
1

Configuration Compression for
FPGA-based Embedded Systems1

Andreas Dandalis2 and Viktor K. Prasanna3

Abstract

Field Programmable Gate Arrays (FPGAs) are a promising technology for developing high-performance em-
bedded systems. The density and performance of FPGAs have drastically improved over the past few years.
Consequently, the size of the configuration bit-streams hasalso increased considerably. As a result, the cost-
effectiveness of FPGA-based embedded systems is significantly affected by the memory required for storing various
FPGA configurations. This paper proposes a novel compression technique that reduces the memory required for
storing FPGA configurations and results in high decompression efficiency. Decompression efficiency corresponds
to the decompression hardware cost as well as the decompression rate. The proposed technique is applicable toany
SRAM-based FPGA device since configuration bit-streams areprocessed as raw data. The required decompression
hardware is simple and the decompression rate scales with the speed of the memory used for storing the FPGA
configuration. Moreover, the time to configure the device is not affected by our compression technique. Using
our technique, we demonstrate up to41% savings in memory for configuration bit-streams of several real-world
applications.

I. INTRODUCTION

The enormous growth of embedded applications has made embedded systems an essential component

in products that emerge in almost every aspect of our life: digital TVs, game consoles, network routers,

cellular base-stations, digital communication devices, printers, digital copiers, multi-functional equipment,

home appliances, etc. The goal of embedded systems is to perform a set of specific tasks to improve the

functionality of larger systems. As a result, they are usually not visible to the end-user since they are

embedded in larger systems. Embedded systems usually consist of a processing unit, memory to store data

and programs, and an I/O interface to communicate with othercomponents of the larger system. Their

complexity depends on the complexity of the tasks they perform. The main characteristics of an embedded

system are raw computational power and cost-effectiveness. The cost-effectiveness of an embedded system

includes characteristics such as product lifetime, overall price, and power consumption, among others.

The unique combination of hardware-like performance with software-like flexibility make Field Pro-

grammable Gate Arrays (FPGAs) a highly promising solution for embedded systems [8], [11], [12], [13],

[18], [22], [23], [25]. Such systems will significantly reduce design risks and increase the production

1This work is supported by the US DARPA Adaptive Computing Systems program under contract no. DABT63-99-1-0004 monitored by
Fort Huachuca and in part by the US National Science Foundation under grant no. CCR-9900613.

2A. Dandalis is with the Intel Corporation, Hillsboro, USA, andreas.dandalis@intel.com.
3V. K. Prasanna is with the University of Southern California, Los Angeles, USA, prasanna@usc.edu.

2

volume of the chip. Additionally, the requirements of applications in the information-based networked

world are changing so rapidly that reconfigurability is possibly the only way to overcome severe time-to-

market requirements.

Typical FPGA-based embedded systems have FPGA devices as their processing unit, memory to

store data and FPGA configurations, and an I/O interface to transmit and receive data. FPGA-based

embedded systems can sustain high processing rates while providing a high degree of flexibility required in

dynamically changing environments. FPGAs can be reconfigured on demand to support multiple algorithms

and standards. Moreover, by incorporating Run-Time Reconfiguration (RTR), applications consisting of

multiple configurations can be executed [3], [6], [7], [17],[20], [21]. Thus, the degree of system flexibility

strongly depends on the amount of configuration data that canbe stored in the field. However, the size

of the configuration bit-stream has increased considerablyover the past few years. For example, the size

of the configuration bit-stream of the VIRTEX-II series FPGAs, range from0.4 Mbits to 43 Mbits [24].

In this paper, we propose a novel compression technique to reduce the memory requirements for storing

configuration bit-streams in FPGA-based embedded systems.By compressing configuration bit-streams,

increased configuration data density can be achieved resulting in smaller size memories and/or increased

system flexibility. Smaller size memories and increased system flexibility are essential to enhance the cost-

effectiveness and lifetime of the embedded systems under consideration. Moreover, increased flexibility

can enable the usage of smaller FPGA devices in environmentsthat require on-demand computations. A

smaller FPGA device that is reconfigured on-demand is more cost-effective compared with a larger FPGA

device that is configured once for all the possible tasks thatcan be executed during an application.

Using our compression technique, configuration compression occurs off-line. At runtime, decompression

occurs and the decompressed data is fed to the on-chip configuration mechanism to configure the device.

The major performance requirements of the compression problem are the decompression hardware cost

and the decompression rate. The above requirements distinguish our compression problem from conven-

tional software-based applications. We are not aware of anyprior work that addresses the configuration

compression problem of FPGA-based embedded systems with respect to the cost and speed requirements.

Our compression technique is applicable to any SRAM-based FPGA device and can support both

complete and partial configuration schemes. The proposed technique process configuration bit-streams as

raw data without considering any individual semantics. Such semantics depend on the target FPGA device

architecture and the placement/routing tool used for application mapping. On the other hand, application-

3

specific computations can lead to hardware structural regularities. Such regularities are explored by our

technique as repeated strings at the bit-stream level.

The required decompression hardware is simple and independent of the configuration format or char-

acteristics of the configuration mechanism. In addition, the achieved compression ratio is independent of

the decompression hardware and depends only on the entropy of the configuration bit-stream. Finally, the

time to configure an FPGA depends only on the data rate of the on-chip configuration mechanism, the

speed of the memory that stores the configuration data, and the size of the configuration bit-stream. The

decompression process does not add any overhead to the configuration time.

