Configuration Compression for
FPGA-based Embedded Systéms

Andreas Dandalfsand Viktor K. Prasanma

Abstract

Field Programmable Gate Arrays (FPGAS) are a promisingnigolgy for developing high-performance em-
bedded systems. The density and performance of FPGAs hasatiodtly improved over the past few years.
Consequently, the size of the configuration bit-streams diss increased considerably. As a result, the cost-
effectiveness of FPGA-based embedded systems is sigrificdfected by the memory required for storing various
FPGA configurations. This paper proposes a novel compressithnique that reduces the memory required for
storing FPGA configurations and results in high decompoessificiency. Decompression efficiency corresponds
to the decompression hardware cost as well as the deconmoreate. The proposed technique is applicablang
SRAM-based FPGA device since configuration bit-streamgperseessed as raw data. The required decompression
hardware is simple and the decompression rate scales vathpbed of the memory used for storing the FPGA
configuration. Moreover, the time to configure the device a$ affected by our compression technique. Using
our technique, we demonstrate up4t% savings in memory for configuration bit-streams of seveeal-world
applications.

I. INTRODUCTION

The enormous growth of embedded applications has made e®thesystems an essential component
in products that emerge in almost every aspect of our lifgitali TVs, game consoles, network routers,
cellular base-stations, digital communication devicemters, digital copiers, multi-functional equipment,
home appliances, etc. The goal of embedded systems is tormes set of specific tasks to improve the
functionality of larger systems. As a result, they are uguabt visible to the end-user since they are
embedded in larger systems. Embedded systems usually consist ofa@gsng unit, memory to store data
and programs, and an I/O interface to communicate with otberponents of the larger system. Their
complexity depends on the complexity of the tasks they perfd@he main characteristics of an embedded
system are raw computational power and cost-effectiveiésscost-effectiveness of an embedded system
includes characteristics such as product lifetime, oV@rade, and power consumption, among others.

The unique combination of hardware-like performance witftvgare-like flexibility make Field Pro-
grammable Gate Arrays (FPGAS) a highly promising solutmnembedded systems [8], [11], [12], [13],
[18], [22], [23], [25]. Such systems will significantly rede design risks and increase the production

1This work is supported by the US DARPA Adaptive Computingt8yss program under contract no. DABT63-99-1-0004 monitdrg
Fort Huachuca and in part by the US National Science Foumdathder grant no. CCR-9900613.

2A. Dandalis is with the Intel Corporation, Hillsboro, USAndreas.dandalis@intel.com.
3V. K. Prasanna is with the University of Southern Califorri@s Angeles, USA, prasanna@usc.edu.

volume of the chip. Additionally, the requirements of apptions in the information-based networked
world are changing so rapidly that reconfigurability is pblssthe only way to overcome severe time-to-
market requirements.

Typical FPGA-based embedded systems have FPGA deviceseasptiocessing unit, memory to
store data and FPGA configurations, and an 1/O interface aostnit and receive data. FPGA-based
embedded systems can sustain high processing rates winvielipg a high degree of flexibility required in
dynamically changing environments. FPGAS can be recorddyan demand to support multiple algorithms
and standards. Moreover, by incorporating Run-Time Regardition (RTR), applications consisting of
multiple configurations can be executed [3], [6], [7], [1[A0], [21]. Thus, the degree of system flexibility
strongly depends on the amount of configuration data thatbeastored in the field. However, the size
of the configuration bit-stream has increased consideraity the past few years. For example, the size
of the configuration bit-stream of the VIRTEX-II series FP§Aange from).4 Mbits to 43 Mbits [24].

In this paper, we propose a novel compression techniqualtecesthe memory requirements for storing
configuration bit-streams in FPGA-based embedded systBynsompressing configuration bit-streams,
increased configuration data density can be achieved irggutt smaller size memories and/or increased
system flexibility. Smaller size memories and increasetesyslexibility are essential to enhance the cost-
effectiveness and lifetime of the embedded systems undesideration. Moreover, increased flexibility
can enable the usage of smaller FPGA devices in environnileatsequire on-demand computations. A
smaller FPGA device that is reconfigured on-demand is maseeaftective compared with a larger FPGA
device that is configured once for all the possible tasks ¢hatbe executed during an application.

Using our compression technique, configuration comprasstours off-line. At runtime, decompression
occurs and the decompressed data is fed to the on-chip caatfigumechanism to configure the device.
The major performance requirements of the compressionlgmolare the decompression hardware cost
and the decompression rate. The above requirements disingur compression problem from conven-
tional software-based applications. We are not aware ofpainy work that addresses the configuration
compression problem of FPGA-based embedded systems wjileakto the cost and speed requirements.

Our compression technique is applicable to any SRAM-bade@A- device and can support both
complete and partial configuration schemes. The proposduhitgue process configuration bit-streams as
raw data without considering any individual semantics.fSsemantics depend on the target FPGA device

architecture and the placement/routing tool used for apptin mapping. On the other hand, application-

specific computations can lead to hardware structural aegiels. Such regularities are explored by our
technique as repeated strings at the bit-stream level.

The required decompression hardware is simple and indepérmd the configuration format or char-
acteristics of the configuration mechanism. In additioe, dkchieved compression ratio is independent of
the decompression hardware and depends only on the entfabpg oonfiguration bit-stream. Finally, the
time to configure an FPGA depends only on the data rate of thehgnconfiguration mechanism, the
speed of the memory that stores the configuration data, andizke of the configuration bit-stream. The
decompression process does not add any overhead to theuratifig time.

The proposed compression technique is based on the pescgil dictionary-based compression al-
gorithms. In addition, ainified-dictionary approach is proposed for compressing sets ofigurations.
Even though statistical methods can achieve higher comsipresatios, we propose a dictionary-based
approach because statistical methods lead to high decesipnehardware cost. Using our technique, we
demonstratd 1 — 41% savings in memory for configuration bit-streams of sevegal-world applications.
The configuration bit-streams corresponded to cryptodcaguid digital signal processing algorithms. Our
target architecture was the VIRTEX series FPGAs [24]. Thiedahoice has been made for demonstration
purposes only. Single as well as sets of configuration béasts were compressed using our technique.
The size of the configuration bit-streams ranged froihMbits to 6.1 Mbits.

