest
overhead yielding the worst performance among the others.
The T4PFB controller offers relatively high performance with
reasonable timing assumptions in both the control and data-
path. The last controller, ZOT4PFB, is the most aggressive
controller and achieves the highest speed at the cost of the
most critical timing margins.

Table II presents concrete comparisons of these control
templates using identical datapath delays that fix the forward

latency of the control circuit4. The comparisons assume that
each template has equal setup time such that the cycle time
dictates the performance of the design.

The examples show that for shallow to medium size datap-
ath, the T4PFB and ZOT4PFB can achieve better throughput
than the PCFB template. For example, if the datapath length is
10 gate delays, the ZOT4PFB template is the fastest template
running with the cycle time of 12 gate delays followed by
the T4PFB template running at 14 gate delays and the PCFB
template runing at 22 gate delays.

Notice that for the shallow pipelines of 2 gate delays, the
T4PFB and ZOT4PFB templates can have longer overall
latency compared to the PCFB template due to long control
latency. For medium-grain pipelines, however, we do not
expect that the controller latency to be the limiting factor since
this latency is used together with the delay line delay to match
the datapath delay.

4TheDLreset of PCFB template is assumed to be 2 gate delays andDLset

andDLreset of both T4PFB templates are assumed to be equal.

TECHNICAL REPORT CENG-2005-03 10

Protocols FL OH τ area & Margin (gate delays)
gate delays gate delays gate delays energy control datapath (hold)

PCFB DLset + 2 DLreset + 10 DLset + DLreset + 12 1X QDI DLreset + 10
T4PFB DLset + DLreset + 8 2 DLset + DLreset + 10 2X 3 2

ZO T4PFB DLset + DLreset + 10 0 DLset + DLreset + 10 3X 3 0

TABLE I

COMPARISON OF THEPCFB, T4PFBAND ZO T4PFBCONTROLLERS, INCLUDING FORWARD LATENCY, OVERHEAD, CYCLE TIME, AREA, ENERGY AND

DEGREE OF TIMING ASSUMPTION.

Datapath delay PCFB T4PFB ZO T4PFB
+ setup time FL OH τ FL OH τ FL OH τ

2 2 12 14 8 2 10 10 0 10
10 10 12 22 12 2 14 12 0 12
20 20 12 32 20 2 22 20 0 20
40 40 12 52 40 2 42 40 0 40

TABLE II

COMPARISON OF THEPCFB, T4PFBAND ZO T4PFBCONTROLLERS WITH IDENTICAL VARIOUS DATAPATH DELAY OF 2, 10, 20AND 40 GATE DELAYS.

(a) Speculative asymmetric delay matching template

���

Sel

start

done

ADLC

��� ADLC

��� ADLC*

(b) ADLC circuit implementation

����������

��	
�	
�

������
�
���

����������

���� ����

	
�	
�

(c) Speculative symmetric delay matching template

	��

Sel

start

done

SDLC

	�� SDLC

	�� SDLC*

LD0

NR0

(d) SDLC circuit implementation

��	
�	
�

������
�
���

����

	
�	
�

����

LD1

NR1

LDn

d0

d1

dn

start

d0

d1

dn

LD0

LD1

LDn

NR0

NR1

Fig. 16. Speculative delay matching templates.

TECHNICAL REPORT CENG-2005-03 11

E. Speculative Delay Matching Templates

A delay matching element (delay line) is combinational
logic whose propagation delay is matched with the worst-case
logic delay of some associated block of logic. Generally, a
delay line is implemented by replicating portions of the block’s
critical path.

To take advantages of average performance, a more com-
plicated delay line design based on speculative completion
sensing [29] is adopted. The original speculative delay line
proposed in [29] uses multiplexors to select among several
independent delay lines, thus wasting power and area. Kim
et. al. [8] proposed a more compact delay line by reusing
previous delay elements to generate the next larger matched
delay. However, in their design the input signal still needlessly
propagates through the entire delay line independent of the
data value, thereby wasting power.

We propose two novel speculative delay matching templates
that are both compact and power saving: one for an asymmetric
delay line and one for a symmetric delay line. Our templates
are adapted from [8] but replace the multiplexors with delay
line controllers, one per delay element, as shown in Fig. 16.
Each controller functions similarly to an asynchronous split
in that its input signal is routed to one of its output signals
based on the select control lines. If the select lines indicate
that target delay is obtained, the controller generates the done
signal by routing the input toLDi. Otherwise, it propagates
the input signal to the next delay element viaNRi. Since
the input signal stops at the target delay element, power is
significantly reduced.

1) Asymmetric delay line templates:The asymmetric delay
line is depicted in Fig. 16(a). When used with the PCFB
control template, the set phase of the delay line is matched
with the worst-case delay of the logic and the reset phase of
the delay line is strictly overhead.

The operation begins with the set phase. When a start signal
arrives (start+), it propagates to the first asymmetric delay
element (ADL) asserting a delayed signal (d0+). This delayed
signal (d0+) and the select lines (Sel) are input signals of
an asymmetric controller (ADLC) whose implementation is
shown in Fig. 16(b). This controller decides to assert either a
local done signal (LD0+) or the next request signal (NR0+).
If one of local done signals (LDi+) is fired, a done signal
(done+) is generated finishing the set phase. Otherwise, a
next request signal (NRi+) activates the next delay element.
Note that the last controller (ADLC∗) is not required and
generates only a local done signal (LDn+).

The reset phase begins when the start signal is reset
(start−). It causes a done signal to reset quickly (done−)
(2 gate delays) bypassing all delay elements with an AND
gate. Simultaneously, the start signal actively resets all delay
elements and controllers.

Two timing constraints associated with the delay line must
be satisfied. First, the select lines of each controller must
be setup and valid before its associated delayed signal (di+)
arrives, referred to as aselect line setup constraint, to avoid
a wrong routing decision. Second, all internal signals must
be reset before the next start signal arrives, referred to as the
delay line reset constraint.