The proposed compression technique is based on the principles of dictionary-based compression al-

gorithms. In addition, aunified-dictionary approach is proposed for compressing sets of configurations.

Even though statistical methods can achieve higher compression ratios, we propose a dictionary-based

approach because statistical methods lead to high decompression hardware cost. Using our technique, we

demonstrate11−41% savings in memory for configuration bit-streams of several real-world applications.

The configuration bit-streams corresponded to cryptographic and digital signal processing algorithms. Our

target architecture was the VIRTEX series FPGAs [24]. The latter choice has been made for demonstration

purposes only. Single as well as sets of configuration bit-streams were compressed using our technique.

The size of the configuration bit-streams ranged from1.7 Mbits to 6.1 Mbits.

An overview of the configuration of SRAM-based FPGAs is givenin Section 2. In Section 3, various

aspects of compression techniques and the constraints imposed by embedded systems are presented. In

Section 4, related work is described. Our novel compressiontechnique is described in Section 5 and

experimental results are demonstrated in Section 6. Finally, in Section 7, possible extensions to our work

are described.

II. FPGA CONFIGURATION

An FPGA configuration determines the functionality of the FPGA device. An FPGA device is configured

by loading a configuration bit-stream into its internal configuration memory. An internal controller manages

the configuration memory as well as the configuration data transfer via the I/O interface. Throughout this

paper, we refer to both the configuration memory and its controller as the configuration mechanism. Based

on the technology of the internal configuration memory, FPGAs can be permanently configured once or

can be reconfigured in the field. For example, Anti-Fuse technology allows one-time programmability

while SRAM technology allows reprogrammability.

4

In this paper, we focus on SRAM-based FPGAs. In SRAM-based FPGAs, the contents of the internal

configuration memory are reset after power-up. As a result, the internal configuration memory cannot be

used for storing configuration data permanently. Using partial configuration, only a part of the contents

of the internal configuration memory is modified. As a result,the configuration time can be significantly

reduced compared with the configuration time required for a complete reconfiguration. Moreover, partial

configuration can occur at runtime without interrupting thecomputations that an FPGA performs. SRAM-

based FPGAs require external devices to initiate and control the configuration process. Usually, the

configuration data is stored in an external memory and an external controller supervises the configuration

process.

The time required to configure an FPGA depends on the size of the configuration bit-stream, the clock

rate and the operation mode of the configuration mechanism, and the throughput of the external memory

that stores the configuration bit-stream. Typical sizes of configuration bit-streams range from0.4 Mbits

to 44 Mbits [1], [2], [24] depending on the density of the device. The clock rate of the configuration

mechanism determines the rate at which the configuration data is delivered to the FPGA device. The

configuration data can be transferred to the configuration mechanism serially or in parallel. Parallel modes

of configuration result in faster configuration time. Typical values of data rates for FPGAs can be as high

as 480 Mbits/sec (i.e., 8 bits× 60 MHz) [1], [2], [24] while some programmable logic cores support

even higher data rates. Thus, the external memory that stores the configuration bit-stream should be able

to sustain the data rate of the configuration mechanism. Otherwise, the memory becomes a performance

bottleneck and the time to configure the device increases. Such an increase could be critical for applications

where an FPGA is configured on-demand based on run-time parameters.

Configuration bit-streams consist of data to be stored in theinternal configuration memory as well

as instructions to the configuration mechanism. The data configures the FPGA architecture, that is,

the configurable logic blocks, the interconnection network, the I/O pins, etc. The instructions control

the functionality of the configuration mechanism. Typically, instructions are used for initializing the

configuration mechanism, synchronizing clock rates, and determining the memory addresses at which

the data will be written. The format of a configuration bit-stream depends on the characteristics of the

configuration mechanism as well as the characteristics of the FPGA architecture. As a result, the bit-stream

format varies among different vendors or, even among different FPGA families of the same vendor.

5

III. COMPRESSIONTECHNIQUES: APPLICABILITY & I MPLEMENTATION COST

Data compression has been extensively studied in the past. Numerous compression algorithms have

been proposed to reduce the size of data to be stored or transmitted over a network. The effectiveness of

a compression technique is characterized by the achieved compression ratio, that is, the ratio of the size

of the compressed data to the size of the original data. However, depending on the application, metrics

such as processing rate, implementation cost, and adaptability may become critical performance issues.

In this section, we will discuss compression techniques andthe requirements to be met for compressing

FPGA configurations in FPGA-based embedded systems.

In general, a compression technique can be either lossless or lossy. For configuration compression,

the configuration bit-stream should be reconstructed without loss of any information and thus, a lossless

compression technique should be used. Otherwise, the functionality of the FPGA may be altered or, even

worse, the FPGA may be damaged. Lossless compression techniques are based on statistical methods

or dictionary-based schemes. For any given data, statistical methods can result in better compression

ratios than any dictionary-based scheme [19]. Using statistical methods, a symbol in the original data

is encoded with a number of bits proportional to the probability of its occurrence. By encoding the

most frequently-occurring symbols with fewer bits than their binary representation requires, the data is

compressed. The compression ratio depends on the entropy ofthe original data as well as the accuracy of

the model that is utilized to derive the statistical information of the given data. However, the complexity

of the decompression hardware can significantly increase the cost of such an approach. In the context of

embedded systems, dedicated decompression hardware (e.g., CAM memory) is required to align codewords

of different lengths as well as determine the output of a codeword.

