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Abstract— We present a comparative mathematical analysis of
two important distinct approaches to hybrid push-pull query-
ing in wireless sensor networks: structured hash-based data-
centric storage (DCS) and the unstructured comb-needle (CN)
rendezvous mechanism. Our analysis, which is based on a single-
sink square-grid deployment, yields several interesting insights.
For ALL-type queries pertaining to information about all events
corresponding to a given attribute, we examine the conditions
under which the two approaches outperform each other in terms
of the average query and event rates. For the case of ANY-type
queries where it is sufficient to obtain information from any
one of the desired events for a given attribute, we propose and
analyze a modified sequential comb-needle technique (SCN) to
compare with DCS. We find that DCS generally performs better
than CN/SCN for high query rates and low event rates, while
CN/SCN perform better for high event rates. Surprisingly, for the
cases of ALL-type aggregated queries and ANY-type queries, we
identify the existence of “magic number” event rate thresholds,
independent of network size or query probability, which dictate
the choice of querying protocol.

I. INTRODUCTION

The primary function of a sensor network is to enable
information gathering. The simplest strategy is to have all
sensors provide a continuous stream of all the data that they
gather to a sink node. However, for many classes of applica-
tions where only a small subset of the collected information
is likely to be useful to end-users, the simple approach can
become very inefficient. Researchers have therefore advocated
the use of data-centric techniques which allow for efficient in-
network storage and retrieval of named data using queries [1].
A number of data-centric querying and routing techniques have
been proposed and examined in recent years: directed diffu-
sion [2], TAG/TinyDB [3], rumor routing [4], hash-based data
centric storage [5], hybrid push-pull [8], comb-needles [9],
ACQUIRE [10], TTL-based expanding search [11], [12].

With the presence of an increasing number of choices of
data-centric storage and querying techniques, it becomes of
crucial importance to understand and quantify their perfor-
mance (both in absolute terms and with respect to each other)
with respect to key application, network, and environmental
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parameters. In particular, carefully developed mathematical
models can provide deep practical design insights on proto-
col selection as well as protocol parameter optimization for
different sensor network deployments.

There are several interesting prior studies on analytical mod-
eling of query strategies [5], [10], [8], [7], [6], [9], [12]. The
energy costs of data centric storage are compared with the two
extremes of external storage and local storage in [5]. A hybrid
push-pull query processing strategy is proposed and analyzed
in [8]. Push and pull alternatives of directed diffusion are also
analyzed in [7]. Shakkotai [6] has presented a comparison of
the asymptotic performance of three random walk-based query
strategies, showing that a push-pull rendezvous-based sticky
search has the best success probability over time. The optimal
parameter setting for the comb-needles approach is analyzed
in [9]. The optimal replication level for queries disseminated
using expanding ring searches is analyzed in [12]. A common
thread through much of this literature on the analysis of
query techniques is the argument that tunable hybrid push-
pull strategies offer significant advantages. Our work builds on
and complements these existing studies, as we aim to compare
two distinct and important approaches to hybrid push-pull
querying.

Following the nomenclature used to classify peer-to-peer
networks, we can distinguish between two main categories of
hybrid push-pull query strategies: structured and unstructured.
The structured approach is exemplified by geographic hash
table-based data centric storage technique [5]. The data from
sources is placed at a location using the same hash that the
sink uses to retrieve it. This significantly simplifies the query
since the sink effectively “knows” exactly where to look for
the stored information. The unstructured approach to push-pull
querying is exemplified by the comb-needle approach [9]. In
this approach the absence of a hash implies that the sink does
not have prior knowledge of the location of the information.
In that case, the queries are disseminated in the form of
a comb with horizontal teeth, while the sources send event
notifications independently in the form of limited vertical
needles in either direction. The inter-teeth spacing and needle
size are chosen and optimized to ensure that sources and sinks
can rendezvous with each other efficiently. To the best of
our knowledge, these two distinct and important approaches
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to hybrid push-pull querying — the structured DCS and
the unstructured comb-needle technique — have never been
compared to each other. This is our objective in this paper.