2) Symmetric delay line templates:The symmetric delay
line depicted in Fig. 16(c) and (d) utilizes both set and reset
phases to match the worst-case logic delay. It is well-suited to
the T4PFB control protocol since it transfers data to the next
stage after passing throughout both set and reset phases of the
delay line.

There are two timing constraints associated with the sym-
metric delay line. First, theselect line setup constraintde-
scribed for the asymmetric delay line also applies to the sym-
metric delay line. Notice, however, that this setup constraint is
more stringent than in the asymmetric delay line case because
the matched delay elements are half as long. In addition, the
select lines must be stable until after the end of reset phase,
referred to asselect line hold constraint.

Satisfying both of these constraints, however, is significantly
easier than satisfying the reset constraint of the asymmetric
delay line. In particular, the lack of the reset constraint allows
us to eliminate the final AND gate and alleviates the heavy
load of the start signal in theSDLC controller shown in Fig.
16(a). The symmetric delay line is also approximately half
the length of the asymmetric delay line, saving both area and
power. These advantages makes the use of symmetric template
very attractive.

3) Power-efficient asymmetric delay line:It is also inter-
esting to note that a power-efficient asymmetric delay line
can be constructed using a combination of a symmetric delay
line and a D-element [30], [31]. A simple example of this
delay line is illustrated in Fig. 17(a)5. The D-element operates
as follows. After receiving a left request, it completes a full
handshake on the right environment before acknowledging the
left environment, enabling the use of a symmetric delay line on
its right environment. In the reset phase, the D-element shown
in Fig. 17 (c) can reset in 4 gate delays. To compare this delay
line with a standard one, the timing analysis of PCFB control
template using this delay line is illustrated in Fig. 17 (b) and
detailed as follows.

FL = R+cur ⇒ R+next

= DLset + DLreset + D − element delay + (L+ ⇒ R+)
= DLset + DLreset + 8

OH = R+next ⇒ R+cur nextcycle

= PCFBOH1 + PCFBOH2 + D − elementreset

= 14
τ = FL + OH

= DLset + DLreset + 22

The analysis shows that the forward latency includes both
phases of the delay line plus a small delay from the D-element
(6 gate delays). Additionally, the overhead is independent
of the delay line delay but still large due to the combined
overhead from PCFB control (10 gate delays) and the reset
delay from the D-element (4 gate delays). Compared to the
standard asymmetric delay line, it is obvious that this delay
line can save both area and power approximately by half.

5The SDL unit in the Fig. 17(a) can be implemented to support more
complex delay line of such symmetric speculative matching template.

TECHNICAL REPORT CENG-2005-03 12

�� ��

����

����

���� ���� ������ ����

���������� ������������

� �

�	

�
��

�
����

����
���

����
���

D-element
�
��
��

���

��

����

��

����

(a) (b)

(c)

Fig. 17. (a) an example of power-efficient asymmetric delay line. (b) STG of D-element using in bundled-data pipeline. (c) A speed independent D-element
implementation.

However, due to large forward latency, this delay line can
only support a pipeline stage with the forward latency larger
than eight. Thus, the standard asymmetric delay line is more
suitable to smaller pipeline stages.

IV. M ATRIX -VECTOR MULTIPLICATION ARCHITECTURE

In this section, we review matrix multiplication operation
and discuss our proposed architecture in detail.

A. Matrix-vector multiplication

The matrix-vector specification that we are implementing
can be expressed as follows:




y0
y1
y2
y3


 =




a a a a
c f −f −c
a −a −a a
f −c c −f







x0
x1
x2
x3




=




(a ∗ x0) + (a ∗ x1) + (a ∗ x2) + (a ∗ x3)
(c ∗ x0) + (f ∗ x1)− (f ∗ x2)− (c ∗ x3)
(a ∗ x0)− (a ∗ x1)− (a ∗ x2) + (a ∗ x3)
(f ∗ x0)− (c ∗ x1) + (c ∗ x2)− (f ∗ x3)




wherea, c, andf are constant coefficients6.

B. Asynchronous pipelined architecture: an overview

At the algorithmic level, we adopt the basic strategy of im-
plementing each matrix vector multiplication in four iterations,
one per column of the matrix. In iterationi, the ith column is
multiplied by theith element ofX. This involves multiplying
an input Xi with three different coefficients and optionally
inverting the result, thereby motivating the use of three distinct
hardwired multipliers. The results of each iteration is stored
in four distinct accumulators whose results are written toY
after the fourth iteration and then reset in preparation of the
next input vectorX.

6a = 2−2 + 2−4 + 2−5 + 2−7 + 2−9 ≈ 0.35, c = 2−1 + 2−5 + 2−7 +
2−10 ≈ 0.46 andf = 2−3 + 2−4 + 2−8 + 2−14 ≈ 0.19

At the architectural level, we propose the novel five stage
pipelined architecture shown in Fig. 18. The upper portion
(highlighted in gray) of the picture shows asynchronous con-
trollers communicated with the datapath and other controllers
using four-phase handshaking signals rather than a global
clock. To obtain low-power, the datapath is implemented using
single-rail static logic. Numerous power optimizations taking
advantages of small-valued input statistics are applied. The
general idea is to dynamically deactivate groups of bit-slices
that contain only sign extension bits (SEBs).

The multipliers and accumulators in the datapath consist of
groups of partitioned bit-slices that are selectively activated
by mask control signals. In particular, the MASK and ZD
units respectively identify bit-slices of input data that contains
non-SEBs and detects the special case in which the data is
zero. The mask signals (m(·)) are used to deactivate non-
required SEBs by forcing them to zero via the input ANDing
logic and are sent to control delay matching units in multi-
plier stage (containing the matched delay lines). Additionally,
the same mask signals when latched (m′) are ORed with
their previously registered versions (m′′). The resulting mask
signals (ORed m) identify the bit-slices of the accumulators
that contain non-SEBs and control delay matching units in
accumulators stage.