In dictionary-based compression schemes, single codewords encode variable-length strings of symbols

[19]. The codewords form anindex to a phrase dictionary. Decompression occurs by parsing thedictionary

with respect to its index. Compression is achieved if the codewords require smaller number of bits

than the strings of symbols that they replace. Contrary to statistical methods, dictionary-based schemes

require significantly simpler decompression hardware. Only memory read operations are required during

decompression and high decompression rates can be achieved. Therefore, in the context of FPGA-based

embedded systems, a dictionary-based scheme would result in fairly low implementation cost.

In Figure III, a typical architecture of FPGA-based embedded systems is shown. These systems consist

of an FPGA device(s), memory to store data and FPGA configurations, a configuration controller to

6

FPGA

Configuration

Memory

Configuration

Controller
Bit-Stream

Memory

Data

I/O

Fig. 1: FPGA-based embedded system architecture

supervise the configuration process, and an I/O interface tosend and receive data. The configurations are

compressed off-line by a general-purpose computer and the compressed data is stored in the embedded

system. In this work, embedded systems that also include a microprocessor can be considered under

the assumption that the microprocessor is not used for compression/decompression (e.g., due to high

utilization by other tasks). Besides the memory requirements for the compressed data, additional memory

may be required during decompression (e.g., storing temporary data). However, in the context of embedded

systems, the memory requirements to store temporary data should also be considered.

At runtime, decompression occurs and the original configuration bit-stream is delivered to the FPGA

configuration mechanism. As a result, the decompression hardware cost and the decompression rate become

major requirements of the compression problem. The decompression hardware cost may affect the cost

of the system. In addition, if the decompression rate can notsustain the data rate of the configuration

mechanism, the time to configure the FPGA will increase.

Our compression technique can lead to smaller memory requirements for storing FPGA data and thus,

reducing the cost of the configuration memory (e.g., configuration-specific system). At the same time, the

power requirements can be reduced since memories of smallersize can be used. In addition, the tight

coupling of configuration memory and FPGA devices can resultin systems with superior flexibility (e.g.,

system with fixed-size configuration memory). Such flexibility can enable the usage of smaller FPGA

devices in environments that require on-demand computations.

7

IV. RELATED WORK

Work related to FPGA configuration compression has been reported in [9], [10], [16]. In [9], the

proposed technique took advantage of the characteristics of the configuration mechanism of the Xilinx

XC6200 architecture. Therefore, the technique is applicable only to that architecture. In [10], runlength

compression techniques for configurations have been described. Again, the techniques took advantage of

specific characteristics of the Xilinx XC6200 architecture. Addresses were compressed using runlength

encoding while data was compressed using LZ compression (sliding-window method [19]). Dedicated

on-chip hardware was required for both methods. A set of configuration bit-streams (2− 88 Kbits) were

used to fine-tune the parameters of the proposed methods. A16−bit size window was used in the LZ

implementation. However, as stated in [10], larger size windows impose a fairly high hardware penalty

with respect to the buffer size as well as the supporting hardware. In [16], dictionary-based techniques

were developed to reduce the time required to transfer configuration data to VIRTEX series FPGAs.

A compressed version of the configuration bit-stream is fed to the configuration circuitry of the FPGA

and decompression takes place inside the FPGA. A modified VIRTEX configuration mechanism was

proposed to support decompression. High compression ratios were reported. However, the time overhead

for decompressing the configuration data was not clearly identified.

In [14], [15], dictionary-based compression techniques were utilized for code minimization in embedded

processors. However, code minimization takes advantage ofthe semantics of programs for Instruction Set

Architecture (ISA) based processors and is unlikely to achieve similar results for FPGA configuration bit-

streams (i.e., raw data). For example, programs can have jumps that require decompression to be performed

not in a sequential manner while configuration bit-streams should be decompressed sequentially. In [15],

a fixed-size dictionary was used for compressing programs. The size of the programs was in the order

of hundreds of bits. No detailed information was provided regarding the algorithm used to build the

dictionary. The authors mainly focused on tuning the dictionary parameters to achieve better compression

results based on the specific set of programs. However, such an approach is unlikely to achieve the

same results for FPGA configurations where the bit-stream isa data file and not a program for ISA-

based processors. In addition, Huffman encoding was used for compressing the codewords. As a result,

dedicated hardware resources were needed for decompressing the codewords. In [14], the dictionary was

built by solving a set-covering problem. The underlying compression model was developed with respect

to the semantics of programs for ISA-based processors (i.e., control-flow and operational instructions).

8

The size of the considered programs was 0.5-10 Kbits and the achieved compression ratios (i.e., size

of the compressed program as fraction of the original program) were approximately 85-95 %. Since the

technique in [14] was developed for code size minimization,it is not fair to make any compression ratio

comparisons with our results.

V. OUR COMPRESSIONTECHNIQUE

Dictionary
Construction

LZW

Merge common prefix strings

Delete non-referenced nodes

Compact

Selectively delete substrings

Selectively delete nodes
Heuristic

Reverse
Order

Reverse
Order

Configuration

Bit-Stream

DICTIONARY

DICTIONARY INDEX

DICTIONARY INDEX

INDEXINDEX

representation

Fig. 2: Our configuration compression technique

Our compression technique is based on the principles of dictionary-based compression algorithms.