We undertake a mathematical analysis comparing the ex-
pected total energy costs of both these approaches on a grid-
based sensor deployment. Our modelling of these query strate-
gies allows us to study the impact of several key parameters
such as the size of the network, the event and query rates, the
use of data aggregation (using summaries), as well as the type
of queries. For a fair comparison, we carefully select optimized
versions of each strategy. In particular, we allow the storage
location to be chosen optimally for the hash based data-centric
storage scheme, and we use optimized inter-tooth spacing for
the comb-needle approach.

We consider two important types of one-shot queries in this
paper. We refer to the first query type as an ALL-type query.
These are global discovery-type queries, such as ‘Give me
the location of all the lions in the sensor deployed area?’ or
‘Return the locations that have temperature ≥ 60◦ F’. In this
case, the desired information must be obtained from all nodes
in the network with relevant event information. The second
type of query, which we refer to as an ANY-type query, is
a one-shot query where any event that has the information
can reply to the querier. Examples of such queries are ‘Give
me any location where a lion has been spotted in the sensor
deployed area?’ or ’Give me any location where the measured
temperature is greater than 60◦ F’. For the ANY-type queries,
we find that the entire network need not be necessarily covered
by the combs in the comb-needle strategy. Based on this
insight, we propose and analyze a modified sequential comb-
needle querying scheme (see Section II-C).

Our analysis yields a number of useful insights into the
relative performance of structured and unstructured approaches
to hybrid push-pull querying. In all cases, we find that the
unstructured comb-needle approach outperforms the data cen-
tric storage strategy when the number of events per epoch is
large, while the reverse is true for small number of events,
particularly for higher query rates. A particularly surprising
and strong finding of our analysis is that under the assumptions
of our modelling (large square grid network with a single
caching-enabled querying sink located at bottom left) for the
cases of aggregated ALL-type queries as well as the ANY-type
queries, there exist “magic numbers” dictating which approach
should be used for a given application scenario. In particular,
for ALL-type queries, we find that if the expected number
of events per epoch is greater than about 40 (regardless of
the query rate or the size of the network), the comb-needle
strategy always outperforms data centric storage. For ANY-
type queries, when the number of events per epoch is less
than about 1.5 (regardless of the query rate or network size),
the data-centric storage approach always outperformas great
than about 3.2 (again, regardless of the query rate or network
size), the sequential comb-needle strategy always outperforms
data-centric storage.

The rest of the paper is organized as follows. In section II,
we present a brief overview of the algorithms to be analyzed in
our paper: data centric storage (DCS), the basic comb-needle
(CN) algorithm, and sequential comb-needle (SCN) algorithm.

Fig. 1. Illustration of the data centric storage technique

Fig. 2. Illustration of the comb-needles technique

We specify our modelling assumptions in section III. We
derive and compare the costs of data centric storage and comb-
needle strategies with and without summary aggregation for
ALL-type queries in section IV. Then we analyze and compare
data centric storage with the sequential comb-needle algorithm
in section V. Finally, we discuss our key findings, along with
directions for future work in the concluding section VI.

II. OVERVIEW OF ALGORITHMS

A. Data Centric Storage (DCS)

The data centric storage query dissemination strategy uses
distributed hash tables to store the event data sensed by a
particular node (see Figure 1). All the events of a particular
event type (i.e. event having similar attributes) are hashed to
the same node location. The data is then transported from
the various event nodes along the shortest path to the node
at the chosen location. Assuming the presence of location
information, the authors propose to use GPSR to perform
the routing. Queries for an event are then directed along the
shortest path to these named location, since the query nodes
also use the same hash function. The query responses are sent
on the reverse path along which the query is forwarded.

B. Comb Needle (CN)

In this query dissemination strategy, the event nodes send
out the sensed information vertically up and down like a spike
(needle) of a certain length (see Figure 2). Let the length of the
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Fig. 3. Illustration of the sequential comb-needle technique

needle be denoted by s. The sink then sends out a query that
traverses the network along a comb. The separation between
the teeth of the comb is also s to ensure that at least one
comb teeth hits each needle, so as to not miss out any event
nodes. The information requested is then sent back to the sink
along the shortest path. Note that this strategy is used when
the average number of queries, Q, is less than or equal to the
average number of events, E. When Q > E, a reverse comb-
needle strategy is used where the query nodes form a needle
and the event information is forwarded along a comb. Hence,
the total cost for query dissemination in case of CN (CCN )
depends on the relationship between Q and E. However, in
our case, since the sink is fixed and located at the left-bottom
corner of the grid we do not use the reverse comb needle
scheme.