Notice that because the input data is fed into multiple
multipliers, the delay matching unit is shared over multiple
multipliers and accumulators, thereby making its overhead a
small percentage of the overall design. In the special case
that the data is zero-valued, the ZD unit asserts azero detect
signal and sends it to the controllers to disable the entire
computations. Additionally, the Partial Sign Bit Recovery
(PSBR) logic extends the sign bit of newly activated bit-
slices in the accumulator to ensure that both inputs to the
accumulator have the same number of activated bit-slices.
Lastly, the Full Sign Bit Recovery (FSBR) logic recovers
the suppressed zero bits of accumulators results to attain the
correct final results. In the following sections, each pipeline
stage is discussed in detail.

TECHNICAL REPORT CENG-2005-03 13

����

��
�
�
	
�

�
�

�
�

�
�
���

�
�
���

�
�
���

�
�
�

�
�
�

�
�
�

	

�
�

�

	

�
�

�

	

�
�

�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�

�
�

�

�
�

�

�
�

�

�
�

�’ �’’

	
��
�

	
��
�

	
��
�

	
��
�

�’ �’’

�’ �’’

�’ �’’

�’ �’’

“�”

��

��

�����	
�

�
�������

�����	
�

�
�������

���

��

���

��� ���

�
�
�

�
�
�

�
�
�

������
 !�"#�$

�’’’

%�&

�
�
�

�
�
�

��&�'(�

�

�
�
�

�’’

�’

)���*
���+
���
,�- ���
�
���
�.��
-/	

�
�
�

)��*
��+
.��
-/	

�
�
�
�
,
�
-�
�
�
�

��

“�”

��

“�”

�
�
� ��

“�”

�
�
�

“�”

��
��

“�”

“�”

��

�
�
� ��

“�”

���

���

�
��

�
��

�
��

“�”
�
��

�.��
-/	

.��
-/	

���

��0��
�
�
�

�
�
�

�
�
�

�
�
�

��

����D D
���

����

Speculative
delay line

D
���

����

Speculative
delay line

���

����D
���
�

����D

1�!��#�$

1�!��#�$

1�!��#�$

12!��#�$

3�-�4

3���

.���.

.��.

.����

.�
�
5
�6
5
7
/

�����.

����.

������ 5�����
5���-�4

�
�
��
5
�6
5
7
/

��	�/�-�4

��	�/���
����

��-�4

5����.��5/	

.�
-�
�
�
�
	�
�	

5����.��
-/	

)��*
��+
���

5�’

5�’’

Fig. 18. Matrix multiplication with a 5 stage asynchronous pipeline.

C. Zero detection stage

As mentioned earlier, it is not necessary to perform
multiply-accumulated operations with zero-valued data since
the result would remain the same. To save power consumption,
zero data is detected and then stalled at this stage and only
non-zero data are forwarded to the next stage.

If the input data is zero (x = 0), the ZD unit asserts a
zero detect signal. When the controller (ZdCtr) detects that
thezero detect signal is asserted, it gates a local clock signal
(zd nz) thereby stalling the zero-input data. The controller
also communicates with the controller for the next pipeline
stage (MulCtr) using a dual rail channel calledzd. If the
input data is zero it assertszd z. Otherwise, it assertszd nz.
The controller is implemented similarly to an asynchronous
spilt cell with the zero detect signal acting as the select
control channel. Additionally, regardless of the input data,
the controller asserts an extra railzd always to latch the
zero detect signal for the next stage. Thezd always is
implemented by simply ORingzd z and zd nz. The details
of our implementation are illustrated in Fig. 24(a). Note that
for correct operation thezero detect signal must be valid
before the bundled-data delayed signal matched with ZD logic
becomes stable.

D. (Hardwired) multiplier stage

In this stage, a non-zero data from zero detection stage is
multiplied with three constant matrix coefficients simultane-
ously. The implementation details are discussed below.

1) Bit-slice partitioning multipliers:Ideally, we might like
to selectively activate only the effective non-zero bits. How-
ever, this would require control logic for every bit whose

m(3) m(2) m(1)

MSB LSB

15 14 13 12 11 10 9

Input (x)

Bit Index : 8 7 6 8 6715 1314 12 1011 9

Fig. 19. Mask signals generation unit based on static logic.

overhead would be difficult to overcome. Thus, it is important
to organize the activated bits into bit-slices and optimize the
number of bit-slices that can be activated taking into account
the overhead of the control logic. To this end, we performed
bit-level simulations of well-known image sequences that
showed that azero detect flag along with 3-bit mask signals
(m(3), m(2), and m(1)) for DCT yielded reductions in bit-
activity within 10% from the optimal. Our proposed mask
generation unit yields a longest path of about 4 gate delays
illustrated in Fig. 19.

Our fine-grain hardwired multiplier is based on a bit-
partitioned carry-save multiplier, illustrated in Fig. 21. The
carry-save multiplier’s critical path is mainly along the final,
vector-mergingadder, which we propose to implement as a
bit-partitioned ripple carry adder for two reasons. First, ripple-

TECHNICAL REPORT CENG-2005-03 14

�
��

������

�
�

�
��

�
��

�
��

�
��������

�
��

�
��

�
�

�
�

�
�

�
	

�

�
�

�
�

�
�

�
�

�
�

���������

��� ��������

������������������� �
��

�
��

�
��

�
�

�
�

�
�

�
	

�

�
�

�
�

�
�

�
�

�
�

�
��

�
��

�
�

������������������� �
��

���

�� ��

�� ���
��

������

�
�

�
��

�
��

�
��

�
��

!
"#$

�!��%!%�����&�

Fig. 20. Example of the proposed mechanism for sign bit extension in the
multiplier array.

carry adders consume significantly lower power than faster
(e.g., carry select or bypass) adders [32]. Secondly, while
ripple-carry adders have relatively long worst-case delay, the
bit-partitioning of the multiplier array (including the ripple-
carry adder) leads to very good average case delay for this
application. The staircase-patterned bit-slices, as illustrated by
the dotted lines in Fig. 21, allow the adders to be dynamically
configured for different input bit-widths. For example, if the
first two bit-slices are activated, the multiplier behaves exactly
as a typical multiplier that handles 9-bit inputs.