Compression occurs off-line while decompression occurs on-line to reconstruct the original configuration

bit-stream. Even though statistical methods can achieve higher compression ratios [19], we propose a

dictionary-based approach because dictionary-based schemes lead to simpler and faster decompression

hardware. In our approach, the dictionary corresponds to configuration data and the index corresponds

to the way the dictionary is read in order to reconstruct a configuration bit-stream. In Figure 2, an

overview of our configuration compression technique is shown. The input configuration bit-stream is read

sequentially in the reverse order. Then, the dictionary andthe index are derived based on the principles of

the well-known LZW compression algorithm [19]. In general,finding a dictionary that results in optimal

compression has exponential complexity [19]. By deleting non-referenced nodes and by merging common

prefix strings, a compact representation of the dictionary is achieved. Finally, a heuristic is applied that

further enhances the dictionary representation and leads to savings in memory. The original configuration

bit-stream can be reconstructed by parsing the dictionary with respect to the index in reverse order. The

achieved compression ratio is the ratio of the total memory requirements (i.e., dictionary and index) to

the size of the bit-stream. In the following, we describe in detail our compression technique as well as

the decompression method.

9

A. Basic LZW Algorithm

The LZW algorithm is an adaptive dictionary encoder, that is, the coding technique of LZW is based

on the input data already encoded (Algorithm 1). The input tothe algorithm is a sequence of binary

symbols. A symbol can be a single bit or a data word. Symbols are processed sequentially. By combining

consecutive symbols, strings are formed. In our case, the input is the configuration bit-stream. Moreover,

the bit-length of the symbol determines the way the bit-stream is processed (e.g., bit-by-bit, byte-by-byte).

The main idea of LZW is to replace the longest possible stringof symbols with a reference to an existing

dictionary entry. As a result, the derived index consists ofpointers to the dictionary.

Algorithm 1: The LZW algorithm [20]

Input: An input stream of symbolsIN.
Output: The dictionary and the index.

dictionary← input alphabet symbols
S = NULL

repeat
s← read a symbol fromIN
if Ssexists in the dictionary

S← Ss
else

output the code forS
addSsto the dictionary
S← s

end
until (all input data is read)

In software-based applications, only the index is considered in the calculation of the compression ratio.

The main advantage of LZW (and any LZ-based algorithm) is that the dictionary can be reconstructed

based on the index. As a result, only the index is stored in a secondary storage media or transmitted. The

dictionary is reconstructed on-line and the extra memory required is provided by the “host”. However,

in embedded systems, no secondary storage media is available and the extra required memory has to be

considered in the calculation of the compression ratio. Also, note that the dictionary includes phrases that

are not referenced by its index. This happens because, as compression proceeds, LZW keeps all the strings

that are seen for the first time. This is performed regardlessof whether these strings will be referenced or

not. This is not a problem in software-based applications since the size of the dictionary is not considered

in the calculation of the compression ratio.

10

C

U

O

T

I

R

O

M

A

P

T

N

E

COMPUTE

COMPUTER

COMPUTATION

Fig. 3: An illustrative example of our dictionary representation

B. Compact Dictionary Construction

In our approach, we propose a compact memory representationfor the dictionary. In general, the

dictionary is a forest of suffix trees (i.e., one tree for eachsymbol of the input alphabet). Each string in

a tree is stored in the memory as a singly-linked list. The root of a tree is the head of all the lists in that

tree. Every entry in the memory consists of a symbol and an address to a prefix string and every string

is associated with an entry. A string is read by traversing the corresponding list from the address of its

associated memory entry to the head of the list. Furthermore, dictionary entries that are not referenced

in the index are deleted and not stored in the memory. Finally, common prefix strings are merged as one

string. An example of our dictionary representation is shown in Figure 3. For illustrative purposes, we

consider letters as symbols. The root of the tree is the symbol “ C”. Each one of the strings “COMPUTE”,

“COMPUTER”, and “COMPUTATION” is associated with a node. Since the string “COMPUT ” is

a common prefix string, it is only represented once in the memory. In Figure 4, the memory organization for

storing the dictionary and the index of the above example is shown. The contents of the dictionary entries

are shown in ascending order of their memory address. For each dictionary entry, the corresponding symbol

and the address to a prefix string are shown. The shown index entries correspond to a dictionary memory

address. The memory requirements for the dictionary arendictionary × (datasymbol + ⌈log
2
ndictionary⌉)

bits, wherendictionary is the number of memory entries of the dictionary anddatasymbol is the number

of bits required to represent a symbol. Similarly, the memory requirements for the index arenindex ×

⌈log
2
ndictionary⌉ bits, wherenindex is the number of memory entries of the index.

From the above example, we notice that during decompression, the decompressed strings are delivered in

reverse order. In fact, in software-based implementations[19], a stack is used to deliver each decompressed

11

C

O

M

P

U

T

A

T

I

O

N

E

R

0001

0010

0011

0100

0101

0111

1000

1001

1010

1011

1100

1101

1110

0000

0001

0010

0011

0100

0101

0111

1000

1001

1010

1011

0111

1101

1100

1110

1101

...

...

...

...

COMPUTATION

COMPUTER

COMPUTE

Dictionary Index

Fig. 4: An illustrative example of memory organization for the dictionary and the index

string in the right order. However, in the considered embedded environment, additional hardware is required

to implement the stack. In addition, the size of the stack should be as large as the length of the longest

string in the dictionary. Moreover, the time overhead to reverse the order of the decompressed strings

would affect the time to configure the FPGA. In our scheme, to avoid the use of a stack, we derive the

dictionary after reversing the order of the configuration bit-stream. During decompression, the configuration

bit-stream is reconstructed by parsing the index in the reverse order. In this way, the decompressed strings

are delivered in order and the exact original bit-stream is reconstructed. We have performed several

experiments to examine the impact of compressing a reverse-ordered configuration bit-stream instead of

the original one. Our experiments suggest that the memory requirements for both the dictionary and the

index are very close to each other in both cases (i.e., variation less than±1%).