C. Sequential Comb-Needle (SCN)

The motivation behind introducing this query scheme is to
efficiently resolve the ANY type queries in which case the
query terminates as soon as the query hits first event node
of interest. In this way, the sequential comb needle scheme
will always do better than the comb-needle scheme since it
does not pay the extra cost incurred by the comb during
query dissemination. In this scheme, similar to the comb-
needle scheme, the event nodes form needles by spreading
their information vertically to some nodes above and below
them. The query originates from the sink and traverses the
network as shown in Figure 3. Again, the size of the needles
is denoted by s. Also, the distance between consecutive query
horizontal traversals is s. The moment the query hits a node
with the desired event information, the query path is truncated
and the response is returned back to the sink.

III. MODEL AND ASSUMPTIONS

We first present our modelling assumptions:

• We consider a
√

N ×
√

N regular grid comprising N
nodes. Each node has 4 neighboring nodes adjacent to it.
Hence, the distances between the nodes are evaluated as
Manhattan distances.

• Queries only occur at the sink node located at the left-
bottom corner of the grid. This represents the interface
of the sensor network to the outside world.

• We consider a time period, T , defined as an epoch. This
represents the period of time when the event information
stored by the nodes will be valid.

• Our analysis aims at optimizing the total expected energy
cost incurred during each epoch. We use the total number
of required unicast transmissions as the indicator of
energy costs.

• Without loss of generality, we focus the analysis on
queries and events for a single generic event attribute
(i.e. event type). Events corresponding to this attribute are
assumed to occur uniformly across the sensor network.

• We denote by E the average number of events that occur
during epoch T .

• We denote by Q the expected number of queries that
occur within epoch T . Since the event information does
not change over an epoch, Q is always between 0 and
1 and represents the probability that a query is issued
during that epoch.

• We assume the presence of a suitable MAC layer to
handle collisions and contention.

IV. ANALYSIS OF ALL-TYPE QUERIES

As mentioned earlier, ALL-type queries are of the type
‘Give me all locations in the network where a lion was seen’.
We first present the comparison of the data-centric storage
and comb-needle scheme for such queries. We consider two
cases: (a) When all the event information is sent to the sink
(Without aggregation i.e. with no summaries). (b) When only
an aggregated summary of the event information is sent to the
sink (With aggregation i.e. using summaries).

A. Without Aggregation

1) Cost of DCS with optimized hash location: Below, we
calculate the average cost incurred in case of the DCS strategy
in terms of the number of hops needed for query resolution
in the epoch T .

There are 3 different query costs involved, Cst to store
events, Cqd the query dissemination cost and Cqr the cost
for the query response. Hence, we have total cost in case of
DCS, given by,

CDCS = Cst + Cqd + Cqr (1)

Since the position of the sink is fixed and known a priori,
the DCS scheme can be optimized on the basis of the position
of the hashed named location where all the event nodes send
their data. Let Popt(x, y) denote the location of the node at
that point. By symmetry, it is easy to see that Popt will lie
on the diagonal of the grid, otherwise, nodes on either side of
the diagonal will have a larger distance to Popt. Hence, they
will pay more for transferring the event information to Popt

as compared to the other nodes. Hence, we have x = y = p
(say). Let d1(p) denote the distance from the sink to Popt, and
d2(p) the average distance between any node on the grid to
the node located at point Popt.
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Note that without summaries, all the event information has
to be sent out in the reply to the sink. Hence, we have,

CDCS = min
p

(d2(p) · E + d1(p) ∗ Q + d1(p) · Q · E)

Without summaries (2)

We can determine the distance from the sink to Popt trivially
as

d1(p) = x + y = 2 · p (3)

Fig. 4. Illustration of the four-rectangle decomposition for calculating d2(p)
- the average distance between all nodes and a storage point located at
Popt(p, p)

The calculation of d2(p) is more involved. We can consider
the grid as being divided into 4 rectangles as shown in
Figure 4. The size of these rectangles is p × p, (