There are two key aspects of the architecture that enable
this type of reconfigurable bit-widths. The first is that when
only the first two bit-slices are activated, the inputs to the
second input bit-slice that emanate from the third input slice
(i.e., that cross the dotted line) are forced to zero by the input
ANDing logic. The second feature is the sign extension of
the most right shifted input to the bit-slice boundary. Fig. 20
illustrates an example of the issue and our proposed solution.
In particular, it illustrates the case whenx′ À 9 is added to
x′ À 7 when three bit-slices ofx′ are activated, i.e., when bits
b13 throughb15 are forced to zero. The further right shifted
input in this case is thex′ À 9 input and it must be sign
extended two bits to the bit-slice boundary. Our solution is to
add two MUXes that are controlled by the MASK logic. The
MUXes output thex′ input bit except in the case when exactly
three bit-slices are activated, in which case the MUXes output
the sign extension bit (which in this case is theb12 bit of
x′). As illustrated in Fig. 21, the number of MUXes needed is
relatively small and they are typically not in the critical path

Notice that some adders are eliminated in the area of
the highest bit-slice due to the precomputation of their sign
bits which enabling area and power saving even more. For
example, theb14 of x′ À 5 is precomputed and forwarded to
the next adder block 14 of the second row.

2) Speculative completion sensing circuit:Let us focus
on the completion-sensing unit for our proposed hardwired
multiplier. The critical path of the array depends on the carry
chain of the ripple carry adder highlighted in Fig. 21. This
path is partitioned into four bit-slices, as illustrated in Fig. 22.
To sense the completion of this adder, we use our speculative
delay matching template discussed earlier. The completion-
sensing unit is composed of four delay lines, matched to the
four different bit-slices activated shown in Fig. 24(a). The
mask signalsm from the datapath are fed as the select lines

C0
4FA

C1C2

4

4

Output

10

10

6FA+2HA+2FA

Input

4FA

4

4

MSB LSB

Cout

3FA

3

3

Fig. 22. Static fine-grain partitioned adder architecture.

MSB LSB

m''(3)

t(21)-t(19)

m''(3)

SIGN

t(18)-t(15)

m'(3)
m''(2)
m'(2)

t(14)-t(12)

m''(1)
m'(1)MUX MUX MUX

343 12

t(11)-t(0)

m''(2) m''(1) t(18) m''(3) m''(2) m''(1) t(14) m''(3) m''(2) m''(1) t(11)

Fig. 23. An example of partial sign bit recovery logic (PSBRb).

to control speculative delay line.
3) Multiplier controller: There are two types of matched

delay lines used in the multiplier stage illustrated in Fig. 18, a
short delay line (driven byzd z) that matches the computation
delay associated with zero input data and a speculative delay
line (driven by zd nz coupled with the mask signals) that
matches the data-dependent multiplier computation. In both
cases, the MulCtr generatesmul z andmul nz signals using
simple controllers illustrated in Fig. 24(a). By ORing both
signals together, it generates the non-conditionalmul always
to trigger the FFs forwarding all control signals to the accu-
mulator stage. For low-power, themul nz signal latches the
multiplier results only when the input data is non-zero.

4) Timing constraints:The setup constraint from the delay
matching template is that the mask signalsm must be valid
before the first matched delay signal is valid. This ensures that
the setup constraint for the next matched delay lines are also
satisfied. In addition, the reset and hold constraints, for the
asymmetric and symmetric delay templates must be satisfied.
However, since there are no conditional inputs connected to
the controller, there is no other timing constraints associated
with the controller.

E. Accumulator stage

Our 4x4 matrix-vector multiplier consists of four accumu-
lators each responsible for summing up the multiplication
results for a different matrix row. For each computation, the
accumulators accumulate four inputs corresponding to four
matrix columns before asserting one output result.

1) Bit-slice partitioning accumulator:The bit-sliced ar-
chitecture extends to the accumulator stage. By extending
the bit-widths of each bit-slice by two in the accumulator
stage, overflow/underflow is guaranteed not to occur during
the four iterations of accumulation. In order to ensure that both
input operands to each accumulator have the same number of

TECHNICAL REPORT CENG-2005-03 15

MSB LSBInput (x1)

: Half Adder

45678910111213 0123

1234567891011121314

23456789101112131415

4 356789101112131415161718

0

2

4

>>5
>>7
>>9

1

3

5

2

4

6

3

5

7

4

6

8

5

7

9

6

8

10

7

9

11

8

10

12

9

11

13

10

12

14

11

13

15

12

14

13

15

0123567891011121314

0123456789111213 10

>>4

>>2

: Full Adder

MUX:

1 bit-slice activated

2 bit-slices activated

3 bit-slices activated

ALL bit-slices activated

s

a
b

: Critical Path

m(1)

4

m(2)m(3)15

15

����������	

���
����

��� ��“����”

14

15 14

Fig. 21. Proposed asynchronous fine-grained carry-save hardwired multiplier for 0. 35352*x1, where 0.35352 is expressed as (2−9*x1) + (2−7*x1) +
(2−5*x1) + (2−4*x1)+ (2−2*x1).

