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Abstract

We consider the problem of optimizing the number of replicas for event information in wireless sensor
networks, when queries are disseminated using expanding rings. We obtain closed-form approximations
for the expected energy costs of search, as well as replication. Using these expressions we derive
the replication strategies that minimize the expected total energy cost, both with and without storage
constraints. In both cases, we find that events should be replicated with a frequency that is proportional
to the square root of their query rates. We validate our analysis and optimization through a set of realistic
simulations that incorporate non-idealities including deployment boundary effects and lossy wireless links.

I. I NTRODUCTION

While the nodes in a sensor network can be operated in a continuous data gathering mode, this approach
is not useful except for very simple applications. Continuous data gathering from all sensors is generally
very inefficient if most of the sensed information is not essential, or if there are multiple sinks that may
need to request different subsets of the sensed information at different times. In such contexts it is better
to think of the sensor network as a decentralized data storage system (see [1] for an excellent survey of
data-centric storage techniques). In such a data-centric storage approach, the sensed data can be either
stored locally or at one or more remote locations within the network. Event information is obtained by
sinks through queries that are issued on an on-demand basis.

In this work, we focus on the case of replicated event information stored at multiple storage points in
the network in a randomized manner. Multiple replicas of an event (or in the case of large data items,
pointers to where the original event information is stored) can be either placed carefully at predetermined
locations or randomly. The former approach is exemplified by hash-based data centric storage techniques
such as GHT [2], DIM [3], etc., and can be efficient since queries can be sent directly to the storage
location. However, randomized storage of replicated information is justified in some scenarios when there
is a high overhead for maintaining shared predetermined location information across the entire network
(due to dynamics such as changes, movements and failures of nodes in the network). Randomized storage
can also provide for a more load-balanced storage over time, and, in some cases, provide greater security
by making it difficult to identify and target nodes containing critical information.
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With unstructured, randomized storage, however, the querying nodes must resort to some form of blind
search. We focus on expanding ring queries in which there are successive rounds of controlled floods
with increasing TTL-values to detect the nearest copy of the queried information. While the tradeoffs we
explore can be generalized to other search techniques, our motivation for focusing on expanding ring-
based queries is that these have been relatively well studied [4], [5]. In particular, we use the dynamic
programming algorithm proposed by Chang and Liu [5] to perform optimal expanding ring searches.

Intuitively, the performance of a TTL-based expanding ring search improves with additional replicas.
When there are more randomly placed replicas in a network, the likelihood that the event being searched
for is located within a smaller number of steps, close to the sink, becomes higher. However, this reduction
in the expected search energy cost comes at the expense of an increased energy cost for replication. Our
goal is to minimize the total expected energy cost by carefully selecting the optimal number of replicas.
We assume there can be limited storage at each sensor node in some networks. In such scenarios, the
optimization must explicitly consider storage constraints. We therefore consider both constrained and
unconstrained versions of this optimization problem.

This paper is organized as follows. We first model the search cost of optimal TTL-based/exanding ring
search in section II. While a constructive solution to optimal search is provided by modifying the dynamic
programming algorithm developed by Chang and Liu [5], we find that obtaining a closed form exact
expression for the cost of the optimal search as a function of number of replicas appears to be intractable.
We therefore first develop bounds on the optimal search cost. An upper bound is provided by an expression
we derive for the step-by-step expanding ring search. We also derive a lower bound using a genie
argument. We show that both bounds decrease inversely with the number of replicas, motivating an
approximation for the expected optimal search cost.

We then present expressions for the expected replication cost for disk and square deployments in sec-
tion III. Then, we combine these expressions to provide the total combined cost of search and replication
as a function of the number of replicas and solve for the optimal number of replicas with and without
storage constraints in section IV.

We validate our analysis through a set of simulations in section V. These simulations are performed
using a realistic wireless network topology generator [9]. Although we find that the node placement
distributions and optimal search sequences can be significantly different between simulations and analysis,
we find that the corresponding expected search and replication costs are quite similar and that the optimal
replication number obtained through analysis matches the simulation results quite closely. Finally, we
present concluding comments in section VI.