An overview of the configuration of SRAM-based FPGAs is giwerSection 2. In Section 3, various
aspects of compression technigques and the constraintssedpgoy embedded systems are presented. In
Section 4, related work is described. Our novel comprestohnique is described in Section 5 and
experimental results are demonstrated in Section 6. kjnallSection 7, possible extensions to our work

are described.

[I. FPGA CONFIGURATION

An FPGA configuration determines the functionality of thedAdevice. An FPGA device is configured
by loading a configuration bit-stream into its internal cgafation memory. An internal controller manages
the configuration memory as well as the configuration datsstea via the 1/O interface. Throughout this
paper, we refer to both the configuration memory and its olletras the configuration mechanism. Based
on the technology of the internal configuration memory, FB@&An be permanently configured once or
can be reconfigured in the field. For example, Anti-Fuse teldyy allows one-time programmability

while SRAM technology allows reprogrammability.

In this paper, we focus on SRAM-based FPGAs. In SRAM-base@A? the contents of the internal
configuration memory are reset after power-up. As a redwdtjnternal configuration memory cannot be
used for storing configuration data permanently. Usingiglacbnfiguration, only a part of the contents
of the internal configuration memory is modified. As a restllg configuration time can be significantly
reduced compared with the configuration time required foormmete reconfiguration. Moreover, partial
configuration can occur at runtime without interrupting toenputations that an FPGA performs. SRAM-
based FPGAs require external devices to initiate and cbthe configuration process. Usually, the
configuration data is stored in an external memory and anredteontroller supervises the configuration
process.

The time required to configure an FPGA depends on the sizeeofdhfiguration bit-stream, the clock
rate and the operation mode of the configuration mechanisthilee throughput of the external memory
that stores the configuration bit-stream. Typical sizesasffiguration bit-streams range frotnd Mbits
to 44 Mbits [1], [2], [24] depending on the density of the devicehelclock rate of the configuration
mechanism determines the rate at which the configuratioa datelivered to the FPGA device. The
configuration data can be transferred to the configuratiochar@sm serially or in parallel. Parallel modes
of configuration result in faster configuration time. Typicalues of data rates for FPGAs can be as high
as 480 Mbits/sec (i.e., 8 bitsx 60 MHz) [1], [2], [24] while some programmable logic corespport
even higher data rates. Thus, the external memory thatsstiheeconfiguration bit-stream should be able
to sustain the data rate of the configuration mechanism.r@tbe, the memory becomes a performance
bottleneck and the time to configure the device increasesh &uincrease could be critical for applications
where an FPGA is configured on-demand based on run-time pteesn

Configuration bit-streams consist of data to be stored initibernal configuration memory as well
as instructions to the configuration mechanism. The datdigrtoes the FPGA architecture, that is,
the configurable logic blocks, the interconnection netwdHhe I/O pins, etc. The instructions control
the functionality of the configuration mechanism. Typigalinstructions are used for initializing the
configuration mechanism, synchronizing clock rates, aneérdening the memory addresses at which
the data will be written. The format of a configuration bitestm depends on the characteristics of the
configuration mechanism as well as the characteristicseoFBGA architecture. As a result, the bit-stream

format varies among different vendors or, even among diffeFPGA families of the same vendor.

[1l. COMPRESSIONTECHNIQUES APPLICABILITY & | MPLEMENTATION COST

Data compression has been extensively studied in the pasheMus compression algorithms have
been proposed to reduce the size of data to be stored or tttetimver a network. The effectiveness of
a compression technique is characterized by the achievegression ratio, that is, the ratio of the size
of the compressed data to the size of the original data. Hesvekepending on the application, metrics
such as processing rate, implementation cost, and adbijytabay become critical performance issues.
In this section, we will discuss compression techniquestaedrequirements to be met for compressing
FPGA configurations in FPGA-based embedded systems.

In general, a compression technique can be either lossteksssy. For configuration compression,
the configuration bit-stream should be reconstructed withass of any information and thus, a lossless
compression technique should be used. Otherwise, theidmatity of the FPGA may be altered or, even
worse, the FPGA may be damaged. Lossless compression qeesnare based on statistical methods
or dictionary-based schemes. For any given data, stalistiethods can result in better compression
ratios than any dictionary-based scheme [19]. Using $izismethods, a symbol in the original data
is encoded with a number of bits proportional to the proligbdf its occurrence. By encoding the
most frequently-occurring symbols with fewer bits thanith@nary representation requires, the data is
compressed. The compression ratio depends on the entrdapg ofiginal data as well as the accuracy of
the model that is utilized to derive the statistical infotioa of the given data. However, the complexity
of the decompression hardware can significantly increasealst of such an approach. In the context of
embedded systems, dedicated decompression hardwareC@M.memory) is required to align codewords
of different lengths as well as determine the output of a waadé.

In dictionary-based compression schemes, single codewendode variable-length strings of symbols
[19]. The codewords form aimdex to a phrase dictionary. Decompression occurs by parsindithienary
with respect to its index. Compression is achieved if theeeamtds require smaller number of bits
than the strings of symbols that they replace. Contrary atissical methods, dictionary-based schemes
require significantly simpler decompression hardware y®mémory read operations are required during
decompression and high decompression rates can be achigvaefore, in the context of FPGA-based
embedded systems, a dictionary-based scheme would radaltly low implementation cost.

In Figure l1ll, a typical architecture of FPGA-based embeatiggstems is shown. These systems consist

of an FPGA device(s), memory to store data and FPGA configmsta configuration controller to

Configuration Configuration
Bit-Stream
Memory Controller

Data
Memory FPGA

Fig. 1: FPGA-based embedded system architecture

110
==

supervise the configuration process, and an I/O interfaceno and receive data. The configurations are
compressed off-line by a general-purpose computer anddhgpessed data is stored in the embedded
system. In this work, embedded systems that also includecaoprocessor can be considered under
the assumption that the microprocessor is not used for cessfmm/decompression (e.g., due to high
utilization by other tasks). Besides the memory requireér the compressed data, additional memory
may be required during decompression (e.g., storing teanpaiata). However, in the context of embedded
systems, the memory requirements to store temporary datddshlso be considered.

At runtime, decompression occurs and the original confiumabit-stream is delivered to the FPGA
configuration mechanism. As a result, the decompressiawaae cost and the decompression rate become
major requirements of the compression problem. The decessfmn hardware cost may affect the cost
of the system. In addition, if the decompression rate cansnetain the data rate of the configuration
mechanism, the time to configure the FPGA will increase.