√
N −

p) × (
√

N − p), p × (
√

N − p) and (
√

N − p) × p. The
average distance from a node, located on a corner, to any node
for a rectangle of size X × Y is given by Equation 39(see
Appendix), Drect = X·Y ·(X+Y −2)

2·(X·Y −1) .
For rectangle 1, the average distance between the node on

its right-top corner and the other nodes is given by p2

p+1 . Note
that there are p2 − 1 nodes in this rectangle other than the
node at the right-top corner. Hence, the total distance between
any node and the node on the right-top corner is given by,

p2

p + 1
· (p2 − 1) (4)

Similarly, total distance for rectangle 3 is given by,

(
√

N − p)2√
N − p + 1

· (
√

N − p)2 − 1) (5)

Since rectangles 2 and 4 are of the same size, we have their
total distance given by,

2 · p · (
√

N − p)

2
·

√
N − 2

p · (
√

N − p) − 1
· (p · (

√
N − p)− 1) (6)

Also, note that the distance from A to Popt is 2, while the
distance from B and C to Popt is 1. Hence, we need to add
an additional 2 · p2 and 2 · p · (

√
N − p) to the numerator to

account for the distances between all the points in rectangles
1, 2 and 4 to point Popt.

From Equations 4, 5, and 6 we get,

d2(p) =
1

N − 1
·
[

(
√

N − p)2 · (
√

N − p − 1)

+p · (
√

N − p) · (
√

N − 2) + p2 · (p − 1)

+2 · p2 + 2 · p · (
√

N − p)
]

(7)

Simplifying the above expression we get,

d2(p) =
1

N − 1
·
[

N ·
√

N − N − 2 · N · p+

2 ·
√

N · p2 + 2 ·
√

N · p
]

(8)

From Equation 2 we have,

CDCS = min
p

( E
N−1 ·

[

N ·
√

N − N − 2 · N · p

+2 ·
√

N · p2 + 2 ·
√

N · p
]

+2 · Q · (E + 1) · p) (9)

Using
√

N + 1 =
√

N − 1 ≈
√

N and N − 1 ≈ N , for
large N, and simplifying the above equation we get,

CDCS = min
p

((
√

N − 2 · p +
2√
N

· p2) · E + 2 · Q · (E + 1) · p)

(10)
In order to determine the optimum value of p, we differ-

entiate the above equation with respect to p and set it to 0.
This yields the minimum value for CDCS because the above
expression is convex in p. Hence, we get the optimal value of
p as,

p∗ =

√
N · (

√
N − 1) · E − Q · (E + 1) · (N − 1)

2 · E · (
√

N + 1)

≈
√

N

2 · E · (E − Q · (E + 1)) (11)

In the above expression, if p∗ ≤ 0, this implies that the
event nodes should send all their information directly to the
sink. This resembles the external storage scheme. In that case,
the expression for CDCS reduces to

√
N ·E. Hence, the cost

for query dissemination then goes to 0. Also, the condition for
which p∗ > 0 is given by,

Q <
E

E + 1
(12)

Putting the optimal value of p∗ obtained from Equation 11
into Equation 10, we get the total cost for the DCS scheme
(without summaries) as,

CDCS =











√
N [Q · (1 + E)−

Q2
·(1+E)2

2·E + E
2

]

if Q < E
E+1√

N · E Otherwise

(13)
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2) Cost of CN with optimized inter-tooth spacing: The
derivation for the analysis of the comb-needle strategy is
adapted from [9], however, here we use the exact expressions
in case of the grid. First, we consider the case without
summaries. As with DCS, there are 3 different costs involved,
Cneedle represents the needle costs for forwarding the event
information to a subset of nodes, Ccomb represents the query
dissemination cost and Cqr represents the cost for the query
response. Below, we present expressions for each of them.

CCN = Cneedle + Ccomb + Cqr (14)

Let s be the length of the needle formed by each node that
senses an event. Then, the total needle cost is given by,

Cneedle = s · E (15)

In the comb-needle strategy, the query is first sent out
vertically upward from the sink and then fans out horizontally
(see Figure 2). The distance between consecutive horizontal
fan outs is also s, also known as the teeth separation for the
comb.