II. M ODELING SEARCH COST

A. Scenario, assumptions, notation

We consider a circular area with nodes deployed with a uniform random distribution. Each node can
communicate with any other node that is placed within a radio rangeR, and it is assumed that the
network is sufficiently dense so that all nodes within a distancekR of the sink can be reached ink hops.
The nodes in the circular area are all located withinL hops of the sink. When modelling the search cost
we assume that the sink is located in the center of the region (we will relax these assumptions in the
simulation study in section V.)
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Fig. 1. Illustration of Scenario

Symbol Meaning
ρ Node density
R Radio range
N Total number of nodes in the network
a Number of first hop neighbors of sink
L Maximum number of hops from the sink

n (ni) Number of replicas (for theith event)
ui ith TTL element of search sequenceu

Cf (k) Cost of controlled flooding with a TTL value ofk
F (k|c) Conditional tail probability of locating

the nearest copy of the event beyondk hops, given that
it is not located withinc hops of the sink

V (c) Value function for the dynamic program

TABLE I

NOTATION USED

We assume that there is always a copy of the information being queried for, within the network. We
also assume that all replicated copies of this information are placed at random uniformly within the
network. The sink issues the query in successively expanding rings according to a search sequence (we
shall describe below how the optimal search sequence is derived using dynamic programming). The cost
of querying and replication is modelled as being directly proportional to the number of transmissions
incurred for each.

Figure 1 illustrates a sample network forR = 1. The sink is denoted by an ’x’ while the replicas of a
particular event that is being queried for are denoted by a star. Say the expanding ring search is denoted
by the query sequence [5, 10], then the query is carried out in two steps. First all nodes within the first
five hops (i.e. within a distance 5) are searched through a controlled flood. If the nearest copy of the
replicated information is located within this distance (as in the figure), the search stops right at this point.
Else, another flood covering the whole network within a distance 10 is issued.

Table I summarizes the notation to be used in the analysis.
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Fig. 2. Illustration of the probability mass function for the nearest replica (L=100, a = 10 )

B. Nearest replica location distribution

We first derive the distribution of the nearest copy of an event when events are replicated randomly in
the circular deployment area. This distribution is an important building block for the analysis as it aids
in determining the optimal search strategy when events are replicated in the network.

The expected number of nodes within one hop of the sink is thena = πR2ρ, whereρ is the node density.
The expected number of nodes that are exactlyk hops away isa(k2 − (k − 1)2) = a(2k − 1). The total
number of nodes that are located within the circular region ofL hops from the sink is then given as

N =
L∑

k=1

(2k − 1)a = aL2 (1)

Say n replicas of an event are created and placed randomly in the network (in addition to the original
copy at the source sensor). LetXmin(n) be the random variable representing the hop count of the nearest
copy of the event from the sink. The probability that all(n + 1) copies of the event information are
located more thank hops away from the sink is then given by the expression:

Pr{Xmin(n) > k} = (1− k2

L2
)n+1 (2)

Figure 2 illustrates how this distribution varies with the number of replicas in a typical network. As may
be intuitively expected this distribution shifts to the left (i.e. the nearest copy is located closer to the sink)
as the number of replicas increases. This should result in a lower search cost with increasing replication
size.

A related quantity that is of use in determining the optimal expanding ring strategy is the conditional
probability that the nearest copy of the event is located more thank hops away given that it is known
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that it is not located withinc hops. This is expressed as follows (assumingk ≥ c):

F (k | c) = Pr{Xmin(n) > k | Xmin(n) > c} = (
L2 − k2

L2 − c2
)n+1 (3)

C. Optimal expanding ring search

Any expanding ring search can be characterized as a vectoru = [u1, u2, . . . um] that describes the
sequence of successive TTL values for controlled flooding in each step. To ensure that the entire area
is covered in the worst case,um is set toL. E.g., letu = [1, 5, 10] for a network where the maximum
hop count isL = 10. Then the expanding ring search would proceed as follows: first the nodes within
1-hop are searched for the event through a controlled flood with TTL value of 1. If no copies of the
event are located in this first step, then all nodes within 5 hops are searched for the event through a
larger controlled flood. If still no copies of the event are located in the second step, then all nodes in
the network (within 10 hops) are searched. If at any step at least one copy of the event is located, the
search terminates successfully at that step.