Our compression technique can lead to smaller memory remeints for storing FPGA data and thus,
reducing the cost of the configuration memory (e.g., conéigon-specific system). At the same time, the
power requirements can be reduced since memories of snsa&kercan be used. In addition, the tight
coupling of configuration memory and FPGA devices can raaulystems with superior flexibility (e.g.,
system with fixed-size configuration memory). Such flexipilkan enable the usage of smaller FPGA

devices in environments that require on-demand compuistio

IV. RELATED WORK

Work related to FPGA configuration compression has beenrtegban [9], [10], [16]. In [9], the
proposed technique took advantage of the characteristitiseoconfiguration mechanism of the Xilinx
XC6200 architecture. Therefore, the technique is applkcably to that architecture. In [10], runlength
compression techniques for configurations have been thescrAgain, the techniques took advantage of
specific characteristics of the Xilinx XC6200 architectufeldresses were compressed using runlength
encoding while data was compressed using LZ compressidainiwindow method [19]). Dedicated
on-chip hardware was required for both methods. A set of gardtion bit-streams2(— 88 Kbits) were
used to fine-tune the parameters of the proposed methods—Ait size window was used in the LZ
implementation. However, as stated in [10], larger sizedews impose a fairly high hardware penalty
with respect to the buffer size as well as the supporting ware. In [16], dictionary-based techniques
were developed to reduce the time required to transfer amafign data to VIRTEX series FPGAs.
A compressed version of the configuration bit-stream is tethe configuration circuitry of the FPGA
and decompression takes place inside the FPGA. A modifiedl EXRconfiguration mechanism was
proposed to support decompression. High compressiorsratgoe reported. However, the time overhead
for decompressing the configuration data was not clearlgtified.

In [14], [15], dictionary-based compression techniquesawailized for code minimization in embedded
processors. However, code minimization takes advantagigeafemantics of programs for Instruction Set
Architecture (ISA) based processors and is unlikely to eahisimilar results for FPGA configuration bit-
streams (i.e., raw data). For example, programs can havasjtimat require decompression to be performed
not in a sequential manner while configuration bit-streahmukl be decompressed sequentially. In [15],
a fixed-size dictionary was used for compressing prograrhs. size of the programs was in the order
of hundreds of bits. No detailed information was providedareling the algorithm used to build the
dictionary. The authors mainly focused on tuning the diwdity parameters to achieve better compression
results based on the specific set of programs. However, sacipproach is unlikely to achieve the
same results for FPGA configurations where the bit-stream @ata file and not a program for ISA-
based processors. In addition, Huffman encoding was usedofopressing the codewords. As a result,
dedicated hardware resources were needed for decomgreksicodewords. In [14], the dictionary was
built by solving a set-covering problem. The underlying guession model was developed with respect

to the semantics of programs for ISA-based processors ¢oatrol-flow and operational instructions).

The size of the considered programs was 0.5-10 Kbits and ¢hexeed compression ratios (i.e., size
of the compressed program as fraction of the original proyraere approximately 85-95 %. Since the
technique in [14] was developed for code size minimizatibig not fair to make any compression ratio

comparisons with our results.

V. OUR COMPRESSIONTECHNIQUE

Configuration Reverse Dictionary
S .
Bit-Stream Order Construction

DICTIONARY INDEX

Merge common prefix strings

LZW

Compact

Delete non-referenced nodes representation

DICTIONARY INDEX

v v
DICTIONARY))
< Selectively delete substrings
Reverse
INDEX ~ Order INDEX

Heuristic
Selectively delete nodes

Fig. 2: Our configuration compression technique

Our compression technique is based on the principles ofodi&ty-based compression algorithms.
Compression occurs off-line while decompression occuriranto reconstruct the original configuration
bit-stream. Even though statistical methods can achiegbenicompression ratios [19], we propose a
dictionary-based approach because dictionary-basednashéead to simpler and faster decompression
hardware. In our approach, the dictionary corresponds tdiguiration data and the index corresponds
to the way the dictionary is read in order to reconstruct afigamation bit-stream. In Figure 2, an
overview of our configuration compression technique is sholie input configuration bit-stream is read
sequentially in the reverse order. Then, the dictionarythedndex are derived based on the principles of
the well-known LZW compression algorithm [19]. In genefaiding a dictionary that results in optimal
compression has exponential complexity [19]. By deleting-neferenced nodes and by merging common
prefix strings, a compact representation of the dictionargahieved. Finally, a heuristic is applied that
further enhances the dictionary representation and leadavings in memory. The original configuration
bit-stream can be reconstructed by parsing the dictionatty r@spect to the index in reverse order. The
achieved compression ratio is the ratio of the total memeguirements (i.e., dictionary and index) to
the size of the bit-stream. In the following, we describe etail our compression technique as well as

the decompression method.

A. Basic LZW Algorithm

The LZW algorithm is an adaptive dictionary encoder, thathe coding technique of LZW is based
on the input data already encoded (Algorithm 1). The inputht® algorithm is a sequence of binary
symbols. A symbol can be a single bit or a data word. Symb@&gpearscessed sequentially. By combining
consecutive symbols, strings are formed. In our case, it iis the configuration bit-stream. Moreover,
the bit-length of the symbol determines the way the bitestrés processed (e.g., bit-by-bit, byte-by-byte).
The main idea of LZW is to replace the longest possible stoingymbols with a reference to an existing

dictionary entry. As a result, the derived index consistpaihters to the dictionary.

Algorithm 1: The LZW algorithm [20]

Input: An input stream of symboliN.
Output: The dictionary and the index.

dictionary < input alphabet symbols
S=NULL
repeat
s « read a symbol froniN
if Ssexists in the dictionary
S+ Ss
else
output the code fo6
add Ssto the dictionary
S«s
end
until (all input data is read)

In software-based applications, only the index is congidén the calculation of the compression ratio.
The main advantage of LZW (and any LZ-based algorithm) i$ tha dictionary can be reconstructed
based on the index. As a result, only the index is stored ircargtary storage media or transmitted. The
dictionary is reconstructed on-line and the extra memoquired is provided by the “host”. However,
in embedded systems, no secondary storage media is agadlatlithe extra required memory has to be
considered in the calculation of the compression ratiooAtete that the dictionary includes phrases that
are not referenced by its index. This happens because, ggession proceeds, LZW keeps all the strings
that are seen for the first time. This is performed regarddesghether these strings will be referenced or
not. This is not a problem in software-based applicationsesthe size of the dictionary is not considered

in the calculation of the compression ratio.