Ccomb = (
√

N − 1 + (
√

N − 1) · (d
√

N − 1

s
e + 1)) · Q

≈ 2 ·
√

N · Q +
N · Q

s
(16)

Note that the ceil is present because there is a horizontal
fan out at (0,0) and (

√
N − 1,0). Assuming, that each node

where the comb tooth intersects with the needle, replies along
the shortest path to the sink (see Appendix VIII), we have the
total query response cost given by,

Cqr =
N√

N + 1
· E · Q

≈
√

N · E · Q (17)

Hence, the total cost for the comb needle strategy is given
by,

CCN = s · E + 2 ·
√

N · Q +
N · Q

s
+

√
N · E · Q (18)

Now we find the value of s that minimizes this total query

cost. On solving we get, s∗ =
√

N ·
√

Q
E

Hence, the total cost with the comb needle scheme without
summaries is given by,

CCN =
√

N · (2 · Q + 2 ·
√

Q · E + ·E · Q) (19)

3) Comparison of DCS and CN: Figure 5 (a) and (b)
compares the normalized expected cost of querying (which
is calculated as the total expected cost divided by the square-
root of the number of nodes) with the DCS and CN strategies
with respect to the two key parameters E and Q. We observe
that CN outperforms DCS as the average number of events
per epoch increases, while DCS outperforms CN when the
per-epoch query probability increases.

Figure 6 shows the regions in the E-Q plane where DCS
and CN outperform each other. This is generated by obtaining
the zero-contour of the surface representing the difference in

cost between DCS and SCN as a function of E and Q. We note
that the equal-cost curve grows slowly with respect to E1. In
particular, there is no threshold event rate beyond which CN
is always better regardless of the query rate — we shall see
later that this is not always the case.

B. With Aggregation

1) Cost of DCS with optimized hash location: With sum-
maries, all the event information can be compressed into a
single packet and sent out to the sink, hence, we have,

CDCS = min
p

(d2(p) · E + d1(p) · Q + d1(p) · Q)

With summaries (20)

Using a similar procedure to that used above for the case
without summaries, since only the reply cost is different and
everything else is the same, we obtain the total cost for DCS
with summaries as,

CDCS =











√
N [2 · Q−

2·Q2

E
+ E

2

]

if Q < E
2√

N · E Otherwise

(21)

2) Cost of CN with optimized inter-tooth spacing: We now
describe the CN cost with summaries. The only change that
occurs in the cost of the reply path. The query dissemination
cost, Cqd and the needle cost Cneedle remain the same as
was the case without summaries. For the reply cost, we note
that reply from the various events can be aggregated on the
way back to the sink. To account for this aggregation we
approximate the reply cost to be the same as the cost for the
comb i.e. the cost for query dissemination. This is because the
events need only send their data horizontally toward the sink,
the vertical path downward toward the sink will account for
the aggregation. Hence, now we have the total cost for CN
given by,

CCN = Cneedle + Ccomb + Cqr = Cneedle + 2 · Ccomb (22)

CCN = s · E + 4 · Q · (
√

N − 1)

+2 · (
√

N − 1) · (d
√

N − 1

s
e) · Q

≈ s · E + 4 · Q ·
√

N + 2 · Ns · Q (23)

Again, we solve for the optimum s to get, s∗ =
√

N ·
√

2·Q
E

Hence, the total cost with the comb needle scheme with
summaries is given by,

CCN = 2 ·
√

2 · N · Q · E + 4 ·
√

N · Q (24)

1This can be shown rigorously in terms of the derivative of that curve, but
we do not present that analysis here due to lack of space
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3) Comparison of DCS and CN: Figures 7(a) and (b)
compare the normalized expected cost of storage and querying
with the DCS and CN strategies with respect to the two key
parameters E and Q. We observe that even with summaries
CN outperforms DCS as the average number of events per
epoch increases, while DCS outperforms CN when the per-
epoch query probability increases.

Figure 8 shows the regions in the E-Q plane where DCS
and CN outperform each other. We can see that (unlike in the
case without summaries) there exists an threshold Θ for the
event rate beyond which CN is always better. This threshold
can be derived analytically.