We will assume that each transmission (and the corresponding receptions) incurs a unit cost. The cost of
the controlled flooding incurred in theith search step is given as:

Cf (ui) = (1 + a(k − 1)2) (4)

For a given search sequence vectoru, assuming there are(n+1) total copies of the event in the network,
the expected search cost is then

Csearch,u =
m∑

i=1

Cf (ui) · Pr{Xmin(n) > ui−1} (5)

wherePr{Xmin > u0} is defined to be 1 (since the search sequence starts withu1, and it is guaranteed
that there is at least one copy of the event being queried somewhere in the network).

To minimize this search cost, the optimal TTL sequence must be obtained. Chang and Liu [5] have
developed a dynamic programming solution to solve this problem. This dynamic program uses the
following recursive property.

Let the value functionV (n) be the minimum expected cost-to-go (over all choices of TTL values), given
that the most recently used TTL valuek did not locate the object. Then

V (L) = 0 (6)

V (c) = min
c+1≤k≤L

{Cf (k) + F (k|c) · V (k)} (7)

In the case of multiple replicas, we use the tail distributionF (k|c) we obtained in equation ( 3). The
optimal search sequenceu is obtained by recursively calculating the value function, and then tracking
back through the choices made at each step to determine the optimal TTL value for each stage. This
search sequence can then be used in expression 5 to determine the expected cost of the optimal strategy.
However, this algorithmic approach does not yield a tractable closed form expression for this cost as a
function of the number of replicas. We therefore first try to derive lower and upper bounds on the cost,
before developing an approximate expression for the optimal cost based on the bounds.
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D. Genie-assisted lower bound on optimal search cost

We first obtain a genie-assisted lower bound for the optimal cost. Imagine, before each query, we had
a genie or oracle that gave the exact distance from the sink (in number of hops) to the nearest located
copy of the event. Let us denote this exact distance byxmin. Knowing xmin before the query is issued,
the best possible search strategy for the sink to apply is to set the first TTL value of the search sequence
to this value, i.e. setu1 = xmin. Such a genie-assisted strategy is guaranteed to find the information in
one step, with a cost ofCf (xmin). Consider any other expanding ring sequenceu′, if xmin > u′, the
expected cost of that strategy must be higher than that of the Genie-assisted strategy because the nodes
in the first ring will have to be covered twice or more in the search; ifxmin < u′, then also the expected
search cost will be higher because a greater number of nodes will have to be searched in the first ring.
Hence the genie-assisted strategy is guaranteed to provide a lower bound to any expanding ring strategy.

The expected cost of the genie techniqueCs,lower can be derived as follows1:

Cs,lower = E [Cf (Xmin)]

= E
[(

1 + a (Xmin − 1)2
)]

=
(
1 + a

(
E
[
X2

min

]
− 2E [Xmin] + 1

))
(8)

Now,

P {Xmin ≤ k} = Fmin(k) = 1−
(

1− k2

L2

)n+1

(9)

The pdf forXmin is then derived as

fmin(k) =
dFmin(k)

dk
=

2(n + 1)
L2

k

(
1− k2

L2

)n

(10)

Now we can obtain the necessary expectations as follows:

E [Xmin] =
∫ L

0
kfmin(k)dk

=
2(n + 1)

L2

∫ L

0
k2

(
1− k2

L2

)n

dk

=
L(n + 1)

√
π

2
· Γ(n + 1)
Γ
(
n + 5

2

) (11)