10

Fig. 3: An illustrative example of our dictionary repressidn

B. Compact Dictionary Construction

In our approach, we propose a compact memory representgttiothe dictionary. In general, the
dictionary is a forest of suffix trees (i.e., one tree for eagmbol of the input alphabet). Each string in
a tree is stored in the memory as a singly-linked list. The od@ tree is the head of all the lists in that
tree. Every entry in the memory consists of a symbol and ameaddo a prefix string and every string
is associated with an entry. A string is read by traversirgdbrresponding list from the address of its
associated memory entry to the head of the list. Furtherpdictionary entries that are not referenced
in the index are deleted and not stored in the memory. Finalgnmon prefix strings are merged as one
string. An example of our dictionary representation is show Figure 3. For illustrative purposes, we
consider letters as symbols. The root of the tree is the sy/fidtio Each one of the stringsC’OM PUTE”,
“COMPUTER’", and “COMPUTATION” is associated with a node. Since the stridkgOM PUT” is
a common prefix string, it is only represented once in the nrgniio Figure 4, the memory organization for
storing the dictionary and the index of the above exampl&dasve. The contents of the dictionary entries
are shown in ascending order of their memory address. Foragiattionary entry, the corresponding symbol
and the address to a prefix string are shown. The shown indd@rsoorrespond to a dictionary memory
address. The memory requirements for the dictionary 1@&ionary X (datasympor + [108s Ndictionary|)
bits, wheren;ciionary iS the number of memory entries of the dictionary atdas,,,.,, is the number
of bits required to represent a symbol. Similarly, the mgmmquirements for the index are,4.. x
[10gy Naictionary | DItS, Wheren,,q.. is the number of memory entries of the index.

From the above example, we notice that during decompregsierlecompressed strings are delivered in

reverse order. In fact, in software-based implementafib®k a stack is used to deliver each decompressed

11

Dictionary Index

0001 0000 1100 —» COMPUTATION
0010 0001 1110 —» COMPUTER
0011 0010 1101 — COMPUTE

0100 0011

0101
0111

0100
0101

1000
1001
1010
1011

0111
1000
1001

1010
1011

1100
1101

0111
1101

T |ImM[Z|0|—|H4|>|4]|C|T|Z|O0|0O

1110

Fig. 4: An illustrative example of memory organization ftyetdictionary and the index

string in the right order. However, in the considered emleeldehvironment, additional hardware is required
to implement the stack. In addition, the size of the stackukhbe as large as the length of the longest
string in the dictionary. Moreover, the time overhead toerse the order of the decompressed strings
would affect the time to configure the FPGA. In our scheme vimchthe use of a stack, we derive the
dictionary after reversing the order of the configuratiardtieam. During decompression, the configuration
bit-stream is reconstructed by parsing the index in therseverder. In this way, the decompressed strings
are delivered in order and the exact original bit-streameisonstructed. We have performed several
experiments to examine the impact of compressing a reveosred configuration bit-stream instead of
the original one. Our experiments suggest that the memapuinements for both the dictionary and the

index are very close to each other in both cases (i.e., \@niddss thant-1%).

C. Enhancement of the Dictionary Representation

After deriving the dictionary and its index, we reduce thenmey requirements of the dictionary by
selectively decomposing strings in the dictionary. In thlofving, a prefix string corresponds to a path
from any node up to the tree root. Similarly, a suffix stringresponds to a path from a leaf node up to
any node. Finally, a substring corresponds to a path bet@egriwo arbitrary nodes.

The main idea is to replace frequently-occurring subssrimga new or an existing substring. As a result,
while memory savings can be achieved for the dictionaryitewichl codewords are also introduced leading
to index expansion. For example, consider the prefix strtig@ M PUT ER” and “QUALCOM” (see

Figure 5). Again, for illustrative purposes, we considdteles as symbols. SinceZOM” is a common

12

Algorithm 2: Our Heuristic: Phase 1.

Input: A dictionary D;,, and an indexl,.
Output: Enhancedlictionary Dyey,, and indexZiep,p.

STRINGS{suffix strings inD;,, containing nodes that
are pointed at by only one suffix strihg

U={s;: ,eSTRINGS A (if i # j = s;i #sj)}

Ui={s;: sieU N length(s;)=1}

I* L = maxlength(s;)

I* datagictionary: Word-length for the dictionary memory
I* data;ngqer: Word-length for the index memory

/* n;: node ofs; with the highest distance from a leaf node
/* t;: # of te STRINGS : x = s;

[* ¢;: # of timesn; is referenced by the index

if 3 prefix stringxzeD;, : © = s;

ai:0
ese

aizl
end

COSt(Si) = (tz - ai) * (datadictionary) —Ci * dataindew
Sdelete =NULL
for [=1..L
Stemp = NULL
Vs; : s;6{U,UU}
if cost(s;) >0
Sdelete = Sdelete U {Si}
else
Stemp = Stemp U UlU {SEESTRINGS 8 1 SC}
end
U=U — Stemp
end
delete {veSTRINGS : © = y A yeSqeicte }
Snew = {new prefix strings that replace
the deleted suffix strings
Diemp = Dy, — {deleted substringsUS e
Iiemp = {restorel;,, due to deleted substrings

substring, by storing it in the memory only once, the dicdpnsize can be reduced. However, one
additional codeword is required forCOMPUTER” since it is decomposed in two substrings (i.e.,
“COM” and “PUTFER”). In general, the problem of decomposing substrings thatresult in maximum
savings in memory has exponential complexity.

In the following, a 2-phase greedy heuristic is describeat s$electively decomposes substrings to
achieve overall memory savings. A bottom-up approach isl tisat prunes the suffix trees starting from
the leaf nodes and replaces deleted suffix strings by newx(stirey) prefix strings. We concentrate only
on suffix strings that include nodes pointed at by only onéxssfring. Otherwise, the suffix string extends

over large number of prefix strings resulting in lower posisybfor potential savings in memory. Using

13

Algorithm 3: Our Heuristic: Phase 2.