��
�
�
��
�
�
�

	

��
�
��
�
�
�

S

S���
�

��
�

�����

����

���
�

D

D

D

D

D B

B
	
����

	
���

	
��
�

ADLC/
SDLC

D

D

D

D

D

S

S

S BD

D

BD

��
�

���
�

����
�

�����
� �
�����
�

�
����
�

�

��
�
�

�

��

�
���
��
���
�
�
��
�����

�
���
��
���
�
�
��
��
����������

ZD
Ctr.

MUL
Ctr.

OUT_S
Ctr.

OUT_R
Ctr.

ACC
Ctr.

B

S

= R_gen w/ buffer function

= R_gen w/ split function

��
�
�
��
�
�
�

	

��
�
��
�
�
�

CG
CG

CG CG
���
�

�

��
��
�

�

�

��
�
�

�

��

�
���
��
���
�
�
��
�����

�
���
��
���
�
�
��
��
����������

ZD
Ctr.

MUL
Ctr.

OUT_S
Ctr.

OUT_R
Ctr.

ACC
Ctr.

CG = Clock gating module

��
�
�
�

	

��
�
�

���� ����’

�

��
�
�

�

��’

CG

CLK

���

���
���

�����

Clock
gating (CG)

CG CG
CG

(a) Asynchronous controllers of five stage pipelines

(b) Gated clocking synchronous controllers of five stage pipelines

ADLC/
SDLC

zd_detect’is a latched signal of zd_detect.
last’ is a latched signal of last.

Fig. 24. Controller alternatives: (a) asynchronous controller (b) synchronous controller.

activated bit-slices, both operands are partially sign extended
by PSBRs.

An example of PSBRb is shown in Fig. 23. The PSBRb
first extracts the sign bit using its associated mask signalm′′

for the current accumulation result. It then sign extends any
newly activated bit-slices using a bank of MUXes that either
pass the current bit or the extracted sign bit depending on the
AND of the stored (m′′) and current mask signals (m′). Notice
that the least significant 12 bits needs no sign extension since
they are never forced to zero.

The mask signals associated with both input operands
(m′,m′′) produce a new mask signals (ORed m) by OR-
ing function carrying out the worst-case mask signals. The
multiplexorsM0 selectively feed the proper multiplier results

to the first accumulator operand. The multiplexorsM1 route
either previous accumulator results or zero data as initial input
operand. To save power, the results are latches only if data is
non-zero. We latch initial zero results at the beginning of each
iteration by introducing multiplexorsM2.

2) Speculative completion sensing circuit:The critical path
of the accumulators depends on the carry chain of the ripple
carry adder. The speculative delay matching circuitry is there-
fore similar to that in multiplier with the mask signalORed m
acting as the select lines.

3) Accumulator controller:Similar to the multiplier stage,
two delay lines (driven bymul nz and mul z) are matched
to zero and non-zero data computations respectively. In ad-
dition, for each computation, the controller AccCtr asserts

TECHNICAL REPORT CENG-2005-03 16

the acc req signal at the end of each computation indicating
that the results are ready. Theacc latch nz first signal
conditionally latches in zero data at the beginning of every
computation and the intermediate results after every iteration
in which the input data is non-zero (i.e.mul nz is asserted).
The acc latch nz last signal updates the mask signalsam′

with zero data at the end of every computation and the
current mask (ORedm) after every iteration in which the input
data is non-zero. Fig. 24(a) shows that all Rgen blocks are
implemented using conditional output control templates (spilt
or skip).

4) Timing constraints:The delay line has the setup con-
straint that the mask signals must be valid (ORed m) before
the first matched delay signal is valid. In addition, there is a
setup constraint on the controller stating that the conditional
signals (c0, c1) must be valid before a done signal from either
delay line is asserted.

F. Output storing and recovering stages

The output storing stage latches the results from the ac-
cumulator stage at the end of each computation. The output
recovering datapath (FSBR) then recovers the sign bits using
its associated mask signals (m′′′) using logic similar to the
PSBR blocks. Note that there is no timing constraints for either
of these two controllers.

G. Controller Alternatives

Both synchronous and asynchronous controllers can be
integrated with the same datapath. To fairly compare with
our asynchronous designs, we implemented a gated-clocking
synchronous controller with the same clocking conditions as
the asynchronous design illustrated in Fig. 24(b). In addition,
the controllers in Fig. 24(a) are implemented using PCFB,
T4PFB and ZOT4PFB templates, yielding three different
asynchronous designs for us to compare to. Both standard
and power-efficient asymmetric delay lines are used with the
PCFB-based design for comparison while symmetric delay
lines are used with both T4PFB-based design.

V. DESIGN FLOW, EXPERIMENTAL RESULTS AND

COMPARISONS

Our designs use a hierarchical design flow shown in Fig.
25. First, after behavioral specification of the design is com-
pletely specified, an architectural specification is constructed
by describing each block behaviorally using Verilog. In par-
ticular, the handshaking protocols between controller blocks
are explicitly modeled. At this step, functional correctness of
our architecture is verified by simulation. Next, each block
is decomposed into gate-level where each gate is described
behaviorally using Verilog. Dynamic timing analysis and op-
timization are performed that find the actual critical path in the
datapath in term of gate delays. Additionally, timing analysis
is also applied to the control to estimate average cycle time,
forward latency and control overhead. Gate-level simulation
of each block is performed to ensure correct operation. The
next step is to map each gate in our library into its transistor-
level implementation. A set of transistor-level simulations is

performed to verify correctness and to ensure that all timing
constraints are met. In particular, the delay line’s delay includ-
ing setup and hold constraints are adjusted more precisely at
this step. The final step is to hierarchically generate the layout.
At this step, correctness and timing analysis are performed by
extracting wire capacitance and thus considering the impact
of interconnection delays.

A. Postlayout timing validation

All designs discussed above were laid out in Hynix 0.35µ
CMOS technology. We simulated our designs on the extracted
layout using Nanosim in typical environment i.e. 3.3V and
25oC.