E
[
X2

min

]
=

∫ L

0
k2fmin(k)dk =

2(n + 1)
L2

∫ L

0
k3

(
1− k2

L2

)n

dk

=
2(n + 1)

L2

L4

2n2 + 6n + 4

=
L2

n + 2
(12)

1We have used a continuous probability domain approximation to obtain closed-form expressions here. We have verified
through numerical simulations that the obtained expression for the lower bound matches the bound from the discrete version of
the problem very closely.
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Substituting equations (11) and (12) into equation (8), we get that

Cs,lower =

(
1 + a

(
L2

n + 2
−
√

πL(n + 1)
Γ(n + 1)
Γ
(
n + 5

2

) + 1

))
(13)

(14)

Proposition 1: The search cost of the optimal expanding ring strategy is lower-bounded by a function
that decreases with the number of replicasn as 1

n+2 .

Proof: Note that the Gamma functionΓ(k) is a monotonically increasing function fork ≥ 2 that has the
property thatΓ(k) = (k − 1) for any integerk ≥ 2. Then,

Cs,optimal > Cs,lower >

(
1 + a

(
L2

n + 2
−
√

πL(n + 1)
Γ(n + 1)
Γ(n + 2)

+ 1
))

=
(

1 + a

(
L2

n + 2
−
√

πL
(n + 1)n!
(n + 1)!

+ 1
))

=
(

1 + a

(
L2

n + 2
−
√

πL + 1
))

�

E. Upper bound on optimal search cost

We now derive an upper bound on the cost of the optimal search strategy. One simple search strategy that
is found empirically to match the performance of the optimal strategy closely for large number of replicas
n is the step-by-step expanding ring search, in which the search sequence is simply[1, 2, 3, 4, . . .]. The
expected cost for this strategy is given as:

Cs,upper(n) =
L∑

k=1

Cf (k)P {Xmin > k − 1}

=
L∑

k=1

(
1 + a(k − 1)2

)(
1− (k − 1)2

L2

)n+1

(15)

(16)

This expression can be closely approximated by a continuous integral:

Cs,upper(n) ≈
∫ L

0
ak2

(
1− k2

L2

)n+1

dk

=
√

πaL3

4
Γ(n + 2)

Γ(n + 3.5)
(17)
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Fig. 3. Bounds on optimal search cost

Proposition 2: The search cost of the optimal expanding ring strategy is upper-bounded by a function
that is proportional to 1

n+2 .

Proof: Once again, from the properties of the Gamma function, we get that

Cs,optimal < Cs,upper(n) <

√
πaL3

4
Γ(n + 2)
Γ(n + 3)

=
√

πaL3

4
1

n + 2

�

Figure 3 compares the upper and lower bounds for the search cost with the numerically computed optimal
search cost.

F. Approximation for optimal search cost

Based propositions 1 and 2, it is reasonable to model the search cost of the optimal strategy as being
proportional to 1

n+2 . We thus obtain the following approximation for the search cost of the optimal
expanding ring strategy:

Csearch,optimal ≈ c · aL2 · 1
n + 2

(18)
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L (max TTL) c (Curve-fit constant)
10 1.47845
50 1.99568

100 2.07722
500 2.14608

1000 2.15476

TABLE II

BEST-FIT CONSTANT FOR SEARCH COST APPROXIMATION

Fig. 4. Approximation for Optimal Search Cost

In this approximation,c is a curve-fitted constant, that is seen to converge to a value close to2.15 as the
size of the deployment area increases (i.e. for largeL), as shown in table II.

Figure 4 compares the approximate search cost expression with the numerically optimal search strategy.
We see a close match, particularly when the network is large and the number of replicas is relatively
small.

III. M ODELING THE REPLICATION COST

We are assuming that events are likely to be generated at any location in the network, and that they are
replicated at the different locations at random. We assume thatn replicas of the original are created and
individually placed at each location through unicast routing on the shortest path between the random
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source and storage point.