C. Enhancement of the Dictionary Representation

After deriving the dictionary and its index, we reduce the memory requirements of the dictionary by

selectively decomposing strings in the dictionary. In the following, a prefix string corresponds to a path

from any node up to the tree root. Similarly, a suffix string corresponds to a path from a leaf node up to

any node. Finally, a substring corresponds to a path betweenany two arbitrary nodes.

The main idea is to replace frequently-occurring substrings by a new or an existing substring. As a result,

while memory savings can be achieved for the dictionary, additional codewords are also introduced leading

to index expansion. For example, consider the prefix strings“COMPUTER” and “QUALCOM” (see

Figure 5). Again, for illustrative purposes, we consider letters as symbols. Since “COM” is a common

12

Algorithm 2: Our Heuristic: Phase 1.

Input: A dictionary Din and an indexIin.
Output: EnhanceddictionaryDtemp and indexItemp.

STRINGS={suffix strings inDin containing nodes that
are pointed at by only one suffix string}
U={si: siǫSTRINGS ∧ (if i 6= j ⇒ si 6= sj)}
Ul={si: siǫU ∧ length(si)=l}
/* L = max length(si)
/* datadictionary: word-length for the dictionary memory
/* dataindex: word-length for the index memory
/* ni: node ofsi with the highest distance from a leaf node
/* ti: # of xǫSTRINGS : x = si

/* ci: # of timesni is referenced by the index
if ∃ prefix stringxǫDin : x = si

ai = 0
else

ai = 1
end
cost(si) = (ti − ai) ∗ (datadictionary)− ci ∗ dataindex

Sdelete = NULL

for l = 1..L

Stemp = NULL

∀si : siǫ{Ul ∪ U}
if cost(si) ≥ 0

Sdelete = Sdelete ∪ {si}
else

Stemp = Stemp ∪ Ul∪ {xǫSTRINGS : si = x}
end

U = U − Stemp

end
delete {xǫSTRINGS : x = y ∧ yǫSdelete}
Snew = {new prefix strings that replace

the deleted suffix strings}
Dtemp = Din− {deleted substrings} ∪Snew

Itemp = {restoreIin due to deleted substrings}

substring, by storing it in the memory only once, the dictionary size can be reduced. However, one

additional codeword is required for “COMPUTER” since it is decomposed in two substrings (i.e.,

“COM” and “PUTER”). In general, the problem of decomposing substrings that can result in maximum

savings in memory has exponential complexity.

In the following, a 2-phase greedy heuristic is described that selectively decomposes substrings to

achieve overall memory savings. A bottom-up approach is used that prunes the suffix trees starting from

the leaf nodes and replaces deleted suffix strings by new (or existing) prefix strings. We concentrate only

on suffix strings that include nodes pointed at by only one suffix string. Otherwise, the suffix string extends

over large number of prefix strings resulting in lower possibility for potential savings in memory. Using

13

Algorithm 3: Our Heuristic: Phase 2.

Input: Dtemp andItemp from Algorirthm 2.
Output: EnhanceddictionaryDenh and indexIenh.

N = {ni : niǫsi ∧ siǫ{Dtemp ∩ STRINGS}}
/* STRINGS is the same set of strings as in Algorithm 2
/* ni: dictionary node
cost(ni) = # of timesni is referenced by the index
depth(ni) = distance from a leaf node
sort N in terms ofdepth(ni) /* ascending order
sort ni of samedepth in terms ofcost(ni) /* ascending order
Nm = NULL

ntemp =| Dtemp | −2⌈log2
|Dtemp|⌉−1 /* | ∗ |= # of nodes in∗

while | N |≥ ntemp

repeat
mark consecutive nodes inN
with respect to sorting
Nm = {marked nodes}

until (# of marked nodes−
∑

cost(ni)− α == ntemp)
/*

∑
cost(ni): summation of costs of the marked nodes

/* α: # of nodes required to replace suffix strings that
/* will be deleted if marked nodes are deleted

if (deletion of marked nodes results in overall savings)
N = N −Nm

| Dtemp |← 2⌈log2
|Dtemp|⌉−1

ntemp ← 2⌈log2
|Dtemp|⌉−1

else
BREAK

end
end
delete {marked nodes}
Snew ={new prefix strings that replace

the deleted suffix strings}
Denh = Dtemp − {marked nodes} ∪Snew

Ienh = {restoreItemp due to deleted substrings}

our heuristic,80− 85% of the nodes in all suffix trees were examined for the bit-streams considered in

our experiments (see Section VI).

In the first phase, we delete suffix strings that can lead to potential savings in memory (see Algorithm 2).

Initially, we identify repeated suffix strings that appear across all the suffix trees of the dictionary. As

mentioned earlier, the number of suffix trees in the dictionary equals the number of symbols of the

input alphabet. For each distinct suffix stringsi, the potential savings in memorycost(si) are computed.

The cost(si) depends on the potential savings in dictionary memory and the potential index expansion

assuming thatsi is deleted from all the suffix trees. Only suffix stringssi with non-negativecost(si) are

deleted. By reducing the dictionary size, the number of bitsthat is required to address the dictionary

14

R

E

COMPUTER

QUALCOM

C

U

O

T

M

P

M

O

L

Q

C

U

A

QUALCOM

M

O

L

Q

C

U

A

R

E

U

T

PPUTER

COM

Fig. 5: An illustrative example of enhancing the dictionaryrepresentation

(i.e., ⌈log
2
ndictionary⌉) can decrease too. As a result, the word-length of both the dictionary and index

memories can decrease resulting in further savings in memory.