We validated timing constraints manually in postlayout and
allowed all timing margins to be between 10% and 20%.
Where necessary these margins were achieved by careful
design of both the clock tree (for the synchronous design)
and the delay lines (for the asynchronous designs).

B. Energy and throughput comparisons

Our first experiment compares asynchronous designs using
the PCFB control with two different delay lines: one using a
standard asymmetric delay line (PCFBASY M) vs one using
the power efficient delay line (PCFBSY M).

We simulated our designs by applying five different in-
puts which activates zero to all bit-slices. Table III displays
average power, cycle time and energy per cycle. The re-
sult suggests that with comparable performance the design
using PCFBSY M control yields up to 2% lower energy
than one usingPCFBASY M control. Nevertheless, since the
controller contributes as little as 5% of the overall energy, the
PCFBSY M controller yields up to 40% lower energy than the
PCFBASY M controller. Thus, we choose thePCFBSY M

control as the candidate design using PCFB control for the
remaining comparisons.

Next we compare three different asynchronous designs.
Table IV illustrates the worst-case forward latency (FL), cycle
time (τ), and controller overhead (OH) of three designs for
each type of inputs from zero to all bit-slices activated. The
results suggests that the T4PFB controllers operate 17-35%
faster than PCFB’s and the ZOT4PFB controllers run 1-9%
faster than T4PFB’s.

The result suggests the advantage of the ZOT4PFB tem-
plate over the T4PFB template depends on the datapath length.
For example, ZOT4PFB yields a 9% advantage for the zero-
data case while it yields only 1% in case of all bit-slices
activated. Thus, the ZOT4PFB template is more advantageous
for designs with shallower datapaths.

Furthermore, we simulated our synchronous counterpart by
setting the cycle time to slightly more than the worst-case
forward latency (to compensate for clock skew). In particular,
the worst-case latency of the accumulators (acc bs3) is 19.8
ns and we set the synchronous cycle time to 20 ns.

To quantify performance-power tradeoff, we setup 10 test
cases as follows. The first 7 test cases, each having 20 input
vectors, are simulated using Nanosim on the extracted layout.
Of these, the first 5 test cases demonstrate average cycle time

TECHNICAL REPORT CENG-2005-03 17

Algorithmic DesignAlgorithmic Design

Architectural DesignArchitectural Design

Gate Level DesignGate Level Design

Transistor Level DesignTransistor Level Design

LayoutLayout

Input statistics analysis

Control handshaking design
and analysis

Dynamic timing analysis,
performance analysis

and optimization in gate delay

Algorithmic
verification

Functional
verification

Gate level Verification

Timing verification w/o
interconnection delay

Timing verification w/
interconnection delay

Detailed timing and
performance

analysis and optimization

Verification Timing and performance analysis

Fig. 25. Hierarchical design flow.

PCFBASY M PCFBSY M % lower % lower
Test Power τ E/cye Power τ E/cyc overall controller

Patterns (mW) (ns) (pJ) (ns) (ns) (ns) energy energy

zero 12.5 7.4 92.5 13.1 7.1 92.3 0.16% 2-3%
bs1 43.5 16.6 722 42.7 16.8 715 1% 10-19%
bs2 45.3 18.6 843 43.9 18.8 825 2% 20-40%
bs3 48.5 21.8 1055 47.8 21.7 1037 1.9% 19-38%
bs4 46.4 23.9 1109 45.5 24 1092 1.5% 15-31%

TABLE III

COMPARISONS OFPCFB-BASED DESIGNS USING DIFFERENT ASYMMETRIC DELAY LINES.

PCFB T4PFB ZO T4PFB
Test FL τ OH FL τ OH % faster FL τ OH % faster

Patterns (ns) (ns) (ns) (ns) (ns) (ns) (vs PCFB) (ns) (ns) (ns) (vs T4PFB)

zero 3.4 7.1 3.7 4.1 4.6 0.5 35% 4.1 4.2 0.1 8.7%
bs1 12.7 16.8 4.1 12.6 13.1 0.5 22% 12.6 12.8 0.2 2.3%
bs2 14.7 18.8 4.1 14.6 15 0.4 20% 14.5 14.7 0.2 2.0%
bs3 17.5 21.7 4.2 17.6 18.1 0.5 17% 17.6 17.8 0.2 1.6%
bs4 19.8 24 4.2 19.8 20.2 0.4 16% 19.8 20 0.2 1.3%

TABLE IV

TIMING ANALYSIS OF THE PCFB-BASED, T4PFB-BASED AND ZO T4PFB-BASED DESIGNS, INCLUDING FORWARD LATENCY, OVERHEAD, AND CYCLE

TIME .

SYNC ASYNC-PCFB ASYNC-T4PFB ASYNC-ZO T4PFB
Test τ E/cyc Eτ2 τ E/cyc Eτ2 τ E/cyc Eτ2 τ E/cyc Eτ2

patterns (ns) (pJ) (ns) (pJ) (ns) (pJ) (ns) (pJ)

zero 20 96 38 7.1 92 4.6 4.6 90 1.9 4.2 100 1.8
bs1 20 672 269 16.8 687 193 13.1 673 115 12.8 700 115
bs2 20 776 310 18.8 818 289 15 786 177 14.7 834 180
bs3 20 982 393 21.7 1037 488 18.1 962 313 17.8 983 311
bs4 20 1016 406 24 1099 633 20.2 1036 423 20 1047 417

mixed 20 830 332 18.9 894 319 15 863 194 14.8 870 191
LB 20 568 227 17.9 628 201 14.2 581 117 14 611 119
UB 20 826 330 21.4 890 406 17.7 860 270 17.5 875 268

Flower 20 705 282 17.7 738 231 14.3 706 144 14.0 740 145
Football 20 705 282 17.8 738 234 14.4 706 146 14.1 740 147
Tennis 20 705 282 18.1 738 242 14.7 706 152 14.4 740 153

TABLE V

DETAIL TIMING AND ENERGY ANALYSIS OF PCFB-AND T4PFB-BASED DESIGNS(CONTROL AND DATAPATH).