Assuming sufficient node density, the number of transmissions required to move data between any pair
of locations a distanced apart along the shortest path between them is approximatelyd/R. Thus the
expected cost of creating any replica is given by the ratio of expected distance between any pair of points
in the area and the radio rangeR. We present expressions for the expected distance between two points,
for circular and square regions.

A. Circular area

For a circular region, there is a known geometric result referred to as disk line picking [6], which gives
the expected distance between any two points in a unit circle to be:

E [dcircle] =
1
π

∫ 1

0

∫ 1

0

∫ π

0

√
r1 + r2 − 2

√
r1r2 cos θdθdr1dr2 (19)

=
128
45π

(20)

Using this result, we get the following expression for the expected cost of creatingn replicas of the event
information in a circular region of radiusLR to be:

Creplication,circle(n) =
128LRn

45πR
=

128Ln

45π
(21)

B. Square area

Similarly, for a square, the expected distance in the square of width wR is

E[dsquare] = wR

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

√
(x1 − y1)

2 + (x2 − y2)
2dx1dy1dx2dy2 (22)

= wR
2 +

√
2 + 5 ln

(
1 +

√
2
)

15
≈ 0.521405wR (23)

From this, we get that
Creplication,square(n) ≈ 0.52wn (24)

IV. OPTIMIZATION FORMULATION

We can formulate the problem of optimizing the number of replicas for each event as follows:

Minimize CNET (n̄) =
∑m

i=1 qiCsearch(ni) +
∑m

i=1 Creplication(ni)

s.t g(n̄) =
m∑

i=1
ni + m ≤ S

0 ≤ ni ≤ N − 1,∀i (25)
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Here qi is the query rate for theith of m events,ni is the number of replicas of eventi, andS is the
total network storage limit. For a circular region, the expressions forCsearch(ni) and Creplication(ni)
are as obtained in equations (18) and (21), respectively. We solve this problem using the method of
Lagrange multipliers. The Lagrangian function for this inequality-constrained optimization problem can
be expressed using a slack variables as follows:

L(n̄, λ) = CNET (n̄) + λ
(
g (n̄)− S + s2

)
(26)

It can be shown that the objective function is convex; hence, the following first-order conditions are
sufficient for global minimization:

∂L

∂ni
= − qiaL2c

(ni + 2)2
+

128L

45π
+ λ = 0 (27)

∂L

∂λ
=

m∑
i=1

ni + m− S + s2 = 0 (28)

∂L

∂s
= 2λs = 0 (29)

i) When the constraint is inactive we can solve directly from equation (27), settingλ = 0:

n∗i =

√
45πaLc

128
· √qi − 2 (30)

ii) When the constraint is active, (i.e. s=0,λ ≥ 0), we get from equation (27):

n∗i =

√
acL

128
45π + λ

L

· √qi − 2 (31)

λ is a constant that can be solved by substituting the above equation into equation (28), settings = 0:

λ =
acL2

(∑m
i=1

√
qi

)2
(S + m)2

− 128L

45π
(32)

Substituting this back into (31), we get the following simplified expression:

n∗i =
√

qi∑m
i=1

√
qi

(S + m)− 2 (33)

To determine whether the constraint is inactive or active, it is sufficient to verify whether the sum ofn∗i
obtained from equation (30) is less thanS − m. If not, then equation (33) should be used to compute
the optimal constrainedn∗i . A striking observation is that in both cases the optimal strategy is to have
the replication number of each event to be proportional to the square root of the query. We note that this
outcome is very similar to a result in unstructured peer-to-peer wired networks [8], which also argues for
replicating content with a rate proportional to the corresponding frequency of access. However, there are
key differences between that work and ours, including the type of search analyzed (expanding rings in a
wireless network with a geometrically defined 2-D structure versus random walk on an arbitrary wired
network graph), and the absence of replication cost.
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(a)

(b)

(c)