Input: Diepmp and ey, from Algorirthm 2.
Output: Enhancedlictionary D.,,;, and index/..,,.

N = {ni T M;ES; N SiE{Dtemp n STRINGS}}
/* STRINGS is the same set of strings as in Algorithm 2
[* n;: dictionary node
cost(n;) = # of timesn; is referenced by the index
depth(n;) = distance from a leaf node
sort N in terms ofdepth(n;) * ascending order
sort n; of samedepth in terms ofcost(n;) /* ascending order
Ny, =NULL
Niemp =| Diemyp | —2110821Peempl1=1 % | 5 |= # of nodes inx
while | N |> ngemp
repeat
mark consecutive nodes iN
with respect to sorting
N,, = {marked nodes
until (# of marked nodes- > cost(n;) — @ == niemp)
* 3" cost(n;): summation of costs of the marked nodes
I* «: # of nodes required to replace suffix strings that
[* will be deleted if marked nodes are deleted

if (deletion of marked nodes results in overall savings)
N=N-N,,
| Dtemp |<_ 2“082‘Dtempﬂ_1
Ntemp 2[10g2‘DtGTan71
else
BREAK
end
end
delete {marked nodes
Snew ={new prefix strings that replace
the deleted suffix strings
Denp = Diemp — {marked nodesUsS,,c.,
Ieni, = {restorely.,,, due to deleted substrings

our heuristic,80 — 85% of the nodes in all suffix trees were examined for the bitestre considered in
our experiments (see Section VI).

In the first phase, we delete suffix strings that can lead teriia savings in memory (see Algorithm 2).
Initially, we identify repeated suffix strings that appearass all the suffix trees of the dictionary. As
mentioned earlier, the number of suffix trees in the dictignequals the number of symbols of the
input alphabet. For each distinct suffix string the potential savings in memoryst(s;) are computed.
The cost(s;) depends on the potential savings in dictionary memory aedpttential index expansion
assuming that; is deleted from all the suffix trees. Only suffix stringswith non-negativeost(s;) are

deleted. By reducing the dictionary size, the number of thts is required to address the dictionary

14

~
J
~
I
I
J

ORNG () ®
) © © ©
o @ OSEINGE)
© O W W
OGO ORGSO
OO W

Louacon1-() (o) [quaicom - (@)

[CoMPUTER -4)
N J (N J

Fig. 5: An illustrative example of enhancing the dictionagpresentation

(i.e., [logy naictionary |) Can decrease too. As a result, the word-length of both th&odary and index
memories can decrease resulting in further savings in mgmor

In the second phase, we selectively delete individual nodéke suffix trees in order to decrease the
number of bits required to address the dictionary (see Atlgor 3). The deletion of nodes results in
index expansion. However, the memory requirements dueetanttrease of index size can be potentially
amortized by the decrease of the word-length of both theadiaty and the index memories. The goal is
to reduce the dictionary size while introducing minimum rnegnof new codewords. Initially, nodes
of the same distance across all the suffix trees are sortédrespect to the number of codeword splits
cost(n;) (i.e., number of new codewords introduced if the node willde¢eted). Then, starting from the
leaf nodes, we mark individual nodes according to theit(n;). A marked node is eligible to be deleted.
Nodes with smaller number of codeword splits are marked. fikég continue to mark nodes until we
achieve al bit savings in addressing the dictionary. If the index exgoam results in increasing the total
memory requirements, the marked nodes are not deleted angtdibedure is terminated. Otherwise, the

marked nodes are deleted and the procedure is repeated.

D. Configuration Decompression

Decompression occurs at power-up or at runtime. The ofigimafiguration bit-stream is reconstructed
by parsing the dictionary with respect to the index. As shawirigure 6(b), the contents of the index
(i.e., codewords) are read sequentially. A codeword cpards to an address to the dictionary memory.
For each codeword, all the symbols of the associated strimgead from the dictionary memory and then
the next codeword is read. A comparator is used to decideeifotitput data of the dictionary memory
corresponds to a root node, that is, all the symbols of agstrave been read. Depending on the output of

the comparator, a new codeword is read or the last-readgragtised to address the dictionary memory.

15

As a result, the decompression rate scales with the spedtahémory used for storing the dictionary.

Counter

| |
| |
| |
| |
| |
| |
| |
: Configuration :
| Bit-Stream |
| Memory |
| |
| |
| |
| 1
| |
| |
| |

data » t0FPGA

configuration
mechanism

L ______.

P = = = = = = = — = — = — = — — = — — — — — — 5

Dictionary :
Memory)

pointer

data

symbol

» to FPGA
configuration
mechanism

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

(b) Decompression-based reconstruction of the configuration bit-stream

Fig. 6: Our configuration decompression approach

In Figure 6, both a typical scheme and our compression-baskdme for storing and reading the
configuration bit-stream are shown. Typically, the confegion bit-stream is stored in memory. It is
important to deliver the bit-stream sequentially otheenibe configuration mechanism will not be ini-
tialized correctly and the configuration process will fédlepending on the configuration mode, data is
delivered serially or in parallel. In our scheme, the onlydwaare overhead introduced is a comparator
and a multiplexer. The output of the decompression procgesdentical to the data delivered by the
conventional scheme. Moreover, the data rate for deligetive configuration data is the same for both
the schemes and depends only on the memory bandwidth. Tleengeession process does not add any
time overhead to the configuration time. Moreover, the haréwcost is minimal compared with the

conventional scheme.