First, we can prove that when Q ≥ E/2, CDCS =
√

NE
is always smaller than CCN , hence there is no solution for
CDCS −CCN = 0 in this case. When Q < E/2, then we can
write the expression for the equal-costs curve as follows:

√
N

[

(2Q − 2Q2

E
+

E

2
) − (2

√

2QE + 4Q)

]

= 0 (25)

As can be seen from the figure, the threshold event rate
corresponds to the point when there is a query at every epoch.
Setting Q = 1, and solving the above expression for E, we find
that the threshold Θ ≈ 39.78. An important point to note is
that this threshold is a “magic number” that is independent of
the size of the network. It tells us a surprising design lesson:
for a grid-based network where ALL-type queries are always
injected from the bottom left corner, if there are more than 40
events on average in each epoch that must be aggregated in
response to queries, then a comb-needle approach is preferable
in terms of total energy cost to a hash-based data-centric
storage approach.

V. ANALYSIS OF ANY-TYPE QUERIES

Recall that in case of ANY-type queries, the query need not
visit every node in the network, it should be terminated as soon
as it hits a node that has the desired information. Here, for such
query types, we obtain the expressions for the data-centric
storage scheme and the modified comb and needle scheme
which we call the sequential comb-needle (SCN) scheme.

4) Cost of DCS: The cost for ANY-type queries remains the
same as that obtained for ALL-type queries with summaries.
This is because the data centric storage scheme stores all the
information about a given event type at a named location.
Hence, the reply to the ANY-type query can be considered
similar to just returning the summary. Hence, the cost in case
of DCS can be obtained from Equation 21.

5) Cost of SCN: We now derive the cost for the sequential
comb-needles (SCN) approach. To determine the cost for the
query transmission we need to obtain the average number of
hops/transmissions till a node with the desired event infor-
mation is hit. Since each event node replicates the data to s
other nodes, and the separation between successive horizontal
traversals along the query path is also s, the original grid with
N nodes can be transformed to a new grid with N

s
nodes. The

sequential comb-needle scheme then traverses this new grid
as a chain of N

s
nodes. Denote n = N

s
. Let X be a random

variable that determines the number of hops till a event node
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is hit by the query. Note that, even in this compressed chain,
E·s
s

= E is the number of event nodes. Now, we have the cdf
of X given by,

cdf(X) = P (X ≤ k) = 1 − (
n − k

n
)E (26)

We can now obtain the pmf of X as,

pmf(X) = P (X ≤ k) − P (X ≤ k − 1)

= (1 − k − 1

n
)E − (1 − k

n
)E (27)

Now the expected value of X can be obtained by using
Equation 27 as follows,

Exp(X) =

n−1
∑

k=1

k · ((1 − k − 1

n
)E − (1 − k

n
)E) (28)

Let f(k) = (1 − k
n
)E . Then we get,

Exp(X) =
n−1
∑

k=1

k · (f(k − 1) − f(k)) (29)

Note that this summation can be opened up, so the consec-
utive terms can be grouped together to leave,

Exp(X) =

n−1
∑

k=1

f(k) − n · f(n) =

n−1
∑

k=1

(1 − k

n
)E (30)

Note that f(n) = 0, hence, in the above expression by
substituting j = n − k, we get,

Exp(X) =

n−1
∑

j=1

(
j

n
)E =

1

nE

n−1
∑

j=1

jE (31)

Approximating the summation by an integration, we get,

Exp(X) ≈ 1

nE
· nE+1

E + 1
=

n

E + 1
=

N
s

E + 1
(32)

Note that Exp(X) just accounts for the number of horizontal
steps taken by the SCN query path. We also need to account
for the vertical steps that it takes. This can be approximated
by determining the y-coordinate of the point where SCN hits
the first event node. This is given by,

Y =

N
s·(E+1)√

N
· s =

√
N

E + 1
(33)

For simplicity, we assume that the query response path is
the same as that taken by the query. Now, we can get the total
cost in case of SCN as,

CSCN = Cneedle + Cqd + Cqr (34)

CSCN = s.E +
N
s

E + 1
· Q +

N
s

E + 1
· Q + 2 ·

√
N

E + 1
(35)
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Fig. 9. Cost of SCN and DCS for ANY-type queries, with summary
aggregation, with respect to E (for Q = 0.1), and with respect to Q (for
E = 2)

Solving for the value of s that minimizes CSCN we get

s∗ =
√

2·N ·Q
E·(E+1) . Using this value, we get the total cost in

case of the sequential comb-needle strategy as,

CSCN = 2 ·
√

2 · N · Q · E
E + 1

+ 2 ·
√

N

E + 1
(36)

6) Comparison of DCS and SCN: Figures 9 (a) and (b)
compare the normalized expected cost of storage and querying
with the DCS and SCN strategies with respect to the two key
parameters E and Q. We observe that SCN outperforms DCS
as the average number of events per epoch increases, while
DCS outperforms SCN when the per-epoch query probability
increases.