Fig. 5. (a) Total expected cost for a single event showing that the optimal replication number varies as a function of query rates
(b) a surface plot showing total expected cost for two events, and (c) a contour plot of the total cost for two events showing
storage constraints (1, 2) and corresponding optimal solution points (A, B)
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Parameter Value
Channel path loss exponent 3.0

shadowing std. deviation 3.8
PL(d0) 55.0
d0 1

Radio Modulation 3 (NCFSK)
Encoding Option 3 (Manchester)
Radio Output Power -21.0
Noise Floor -105.0
Preamble Length 2 bytes
Frame Length 50 bytes

Topology Number of nodes 1010
Physical Terrain (80, 80)
Option Uniform Deployment

TABLE III

RADIO PARAMETERS FORSIMULATION

Figure 5(a) shows the total cost of querying and replicationCNET as a function of the number of replicas
for different query rates for a single event. Figure 5(b) illustrates how the total cost may vary for the
case of two events, as a function of the number of replicas for each event. Figure 5(c) shows the contours
of this function, along with two sets of lines that represent different storage constraints. With the first
storage constraint (a large value ofS), there is sufficient storage available that the unconstrained optimal
point A can be selected as the operating point, by allocating the corresponding optimal number of replicas
for both events. However, under the tighter storage constraint 2 (smallerS), the original unconstrained
optimal solution lies outside the feasible operation region. Hence, point B, which minimizes the function
while maintaining storage feasibility, provides the optimal constrained solution in this case.

V. REALISTIC SIMULATIONS

A. Methodology

First of all, we use a realistic link layer model generator for the wireless sensor networks [9], which
determines the location of each node and the packet reception rate (PRR) of each pair of nodes. Table III
shows parameters for our wireless sensor network topology to simulate on. Given the realistic topology,
our simulator performs the following procedures at each round:

1) Randomly choosing a source node which is considered to have the original event information
2) Counting the actual replication cost forn replicas chosen randomly
3) Randomly choosing a querier node in the given node pool.
4) Counting the actual search cost using the optimal search strategy.

Our numerical results are computed based on 10000 rounds for eachn value.

1) Counting the actual replication cost:The replication is not of flooding, but of a unicast transmis-
sion. The unicast transmission needs some kind of routing methodology. In order to define the unicast
transmission cost, we make the following assumptions;

• The number of transmissions from the nodei to the adjacent nodej for a single successful
transmission is Geometric withp = PRRi,j , wherePRRi,j is the packet reception rate fromi
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to j.
• The cost of a single transmission from the nodei to the adjacent nodej is constantβ for all i and

j.
• The expected transmission cost from the nodei to the adjacent nodej is as follows;

β × (the expected number of transmissions) =
β

PRRi,j

• The unicast transmission from the nodei to nodej follows the minimum cost path in terms of the
expected transmission cost as a link cost.

Hence, the expected replication cost from the source nodes to the target nodet is the expected unicast
transmission cost froms to t, and its actual replication cost is the actual total number of transmissions
following the minimum cost path times a single transmission cost.

Our simulator follows the following procedure to count the actual replication cost;

1) The simulator randomly choosesn distinct target nodesti, (1 ≤ n ≤ n) in the node set of all nodes
except the source nodes.

2) It finds out the minimum cost paths froms to ti, (1 ≤ n ≤ n) using Dijkstra’s Algorithm and
stores it for the future use.

3) The simulator counts the actual numbers of transmissions froms to ti, (1 ≤ n ≤ n) and accumulate
them denoted byNt.

4) The replication cost for this round isβNt.

2) Counting the actual search cost:In order to find out the search cost, we need to find out the optimal
search strategy. If we know the distribution of number of nodes with respect to the hop distance, we are
able to find out the optimal search strategy using the dynamic programming methodology [5].

Our simulator counts the number of nodes with respect to the hop distance using the following algorithm.