VI. EXPERIMENTS & COMPRESSIONRESULTS

Our configuration compression technique was applied to gordtion bit-streams of several real-world
applications. The target architecture was the VIRTEX seR@GAs [24]. VIRTEX FPGAs have been

chosen for demonstration purposes only. For mapping oret&/tRTEX devices, we used the Foundation

16

TABLE |: Compression ratios for single configurations

Configuration Bit—strgam size| Compregsipn ratio
(bits) LZW | Compact| Heuristic || LZW Lower Bound

MARS 3608000 179 % 96 % 82 % 73 %
RC6 2546080 119 % 69 % 59 % 48 %
Rijndael 3608000 198 % | 104 % 89 % 81 %
Serpent 2546080 165 % 95 % 79 % 67 %
Twofish 6127712 186 % | 103 % 86 % 76 %
FFT-256 1751840 140 % 85 % 68 % 56 %
FFT-1024 1751840 159 % 89 % 72 % 64 %
4 x FIR-256 1751840 180 % 97 % 80 % 73 %
FIR-1024 1751840 177 % 96 % 79 % 71 %

TABLE II: Dictionary and Index memory requirements for siagonfigurations

Configuration _ Dictionary _ _ Index _
memory requirements & word-length (bits) memory requirements & word-length (bits)

LZW Compact Heuristic LZW Compact Heuristic
MARS 3827070 26| 1116912 24| 172032 21| 2644920 18| 2351040 16| 2796586 13
RC6 1811575 25| 667575 23| 172032 21| 1227536 17| 1083120 15| 1344564 13

Rijndael 4231448 26| 1149840 24| 172032 21| 2924874 18| 2599888 16| 3055949 13
Serpent 2511275 25| 826152 24| 172032 21| 1703332 17| 1603136 16| 1845688 13
Twofish 6746558 26| 1919550 25| 360448 22| 4666104 18| 4406876 17| 4913398 14
FFT-256 1479408 24| 564144 23| 81920 20| 982192 16| 920805 15| 1107396 12
FFT-1024 | 1657900 25| 574034 23| 81920 20| 1123037 17| 990915 15| 1181964 12
4 x FIR-256 | 1883900 25| 575897 23| 81920 20| 1276717 17| 1126515 17| 1330044 12
FIR-1024 | 1849725 25| 580612 23| 81920 20| 1253478 17| 1106010 15| 1303416 12

Series v2.1i software development tool. Each applicatias mapped onto the smallest VIRTEX device
that met the area requirements of the corresponding impitatien. We have purposely used the smallest
possible array in order to achieve high hardware utilizaiad avoid trivial cases such as large sequences
of zeros. Our results indicated that such cases were indesdeal and no "magic” words were found.
The derived suffix trees were very flat structures of smalghieiAll bit-streams used corresponded to
complete configurations. However, this is not a limitatidroar approach since it can also handle partial
configuration bit-streams. The size of the configuratiorsh##ams ranged from.7 Mbits to 6.1 Mbits.

In Table I, the configuration bit-stream sizes for each imm@atation are shown.

The considered configuration bit-streams correspondechpteimentations of cryptographic and signal
processing algorithms. The cryptographic algorithms wvileedfinal candidates of the Advanced Encryption
Standard (AES):M ARS, RC6, Rijndael, Serpent, and Twofish. Their implementations included a
key-scheduling unit, a control unit, and one round of theptygraphic core that was used iteratively.
Implementation details of the AES algorithms can be found5in We have also implemented digital

signal processing algorithms using the logic cores pravmaéh the Foundation 2.1i software tool [24].

17

TABLE Ill: Compression ratios for sets of configurations

Confiqurations Bit-streams sizg Compression ratio
g (bits) LZW | Compact| Heuristic | Baseline
MARS, Rijndael 2 x 3608000 | 181 % | 97 % 85 % 85.50 %
RC6, Serpent 2 x 2546080 | 136 % | 76 % 68 % 69.00 %
FFT-256, FFT-1024, 0 0 0 0
4 x FIR-256, FIR-1024 4 x 1751840 | 142 % | 84 % 71 % 74.75 %

TABLE |V: Dictionary and Index memory requirements for sefsconfigurations

Configurations Dictionary Index
memory requirements & word-length (bits) memory requirements & word-length (bits)
LZW Compact Heuristic LZW Compact Heuristic

MARS, Rijndael 7676856 27| 2193250 25| 360448 22| 5397406 19| 4829258 17| 5772508 14
RC6, Serpent 4092062 26| 1376568 24| 360448 22| 2828394 18| 2514128 16| 3095974 14

FFT-256, FFT-1024,
4 x FIR-256, FIR-1024 5889468 26| 2063875 25| 360448 22| 4072788 18| 3846522 17| 4648700 14

A 1024— and a512— point complexF F'T' were implemented that were able to perfofth F'T" too. In
addition, four256—tap F'I R filters were mapped onto the same device. In this implementaall filters
can process data concurrently. Finallyl@4—tap F'I R filter was also implemented.

The configuration bit-streams were proceségid — by — byte during compression, that is, the symbol
for the dictionary entries was chosen to besanit word. As a result, the decompressed data is delivered as
8-bit words and, thus, parallel modes of configuration canuppsrted. Note that the maximum number
of bits used in parallel modes of configuration is typicallpits [1], [2], [24]. If the configuration mode
requires less thaa bits (e.g., serial mode), ah-to—n bit converter can be used, whetds the number
of bits required by the configuration mode. Note also that fweuristic can be applied for any symbol
length. However, in this work, for each configuration bitesim, we do not attempt to find the optimal
bit-length for the symbol that leads to the best compressesults. Our goal is to optimize a given

dictionary structure regardless the symbol length.

A. Single Configurations

The compression results for single configurations are showables | and II. The results are organized
with respect to the optimization stages of our technique (Siggure 2). The results shown for LZW
correspond to the construction of the dictionary and theexndsing the LZW algorithm. The only
difference compared with Figure 2 is that the LZW resultdude the optimization of merging common
prefix strings in the dictionary. Hence, the results shown empact correspond to the deletion of

the non-referenced nodes in the dictionary. Finally, theults shown forHeuristic correspond to the

18

optimizations performed by our heuristic and are also theral/results of our compression technique.

In Table I, the achieved compression ratios are shown. Thepoession ratio is the ratio of the total
memory requirements (i.e., memory to store dictionary ardex) to the bit-stream size. In addition,
in Table I, lower bounds on the compression ratios are shdwan.our compression technique, the
lower bound for each bit-stream corresponds to the entrdphe bit-stream with respect to the LZW
compression algorithm. As mentioned in Section 3, the cesgion ratio is affected by the entropy of the
data to be compressed [19]. The critical metric is the entpthe LZW model that allows comparing
the performance of our heuristic with respect to the modetus derive the dictionary. As a result, the
IID model is misleading for this case since it considers athbols as independent data while LZW model
is based on strings of symbols. We have calculated the lowendb by dividing the index size derived
using LZW by the bit-stream size. Therefore, the lower boookesponded to the compression ratio that
can be achieved by LZW for software-based applicationu(asyy 8 — bit symbols).