In the second phase, we selectively delete individual nodesof the suffix trees in order to decrease the

number of bits required to address the dictionary (see Algorithm 3). The deletion of nodes results in

index expansion. However, the memory requirements due to the increase of index size can be potentially

amortized by the decrease of the word-length of both the dictionary and the index memories. The goal is

to reduce the dictionary size while introducing minimum number of new codewords. Initially, nodesni

of the same distance across all the suffix trees are sorted with respect to the number of codeword splits

cost(ni) (i.e., number of new codewords introduced if the node will bedeleted). Then, starting from the

leaf nodes, we mark individual nodes according to theircost(ni). A marked node is eligible to be deleted.

Nodes with smaller number of codeword splits are marked first. We continue to mark nodes until we

achieve a1 bit savings in addressing the dictionary. If the index expansion results in increasing the total

memory requirements, the marked nodes are not deleted and the procedure is terminated. Otherwise, the

marked nodes are deleted and the procedure is repeated.

D. Configuration Decompression

Decompression occurs at power-up or at runtime. The original configuration bit-stream is reconstructed

by parsing the dictionary with respect to the index. As shownin Figure 6(b), the contents of the index

(i.e., codewords) are read sequentially. A codeword corresponds to an address to the dictionary memory.

For each codeword, all the symbols of the associated string are read from the dictionary memory and then

the next codeword is read. A comparator is used to decide if the output data of the dictionary memory

corresponds to a root node, that is, all the symbols of a string have been read. Depending on the output of

the comparator, a new codeword is read or the last-read pointer is used to address the dictionary memory.

15

As a result, the decompression rate scales with the speed of the memory used for storing the dictionary.

Dictionary
Memory

Index
Memory

Configuration
Bit-Stream
Memory

Counteraddress

data to FPGA
configuration
mechanism

 ?=0

Counter

to FPGA
configuration
mechanism

address addressM
U
X

data

symbol

data
pointer

(a) Conventional read of the configuration bit-stream

(b) Decompression-based reconstruction of the configuration bit-stream

Fig. 6: Our configuration decompression approach

In Figure 6, both a typical scheme and our compression-basedscheme for storing and reading the

configuration bit-stream are shown. Typically, the configuration bit-stream is stored in memory. It is

important to deliver the bit-stream sequentially otherwise the configuration mechanism will not be ini-

tialized correctly and the configuration process will fail.Depending on the configuration mode, data is

delivered serially or in parallel. In our scheme, the only hardware overhead introduced is a comparator

and a multiplexer. The output of the decompression process is identical to the data delivered by the

conventional scheme. Moreover, the data rate for delivering the configuration data is the same for both

the schemes and depends only on the memory bandwidth. The decompression process does not add any

time overhead to the configuration time. Moreover, the hardware cost is minimal compared with the

conventional scheme.

VI. EXPERIMENTS & COMPRESSIONRESULTS

Our configuration compression technique was applied to configuration bit-streams of several real-world

applications. The target architecture was the VIRTEX series FPGAs [24]. VIRTEX FPGAs have been

chosen for demonstration purposes only. For mapping onto the VIRTEX devices, we used the Foundation

16

TABLE I: Compression ratios for single configurations
Bit-stream size Compression ratio

Configuration
(bits) LZW Compact Heuristic LZW Lower Bound

MARS 3608000 179 % 96 % 82 % 73 %
RC6 2546080 119 % 69 % 59 % 48 %

Rijndael 3608000 198 % 104 % 89 % 81 %
Serpent 2546080 165 % 95 % 79 % 67 %
Twofish 6127712 186 % 103 % 86 % 76 %
FFT-256 1751840 140 % 85 % 68 % 56 %
FFT-1024 1751840 159 % 89 % 72 % 64 %

4 × FIR-256 1751840 180 % 97 % 80 % 73 %
FIR-1024 1751840 177 % 96 % 79 % 71 %

TABLE II: Dictionary and Index memory requirements for single configurations
Dictionary Index

Configuration
memory requirements & word-length (bits) memory requirements & word-length (bits)

LZW Compact Heuristic LZW Compact Heuristic
MARS 3827070 26 1116912 24 172032 21 2644920 18 2351040 16 2796586 13
RC6 1811575 25 667575 23 172032 21 1227536 17 1083120 15 1344564 13

Rijndael 4231448 26 1149840 24 172032 21 2924874 18 2599888 16 3055949 13
Serpent 2511275 25 826152 24 172032 21 1703332 17 1603136 16 1845688 13
Twofish 6746558 26 1919550 25 360448 22 4666104 18 4406876 17 4913398 14
FFT-256 1479408 24 564144 23 81920 20 982192 16 920805 15 1107396 12
FFT-1024 1657900 25 574034 23 81920 20 1123037 17 990915 15 1181964 12

4 × FIR-256 1883900 25 575897 23 81920 20 1276717 17 1126515 17 1330044 12
FIR-1024 1849725 25 580612 23 81920 20 1253478 17 1106010 15 1303416 12

Series v2.1i software development tool. Each application was mapped onto the smallest VIRTEX device

that met the area requirements of the corresponding implementation. We have purposely used the smallest

possible array in order to achieve high hardware utilization and avoid trivial cases such as large sequences

of zeros. Our results indicated that such cases were indeed avoided and no ”magic” words were found.