MeasureNodeStructure(S, PRR, q)
S: the set of all wireless nodes
PRR: the set of packet reception rate (PRRi,j denotes the PRR value from the nodei to its adjacent nodej.)
q: the querier
H[i]: the set of nodes that are reachable by the querier at i hops away
CS: the current set

threshold := 0.5
hop := 1
CS := {q}
While S has an element

H[hop] := {}
While CS has an element

cn ∈ CS
H[hop] := H[hop]

⋃
{s : s ∈ S andPRRcn,s ≥ threshold}

CS := CS − {cn}
S := S −H[hop]

EndWhile
CS := H[hop]
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Fig. 6. Experiment for the node number distribution

hop := hop + 1
EndWhile

return H

Note that this algorithm counts the nodej as a node reachable with one hop from the nodei if PRRi,j ≥
0.5, which is not necessarily true. To be rigorous, the number of nodes ofith hop is a random variable
and its expectation is not easily calculated. To get around this problem, we have done experiments using
the algorithm similar to the above except that it uses the following update rule forH[hop] instead.

H[hop] := H[hop]
⋃
{s : s ∈ S and chosen by the probability ofPRRcn,s}.

The average of more than 100 experiments is observed to converge to that of our algorithm as you can
see the figure 6.

Therefore, we uses the following conditional tail distribution for the dynamic programming;

P{Xmin > k | Xmin > c} =


∑
i>k

|H[i]|∑
i>c

|H[i]|

n+1

, if k ≥ c

Following the result optimal search strategy, the simulator floods a series of queries until it finds one
of the copies of the event. Note that although two queries have the same TTL value, one query might
find the event, but the other might not in the same network. It is because the network is wireless, the
coverage of first query is not necessarily same as that of the second one.
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Fig. 7. Distribution of the number of nodes as a function of distance from querier in a uniform square area deployment

B. Results

In our simulations, we relax several assumptions for the previous analysis, so that (1) the querier can be
any node in the network, (2) the network topology is not necessarily circular (it is the square area for our
simulation), and (3) there might be the boundary effect. With these relaxation, the actual optimal search
sequence of a node might be different from that of another node when they are considered as a querier
at each time. For example, the optimal search sequence of a corner node is[2, 8, 12, 15, 17, 19, 20], while
that of a center node is[2, 4, 6, 7, 8, 9, 10, 11] when there are two replicas of the queried event.

First of all, the theoretical values of our model are as follows;

Csearch(n) =
cN

n + 2
=

1.48× 1010
n + 2

(34)

Creplication(n) =
128Ln

45π
=

128× 10
45π

n (35)

where the value ofL is obtained fromN = aL2 = 10×L2 = 1010, anda is obtained from the simulation.
Therefore, assuming the query rate is1, the optimal number of replication is as follows by equation 30;

n∗th =

√
45π

128
qaLc− 2 =

√
45π

128
× 10× 10× 1.48− 2 = 10.7852 ≈ 11 (36)

In the meanwhile, the optimal number of replication from the simulation isn∗sim = 12 (see figure 10.
Figure 8 shows the optimal search cost of the simulation and our model, and figure 9 shows the replication
cost. As we can see from these figures, our model meets the simulation results very well even with relaxed
assumptions.
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Fig. 8. Comparison of analytical and simulated search costs as a function of replication size

Fig. 9. Comparison of analytical and simulated replication costs as a function of replication size

Fig. 10. Comparison of analytical and simulated total cost of search and replication as a function of replication size
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VI. D ISCUSSION, CONCLUSIONS ANDFUTURE WORK

We have shown how the number of replicas of event information can be optimized for expanding ring-
based queries in sensor networks. We have found that a square-root-proportional replication strategy
provides optimal performance both with and without storage constraints.

There are several directions in which these results can be extended. The analysis could be extended
to other querying mechanisms, including structured storage, since there is a similar tradeoff between
search and replication costs in many other settings. The analysis could also be extended to consider more
irregular deployment areas, including three-dimensional deployments. We plan to develop distributed
implementations which allow for optimal or near-optimal replication without global knowledge of the
relative query rates for all events. We also plan to investigate the scaling behavior of querying in storage-
constrained sensor networks.
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