In Table Il, the compression results are shown in terms ofni@enory requirements. The memory
requirements for the dictionary arg;ctionary % (8 + [108y Ndictionary |) DItS, Wherenicionary i the number
of memory entries of the dictionary. Similarly, the memosguirements for the index are;,4.. X
[10gs Ndictionary | DItS, Wheren,,q., is the number of memory entries of the index dmag, n4;ctionary | 1S
the number of bits required to address the dictionary.

LZW In software-based applications, only the index is considén the calculation of the compression
ratio. In addition, statistical encoding schemes are agtili for further compressing the index. As a
result, in typical LZW applications, superior compressiatios (i.e.,10 — 20 %) have been achieved
by using commercially available software programs (e:gnpress, gzip). However, such commercial
programs are not applicable to our compression problem.igkuigsed earlier, in the context of embedded
environments, both the dictionary and the index are constts the calculation of the compression ratio.
The size of the derived dictionaries was comparable to the sf the original bit-streams. Therefore,
negative compression occurred, that is, the memory regein¢s for the dictionary and the index were
greater than the bit-stream size.

Compact By deleting the non-referenced nodes in the dictionarynilmaber of the dictionary entries
was reduced by a factor @f4 — 3.4. As a result, the number of bits required to address theodiaties
was also reduced by to 2 bits affecting the word-length of both the dictionary and thdex memories

accordingly. Compared with the LZW results, the memory megments for the dictionaries were reduced

19

by a factor of2.5 — 3.7. In addition, the memory requirements for the indices wds® aeduced by
6 — 13 % even though the number of codewords remained the same. IDWBea compression ratios
achieved at this optimization stage wei®— 104 %.

Heuristic Finally, the overall savings in memory were further imprdy our heuristic. The goal of our
heuristic was to reduce the size of the dictionary at the esp@f the index expansion. Indeed, compared
to the Compact results, the dictionary entries were reduced by a facta.@f 6.2 while the number of
codewords was increased By— 50 %. The number of bits required to address the dictionary wdsaed
by 2 to 3 bits affecting the word-length of both the dictionary and thdex memories accordingly. As a
result, even though the number of codewords was incredsedotal memory requirements were reduced.
Compared with the&Compact results, the memory requirements of the dictionaries werthér reduced
by a factor of3.2—7.1 while the memory requirement of the indices were increaset8b-40 %. Overall,
the compression ratios achieved at this optimization stegee 59 — 89 %. Our heuristic improved the
compression ratios provided by tld&mpact results byl4 — 20 %.

Considering the compression ratios achieved by LZW anddiverd bounds on them, our compression
technique performs well. The improvements over the LZW ltesuere significant. On the average, our
technique reduced the dictionary memory requirement84by % while the index memory requirements
were increased by1.5 %. As a result, our compression results were close to the Ibwands. On the
average, our compression ratios were higher than the loaends by14.5 %. Overall, our compression
technique reduced the memory requirements of the configarait-streams by).35 — 1.04 Mbits. The
savings in memory correspondeditb— 41 % of the original bit-streams. Given a fixed-size configunatio
memory, memory savings enhance the flexibility of a systentesimore bit-streams can fit in the
configuration memory. On the other hand, in the case of degjgan application-specific system with
specific configurations, the savings in memory are relatetthé¢ocost of the system. The absolute value
for savings in memory will determine the smallest memorg dlmt can be used. Inevitably, the memory

size availability also affect the overall cost savings.

B. Sets of Configurations

Our technique can be extended to compress a set of configusdiy incorporating anified-dictionary
approach. The proposed approach differs from our configuratompression technique (see Figure 2)
only with respect to the way the dictionary is constructettéad of constructing multiple dictionaries

by processing the configuration bit-streams independetiily bit-streams are processed in a sequence

20

by sharing the same dictionary. The LZW algorithm (see Athan 1) is applied to each configuration
bit-stream without initializing the dictionary. Every tenLZW is called, it uses the dictionary that was
derived by the preceding call. The derived indices are gedup one index for facilitating the processing
through the remaining stages of our compression technisge Eigure 2).

The goal of theunified-dictionary approach is to construct a single dictionamyrfaltiple configurations
in order that the world-length of the index memory will be tteme across different configurations. As
a result, a simple memory organization will be required fecampression, which is identical to the
one shown in Figure 6(b). On the contrary, if the configuratigt-streams are processed independently
(baseliné), a more complex memory organization will be required thamsists of multiple memory
modules of various word-lengths. Furthermore, if the diatiries obtained by thleaselineapproach are
grouped to form a single dictionary, the compression rataul increase due to the increase in the
number of bits required to address the dictionary entries.

In Tables Il and 1V, the achieved compression ratios anddibgonary and index memory requirements
are shown. Configurations corresponding to the same FPGAcalare grouped together since it is
uncommon for FPGA systems to utilize different FPGA deviesscomputing nodes (except FPGA
devices that are used for control). Clearly, besides reguih simple memory organization, the proposed
approach achieves better compression ratios thababkelineapproach. This happens because the increase
of the number of bits required to address the dictionaryienis amortized by the decrease of the number
of index entries. The number of index entries decreasesditrestfact that, after the first call to LZW, the
dictionary is not initialized with the alphabet symbols hutlready contains some strings. Therefore, for
larger number of configuration bit-streams, a larger desrea the number of index entries is expected.
Compared with thebaselineapproach, for{ MARS, Rijndadl, {RC6, Serpent and {FFT-256, FFT-
1024, 4 x FIR-256}, the number of index entries decreasessby1 %, 9.89%, and19.06% respectively.
Before applying our heuristic (see Figure 2), the numbericfiahary entries is decreased By 17%
compared with théaselineapproach. This happens because common entries amongediftiictionaries
are replaced by a single entry in thaified dictionary. However, after applying our heuristic, the rnen
of dictionary entries is the same for both the approaches.