The derived suffix trees were very flat structures of small height. All bit-streams used corresponded to

complete configurations. However, this is not a limitation of our approach since it can also handle partial

configuration bit-streams. The size of the configuration bit-streams ranged from1.7 Mbits to 6.1 Mbits.

In Table I, the configuration bit-stream sizes for each implementation are shown.

The considered configuration bit-streams corresponded to implementations of cryptographic and signal

processing algorithms. The cryptographic algorithms werethe final candidates of the Advanced Encryption

Standard (AES):MARS, RC6, Rijndael, Serpent, and Twofish. Their implementations included a

key-scheduling unit, a control unit, and one round of the cryptographic core that was used iteratively.

Implementation details of the AES algorithms can be found in[5]. We have also implemented digital

signal processing algorithms using the logic cores provided with the Foundation 2.1i software tool [24].

17

TABLE III: Compression ratios for sets of configurations
Bit-streams size Compression ratio

Configurations
(bits) LZW Compact Heuristic Baseline

MARS, Rijndael 2 × 3608000 181 % 97 % 85 % 85.50 %
RC6, Serpent 2 × 2546080 136 % 76 % 68 % 69.00 %

FFT-256, FFT-1024,
4 × FIR-256, FIR-1024

4 × 1751840 142 % 84 % 71 % 74.75 %

TABLE IV: Dictionary and Index memory requirements for setsof configurations
Dictionary Index

Configurations
memory requirements & word-length (bits) memory requirements & word-length (bits)

LZW Compact Heuristic LZW Compact Heuristic
MARS, Rijndael 7676856 27 2193250 25 360448 22 5397406 19 4829258 17 5772508 14

RC6, Serpent 4092062 26 1376568 24 360448 22 2828394 18 2514128 16 3095974 14
FFT-256, FFT-1024,

4 × FIR-256, FIR-1024
5889468 26 2063875 25 360448 22 4072788 18 3846522 17 4648700 14

A 1024− and a512− point complexFFT were implemented that were able to performIFFT too. In

addition, four256−tap FIR filters were mapped onto the same device. In this implementation, all filters

can process data concurrently. Finally, a1024−tap FIR filter was also implemented.

The configuration bit-streams were processedbyte− by− byte during compression, that is, the symbol

for the dictionary entries was chosen to be an8-bit word. As a result, the decompressed data is delivered as

8-bit words and, thus, parallel modes of configuration can be supported. Note that the maximum number

of bits used in parallel modes of configuration is typically8 bits [1], [2], [24]. If the configuration mode

requires less than8 bits (e.g., serial mode), an8−to−n bit converter can be used, wheren is the number

of bits required by the configuration mode. Note also that ourheuristic can be applied for any symbol

length. However, in this work, for each configuration bit-stream, we do not attempt to find the optimal

bit-length for the symbol that leads to the best compressionresults. Our goal is to optimize a given

dictionary structure regardless the symbol length.

A. Single Configurations

The compression results for single configurations are shownin Tables I and II. The results are organized

with respect to the optimization stages of our technique (see Figure 2). The results shown for LZW

correspond to the construction of the dictionary and the index using the LZW algorithm. The only

difference compared with Figure 2 is that the LZW results include the optimization of merging common

prefix strings in the dictionary. Hence, the results shown for Compact correspond to the deletion of

the non-referenced nodes in the dictionary. Finally, the results shown forHeuristic correspond to the

18

optimizations performed by our heuristic and are also the overall results of our compression technique.

In Table I, the achieved compression ratios are shown. The compression ratio is the ratio of the total

memory requirements (i.e., memory to store dictionary and index) to the bit-stream size. In addition,

in Table I, lower bounds on the compression ratios are shown.For our compression technique, the

lower bound for each bit-stream corresponds to the entropy of the bit-stream with respect to the LZW

compression algorithm. As mentioned in Section 3, the compression ratio is affected by the entropy of the

data to be compressed [19]. The critical metric is the entropy of the LZW model that allows comparing

the performance of our heuristic with respect to the model used to derive the dictionary. As a result, the

IID model is misleading for this case since it considers all symbols as independent data while LZW model

is based on strings of symbols. We have calculated the lower bound by dividing the index size derived

using LZW by the bit-stream size. Therefore, the lower boundcorresponded to the compression ratio that

can be achieved by LZW for software-based applications (assuming 8− bit symbols).

In Table II, the compression results are shown in terms of thememory requirements. The memory

requirements for the dictionary arendictionary× (8+⌈log
2
ndictionary⌉) bits, wherendictionary is the number

of memory entries of the dictionary. Similarly, the memory requirements for the index arenindex ×

⌈log
2
ndictionary⌉ bits, wherenindex is the number of memory entries of the index and⌈log

2
ndictionary⌉ is

the number of bits required to address the dictionary.

LZW In software-based applications, only the index is considered in the calculation of the compression

ratio. In addition, statistical encoding schemes are utilized for further compressing the index. As a

result, in typical LZW applications, superior compressionratios (i.e.,10 − 20 %) have been achieved

by using commercially available software programs (e.g.,compress, gzip). However, such commercial

programs are not applicable to our compression problem. As discussed earlier, in the context of embedded

environments, both the dictionary and the index are considered in the calculation of the compression ratio.

The size of the derived dictionaries was comparable to the size of the original bit-streams. Therefore,

negative compression occurred, that is, the memory requirements for the dictionary and the index were

greater than the bit-stream size.