Figure 10 shows the regions in the E-Q where DCS and
SCN outperform each other. We can see that in this case,
there are two significant thresholds for the event rate. Below a
lower threshold Θlower, we find that DCS is always better
(regardless of the query probability), and above an upper
threshold Θupper, SCN is always better (regardless of the
query probability). These “magic numbers” can be derived
analytically.

First, similar to the analysis of the DCS and CN strategies
with aggregated responses for the ALL-type queries, we can
prove that when Q ≥ E/2, CDCS =

√
NE is always smaller

than CSCN . When Q < E/2, then we can write the expression
for the equal-costs curve as follows:

√
N

[

(2Q − 2Q2

E
+

E

2
) − (2

√

2QE

E + 1
+

2

E + 1
)

]

= 0

(37)
As can be seen from the figure, the threshold event rate

corresponds to the point when there is a query every epoch.
Setting Q = 0, and solving the above expression for E, we get
the lower threshold Θlower ≈ 1.56. And setting Q = 1, and
solving the above expression for E, we find that the threshold
Θupper ≈ 3.16.

VI. CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS

We have presented a comparative analysis of two distinct
and important approaches to hybrid push-pull querying in
wireless sensor networks - the structured hash-based DCS,
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Fig. 10. Relative Performance of SCN and DCS for ANY-type queries with
respect to event and query rates

and the unstructured CN/SCN. We have examined their perfor-
mance with respect to key environment, network, and applica-
tion parameters including the event and query rates, network
size, type of query, and the use in-network aggregation.

We have found that the costs of DCS, CN, and SCN are
all directly proportional to the square-root of the number of
nodes in the network. Therefore the relative performance of
DCS versus CN/SCN is unaffected by network size. The exact
shape of the relative best performance regions for the two
approaches do change depending on the query type (ALL,
ANY) and the use/non-use of summary aggregation; however,
we find in all cases that the unstructured CN/SCN approach
generally outperforms the DCS strategy when the number
of events per epoch is large, while the reverse is true for
small number of events, particularly for higher query rates.
A possible explanation for this is that, relatively speaking, the
query cost burden is reduced in structured strategies like DCS
when compared with an unstructured strategy like CN/SCN
because the use of hashing provides a predetermined location
to pick up information about all events. But this comes at the
expense of a higher cost burden in event notification since
all events must be transmitted to a generally non-local hash
location. Thus a hash-based push-pull scheme like DCS favors
high query rates but low event rates, compared to an path-
intersection based push-pull scheme like CN/SCN.

Our analysis reveals the existence of event rate thresholds
for aggregate ALL-type queries (Θ ≈ 39.78) as well for
as ANY-type queries (Θlower ≈ 1.56,Θupper ≈ 3.16), that
dictate which protocol should be used in a given application
scenario regardless of the query probability. It is remarkable
that these thresholds are also independent of the network size.

Besides offering some concrete guidelines for practitioners,
this study suggests a number of interesting directions for
future work. These include extensions of the analysis taking
into account different deployment topologies, different cost
metrics (including other energy models, as well as delay), and
allowing multiple querying sinks. The theoretical results we
present should also be validated through experiments on a real
application/test-bed.
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VIII. APPENDIX

Average distance between a node located at the bottom-
left corner and any other node within a X×Y rectangular
grid

This can be expressed by the following summation:

Drect =

∑X−1
i=0

∑Y −1
j=0 (i + j)

X · Y − 1
(38)

Evaluating the above expression, we get

Drect =
X · Y · (X + Y − 2)

2 · (X · Y − 1)
(39)

Note that from this by setting X = Y =
√

N , we have the
distance from the node at one corner to any point in the

√
N

by
√

N square grid:

Dsquare =
N√

N + 1
(40)