TECHNICAL REPORT CENG-2005-03 18

and energy comparison of zero data and 4 different bit-slices
activated starting from zero data and then bit-slice one (bs1) to
bit-slice four (bs4). Test case 6 is dedicated for mixed inputs
activating all bit-slices. Test case 7 and 8 derive bounds of
cycle time by arranging input sequences as follows. First, 20
inputs with the same bit-slice-activation distribution as real
images are generated. Since the cycle time of a smaller bit-
slice is shorter than that of a longer bit-slice, the lower bound
(LB) is simulated by ordering inputs from small to big valued
data. Further, since our DCT initializes every four iterations
and the accumulators state dictates global performance, the
upper bound (UB) is arranged differently. By ordering from
big to small-valued numbers within each computation, we
obtain the worst-case cycle time for each iteration due to the
worst-case bit-slice alignment in the accumulator stage. The
last 3 test cases, derived from real images, have approximately
seven million input vectors and are simulated using Verilog-
XL with back-annotated timing. The energy metrics for the
last three test cases are estimated using a weighted average of
the first 5 test cases.

The experimental results are depicted in Table V. The first
2 columns for each design show the cycle time (τ) and
energy per cycle (E/cyc). The third column for each design
enumerate theEτ2 [33] product compared to the synchronous
design.

The results lead to the following conclusions. First, since
the identical datapath is applied to all designs, the energy
differences are due to the difference in energy consumed
by the controllers. The clock-gating synchronous controller
consumes the least energy, followed by the asynchronous
T4PFB controller, and followed by the asynchronous PCFB
and ZOT4PFB which consume equivalent power. Addition-
ally, the results show the effectiveness of bit-slice partitioning
in that a smaller bit-slice consumes less energy than a larger
one. In particular, a zero input data consumes far less energy
than the others.

Second, it is obvious that in the asynchronous designs a
smaller bit-slice operates faster than a larger one. However,
due to its large control overhead, the PCFB controller looses
its speed advantage over the synchronous design when more
than two bit-slices are active while the T4PFB controller is
only slower when all bit-slices are active and the ZOT4PFB
run at equal speed when all bit-slices are active. Furthermore,
the results of the bound analysis suggests that compared to the
synchronous design the cycle time of T4PFB and ZOT4PFB
design are between 12-28% and 13-30% faster and the cycle
time of the PCFB falls somewhere between 7% slower and
12% faster. Lastly, the simulation with the three real images
indicates that the typical performance gain over synchronous
design is approximately 30% for the ZOT4PFB-based design,
28% for the T4PFB-based design, and 11% for the PCFB-
based design.

Third, the asynchronous designs can tradeoff performance
for low-power. Without voltage scaling, our designs gives 11-
30% higher performance with a 4-11% energy penalty. If the
power supply is scaled, energy can be quadratically reduced.
We adopt theEτ2 metric to quantify this advantage. The
results show that, compared to the synchronous counterpart,

the PCFB-based design has a 18%Eτ2 advantage while both
ZO T4PFB and T4PFB-based designs have up to a 49%Eτ2

advantage.

VI. CONCLUSION

This paper demonstrates the use of an efficient asynchronous
bundled-data pipeline design methodology on matrix-vector
multiplication for DCTs. Architectural optimizations that takes
advantage of zero and small-valued data, typical in DCT
and IDCT, yield both high average performance and low
power. Novel control circuit templates and data-dependent
delay lines are proposed to create low overhead integrated
control circuits capable of handling nonlinear pipelines and
enabling high average throughput. Comparisons with compa-
rable gated-clocking synchronous counterpart suggest that the
proposed asynchronous design yields 30% higher throughput
with negligible energy overhead and has a 49% betterEτ2

metric.

ACKNOWLEDGMENT

This work was supported by a large-scale NSF ITR Award
No. CCR-00-86036. The authors would like to thank Yunseuk
Na for his help with the chip design. They also would like
to thank Marcos Ferretti and Sangyun Kim for providing
insightful discussions and Jay Moon for expert CAD tool
support. Finally, they also would like to thank all the re-
viewers for their valuable comments. In particular, anonymous
reviewer #2 suggested the power efficient implementation of
the asymmetric delay line.

REFERENCES

[1] K. Rao and P. Yip,Discrete Cosine Transform, Algorithm, Advantages,
Applications. Academic Press, 1990.

[2] A. Madisetti and A. W. Jr., “A 100 MHz 2-D DCT/IDCT processor for
HDTV applications,”IEEE Transactions on CAS for Video Tech., vol. 5,
no. 2, pp. 158–165, 1995.

[3] S. Uramoto, Y. Inoue, A.Takabatake, J. Takeda, Y. Yamashita, M. Terane,
and M. Yoshimoto, “A 100 MHz 2-D discrete cosine transform core
processor,”IEEE Journal of Solid-State Circuits, vol. 36, pp. 492–499,
April 1992.

[4] T. Xanthopoulos and A. P. Chandrakasan, “A low-power IDCT macrocell
for MPEG-2 MP@ML exploiting data distribution properties for minimal
activity,” IEEE Journal of Solid-State Circuits, vol. 34, pp. 693–703, 1999.

[5] R. Manohar, “Width-adaptive data word architectures,” inAdvanced
Research in VLSI, Mar. 2001, pp. 112–129.

[6] R. Canal, A. Gonzalez, and J. Smith, “Very low power pipelines using
significance compression,” inProceedings of MICRO’33, Dec. 2000, pp.
181–190.

[7] L. S. Nielsen and J. Sparsø, “Designing asynchronous circuits for low-
power: An IFIR filter bank for a digital hearing aid,”Proceedings of the
IEEE, vol. 87, no. 2, pp. 268–281, Feb. 1999.