“For comparison purposes, in the remainder of this sectiensolution to processing the configuration bit-streamepeddently is referred
asbaseline

21

VIlI. CONCLUSIONS

In this paper, a novel configuration compression technigas proposed. Our goal was to reduce the
memory required to store configurations in FPGA-based endxdystems and achieve high decom-
pression efficiency. Decompression efficiency correspoodse decompression hardware cost as well as
the decompression rate. Although data compression hasex¢ensively studied in the past, we are not
aware of any prior work that addresses configuration corspesor FPGA-based embedded systems
with respect to the cost and speed requirements. Our cosipnetechnique is applicable to any SRAM-
based FPGA device since it does not depend on specific featdirthe configuration mechanism. The
configuration bit-streams are processed as raw data wittomgidering individual semantics. As a result,
both complete and partial configuration schemes can be sigohd he required decompression hardware
is simple and does not depend on the individual semanticerdfguration bit-streams or specific features
of the configuration mechanism. Moreover, the decompragsiocess does not affect the time to configure
the device and the decompression rate scales with the sp#eelmemory used for storing the dictionary.
Using our technique, we have demonstratéd- 41 % savings in memory for various configuration bit-
streams of real-world applications. Considering the lob@unds derived for the compression ratios, the
achieved compression ratios were higher than the lowerd®oby 14.5 % on the average. In addition,
a unifieddictionary approach was proposed for compressing setowufigurations. Such an approach
achieves better compression ratios than compressing tifegamations independently while leading to a
simple memory organization that does not require multipemory modules of different word-length.

Future work includes the development ofskeleton-based approach for our compression technique.
A skeleton corresponds to the correlation among a set of configuratibeti@ams. By removing the
data redundancy of thekeleton in the bit-streams, savings in memory can be achieved. Giveet
of configurations, we plan to address the problem of deriangeleton in order to reduce the size of
individual indices. Related problems are addressed in [4].

The work reported here is part of the USC MAARCII projebt ¢ p: / / maar cl | . usc. edu). This
project is developing novel mapping techniques to explgitainic reconfiguration and facilitate run-time

mapping using configurable computing devices and architest

REFERENCES

[1] Altera PLD Deviceshttp://ww. al tera. com

[2] Atmel FPGA,http://ww. at el . com

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]
[20]

[21]

[22]

22

K. Bondalapati, P. Diniz, P. Duncan, J. Granacki, M. H&L Jain, and H. ZiegleDEFACTO: A Design Environment for Adaptive
Computing TechnologyReconfigurable Architectures Workshop, April 1999.

A. Dandalis,Dynamic Logic Synthesis for Reconfigurable Devi&dtD Thesis, Dept. of Electrical Engineering, UniversifySouthern
California, December 2001.

A. Dandalis, V. K. Prasanna, and J. D. P. Rolila,Comparative Study of Performance of AES Final CandidatesdJFPGAS
Workshop on Cryptographic Hardware and Embedded Systenmp gk 2000.

O. Diessel and H. EIGindyPn dynamic task scheduling for FPGA-based systénternational Journal of Foundations of Computer
Science, Special Issue on Scheduling: Theory and Applicatil2(5), pp. 645 - 669, October 2001.

J.G. Eldredge and B.L. HutchingRun-Time Reconfiguration: A Method for Enhancing the Fumeti Density of SRAM-Based FPGAs
Journal of VLSI Signal Processing, Vol. 12(1), pp. 67-8Guky 1996.

R. Hartenstein, J. Becker, M. Herz, and U. Nageldingen, Embedded Accelerator for Real World ComputiffgiP International
Conference on Very Large Scale Integration, August 1997.

S. Hauck, Z. Li, and E. J. Schwab€pnfiguration Compression for the Xilinx XC6200 FPGBEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, Vol. 18, No. 8,1d®7-1113, August 1999.

S. Hauck and W. D. WilsorRunlength Compression Techniques for FPGA ConfiguratilfiSE Symposium on Field-Programmable
Custom Computing Machines, April 1999.

R. D. Hudson, D. I. Lehn, and P. Athanas,Run-Time Reconfigurable Engine for Image InterpolatifEE Symposium on Field-
Programmable Custom Computing Machines, April 1998.

H. Kim, A. K. Somani, and A. TyagiA Reconfigurable Multi-function Computing Cache Architegt IEEE Transactions on Very
Large Scale Integration Systems, Volume 9(4), pp. 509-B2@just 2001.

M. Klimesh, V. Stanton, and D. Watoldjlardware Implementation of a Lossless Image Compressigoriéthm Using a Field
Programmable Gate ArrgyThe Telecommunications and Mission Operations ProgregoiR® Jet Propulsion Laboratory, California
Institute of Technology, February 2001.

S. Laio, S. Devadas, and K. Keutzé, Text-Compression-Based Method for Code Size MinimizatioEmbedded SystemACM
Transactions on Design Automation of Electronic Systenud, &, No. 1, pp. 12-38, January 1999.

C. Lefurgy, P. Bird, I-C. Cheng, and T. Mudgbmproving Code Density Using Compression Techniq@®&h Annual IEEE/ACM
Symposium on Microarchitecture, December 1997.

Z. Li and S. Hauck,Configuration Compression for Virtex FPGAKEEE Symposium on Field-Programmable Custom Computing
Machines, April 2001.

R. Maestre, F.J. Kurdahi, N. Bagerzadeh, H. Singh, Rniiiga, and M. FernandeXernel Scheduling in Reconfigurable Computing
Design, Automation and Test in Europe Conference, Marct9199

J. T. McHenry, P. W. Dowd, F. A. Pellegrino, T. M. Carrazand W. B. CocksAn FPGA-based coprocessor for ATM firewalBEE
Symposium on Field-Programmable Custom Computing MashiAeril 1997.

M. Nelson and J-L. GailyThe Data Compression BooM&T Books, New York, 1996.

S. Ogrenci-Memik, E. Bozorgzadeh, R. Kastner, and Mrr&aadeh,A Super-Scheduler for Embedded Reconfigurable Systems
International Conference on Computer-Aided Design, Ndvem2001.

N. Shirazi, W. Luk, and P.Y.K. Cheungramework and Tools for Run-Time Reconfigurable Desitff& Proceedings Computers and
Digital Techniques, Vol. 147, No. 3, pp. 147 - 152, May 2000.

S. Swanchara, S. Harper, and P. AthanAsStream-Based Configurable Computing Radio TesthEBEE Symposium on Field-

Programmable Custom Computing Machines, April 1998.

[23] J. Villasenor and W. H. Mangione-Smitonfigurable ComputingScientific American, pp. 66-71, June 1997.
[24] Xilinx FPGA Devices,htt p: // ww. xi | i nx. com

[25] Xilinx Success Products Storigst t p: // www. xi | i nx. conf conpany/ success/ csprod. ht m

23