[8] K. Kim, P. A. Beerel, and Y. Hong, “An asynchronous matrix-vector
multiplier for discrete cosine transform,” inInternational Symposium on
Low Power Electronics and Design, July 2000, pp. 256–261.

[9] A. Lines, “Pipelined asynchronous circuits,” California Institute of Tech-
nology, Technical Report 1998.cs-tr-95-21, June, 1998.

[10] A. M. G. Peeters, “Single-rail handshake circuits,” Ph.D. dissertation,
Eindhoven University of Technology, June 1996.

[11] T. Verhoeff, “Delay-insensitive codes—an overview,”Distributed Com-
puting, vol. 3, no. 1, pp. 1–8, 1988.

[12] I. E. Sutherland, “Micropipelines,”Communications of the ACM, vol. 32,
no. 6, pp. 720–738, June 1989.

[13] S. Tugsinavisut, S. Jirayucharoensak, and P. A. Beerel, “An asyn-
chronous pipeline comparisions with appication to DCT matrix-vector
multiplication,” in Proc. International Symposium on Circuits and Sys-
tems, May 2003, p. 1098.

TECHNICAL REPORT CENG-2005-03 19

[14] S. B. Furber and P. Day, “Four-phase micropipeline latch control
circuits,” IEEE Transactions on VLSI Systems, vol. 4, no. 2, pp. 247–
253, June 1996.

[15] C. Farnsworth, D. A. Edwards, J. Liu, and S. S. Sikand, “A hy-
brid asynchronous system design environment,” inAsynchronous Design
Methodologies. IEEE Computer Society Press, May 1995, pp. 91–98.

[16] T.-A. Chu, “Synthesis of self-timed VLSI circuits from graph-theoretic
specifications,” Ph.D. dissertation, MIT Laboratory for Computer Science,
June 1987.

[17] R. M. Fuhrer, S. M. Nowick, M. Theobald, N. K. Jha, B. Lin, and
L. Plana, “Minimalist: An environment for the synthesis, verification and
testability of burst-mode asynchronous machines,” Columbia University,
NY, Tech. Rep. TR CUCS-020-99, July 1999.

[18] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno, and
A. Yakovlev, “Petrify: a tool for manipulating concurrent specifications
and synthesis of asynchronous controllers,”IEICE Transactions on Infor-
mation and Systems, vol. E80-D, no. 3, pp. 315–325, Mar. 1997. Avail-
able:http://www.lsi.upc.es/˜jordic/petrify/refs/

[19] J. Cortadella and R. M. Badia, “An asynchronous architecture model
for behavioral synthesis,” inProc. European Conference on Design
Automation (EDAC). IEEE Computer Society Press, 1992, pp. 307–
311.

[20] K. Y. Yun, P. A. Beerel, V. Vakilotojar, A. E. Dooply, and J. Arceo,
“The design and verification of a high-performance low-control-overhead
asynchronous differential equation solver,”IEEE Transactions on VLSI
Systems, vol. 6, no. 4, pp. 643–655, Dec. 1998.

[21] A. Yakovlev, A. Koelmans, and L. Lavagno, “High-level modeling
and design of asynchronous interface logic,”IEEE Design & Test of
Computers, vol. 12, no. 1, pp. 32–40, Spring 1995.

[22] M. Theobald and S. M. Nowick, “Transformations for the synthesis and
optimization of asynchronous distributed control,” inProc. ACM/IEEE
Design Automation Conference, June 2001.

[23] A. Yakovlev, M. Kishinevsky, A. Kondratyev, L. Lavagno, and
M. Pietkiewicz-Koutny, “On the models for asynchronous circuit be-
haviour with OR causality,”Formal Methods in System Design, vol. 9,
no. 3, pp. 189–233, 1996.

[24] T. E. Williams, “Self-timed rings and their application to division,” Ph.D.
dissertation, Stanford University, June 1991.

[25] R. Ozdag and P. Beerel, “High-speed QDI asynchronous pipelines,” in
Proc. International Symposium on Advanced Research in Asynchronous
Circuits and Systems, Apr. 2002, pp. 13–22.

[26] A. J. Martin, “The limitations to delay-insensitivity in asynchronous
circuits,” in Advanced Research in VLSI, W. J. Dally, Ed. MIT Press,
1990, pp. 263–278.

[27] C. Seitz, “System timing,” inIntroduction to VLSI Systems, C. A. Mead
and L. A. Conway, Eds. Addison-Wesley, 1980, ch. 7.

[28] S. Tugsinavisut and P. A. Beerel, “Control circuit templates for asyn-
chronous bundled-data pipelines,” inProc. Design, Automation and Test
in Europe (DATE), Mar. 2002, pp. 361–364.

[29] S. M. Nowick, “Design of a low-latency asynchronous adder using spec-
ulative completion,”IEE Proceedings, Computers and Digital Techniques,
vol. 143, no. 5, pp. 301–307, Sept. 1996.

[30] A. J. Martin, “Programming in VLSI: From communicating processes
to delay-insensitive circuits,” inDevelopments in Concurrency and Com-
munication, ser. UT Year of Programming Series, C. A. R. Hoare, Ed.
Addison-Wesley, 1990, pp. 1–64.

[31] Y. Bystrov, D. Shang, F. Xia, and A. Yakovlev, “Self-timed and speed
independent latch circuits,” in6th UK Asynchronous Forum, July 1999.

[32] A. P. Chandrakasan and R. W. Brodersen,Low Power Digital CMOS
Design. Kluwer Academic Publishers, 1995.

[33] J. Teifel, D. Fang, D. Biermann, C. Kelly, and R. Manohar, “Energy-
efficient pipelines,” inProc. International Symposium on Advanced Re-
search in Asynchronous Circuits and Systems, Apr. 2002, pp. 23–33.