Compact By deleting the non-referenced nodes in the dictionary, thenumber of the dictionary entries

was reduced by a factor of2.4− 3.4. As a result, the number of bits required to address the dictionaries

was also reduced by1 to 2 bits affecting the word-length of both the dictionary and the index memories

accordingly. Compared with the LZW results, the memory requirements for the dictionaries were reduced

19

by a factor of2.5 − 3.7. In addition, the memory requirements for the indices were also reduced by

6 − 13 % even though the number of codewords remained the same. Overall, the compression ratios

achieved at this optimization stage were69− 104 %.

Heuristic Finally, the overall savings in memory were further improved by our heuristic. The goal of our

heuristic was to reduce the size of the dictionary at the expense of the index expansion. Indeed, compared

to theCompact results, the dictionary entries were reduced by a factor of2.9− 6.2 while the number of

codewords was increased by35−50 %. The number of bits required to address the dictionary was reduced

by 2 to 3 bits affecting the word-length of both the dictionary and the index memories accordingly. As a

result, even though the number of codewords was increased, the total memory requirements were reduced.

Compared with theCompact results, the memory requirements of the dictionaries were further reduced

by a factor of3.2−7.1 while the memory requirement of the indices were increased by 18−40 %. Overall,

the compression ratios achieved at this optimization stagewere 59 − 89 %. Our heuristic improved the

compression ratios provided by theCompact results by14− 20 %.

Considering the compression ratios achieved by LZW and the lower bounds on them, our compression

technique performs well. The improvements over the LZW results were significant. On the average, our

technique reduced the dictionary memory requirements by94.5 % while the index memory requirements

were increased by11.5 %. As a result, our compression results were close to the lowerbounds. On the

average, our compression ratios were higher than the lower bounds by14.5 %. Overall, our compression

technique reduced the memory requirements of the configuration bit-streams by0.35− 1.04 Mbits. The

savings in memory corresponded to11−41 % of the original bit-streams. Given a fixed-size configuration

memory, memory savings enhance the flexibility of a system since more bit-streams can fit in the

configuration memory. On the other hand, in the case of designing an application-specific system with

specific configurations, the savings in memory are related tothe cost of the system. The absolute value

for savings in memory will determine the smallest memory size that can be used. Inevitably, the memory

size availability also affect the overall cost savings.

B. Sets of Configurations

Our technique can be extended to compress a set of configurations by incorporating aunified-dictionary

approach. The proposed approach differs from our configuration compression technique (see Figure 2)

only with respect to the way the dictionary is constructed. Instead of constructing multiple dictionaries

by processing the configuration bit-streams independently, the bit-streams are processed in a sequence

20

by sharing the same dictionary. The LZW algorithm (see Algorithm 1) is applied to each configuration

bit-stream without initializing the dictionary. Every time LZW is called, it uses the dictionary that was

derived by the preceding call. The derived indices are grouped in one index for facilitating the processing

through the remaining stages of our compression technique (see Figure 2).

The goal of theunified-dictionary approach is to construct a single dictionary for multiple configurations

in order that the world-length of the index memory will be thesame across different configurations. As

a result, a simple memory organization will be required for decompression, which is identical to the

one shown in Figure 6(b). On the contrary, if the configuration bit-streams are processed independently

(baseline4), a more complex memory organization will be required that consists of multiple memory

modules of various word-lengths. Furthermore, if the dictionaries obtained by thebaselineapproach are

grouped to form a single dictionary, the compression ratio would increase due to the increase in the

number of bits required to address the dictionary entries.

In Tables III and IV, the achieved compression ratios and thedictionary and index memory requirements

are shown. Configurations corresponding to the same FPGA device are grouped together since it is

uncommon for FPGA systems to utilize different FPGA devicesas computing nodes (except FPGA

devices that are used for control). Clearly, besides resulting in simple memory organization, the proposed

approach achieves better compression ratios than thebaselineapproach. This happens because the increase

of the number of bits required to address the dictionary entries is amortized by the decrease of the number

of index entries. The number of index entries decreases due to the fact that, after the first call to LZW, the

dictionary is not initialized with the alphabet symbols but, it already contains some strings. Therefore, for

larger number of configuration bit-streams, a larger decrease in the number of index entries is expected.

Compared with thebaselineapproach, for{MARS, Rijndael}, {RC6, Serpent}, and {FFT-256, FFT-

1024, 4× FIR-256}, the number of index entries decreases by8.41%, 9.89%, and19.06% respectively.

Before applying our heuristic (see Figure 2), the number of dictionary entries is decreased by7 − 17%

compared with thebaselineapproach. This happens because common entries among different dictionaries

are replaced by a single entry in theunifieddictionary. However, after applying our heuristic, the number

of dictionary entries is the same for both the approaches.

4For comparison purposes, in the remainder of this section, the solution to processing the configuration bit-streams independently is referred
asbaseline.

21

VII. CONCLUSIONS

In this paper, a novel configuration compression technique was proposed. Our goal was to reduce the

memory required to store configurations in FPGA-based embedded systems and achieve high decom-

pression efficiency. Decompression efficiency correspondsto the decompression hardware cost as well as

the decompression rate. Although data compression has beenextensively studied in the past, we are not

aware of any prior work that addresses configuration compression for FPGA-based embedded systems

with respect to the cost and speed requirements. Our compression technique is applicable to any SRAM-

based FPGA device since it does not depend on specific features of the configuration mechanism. The

configuration bit-streams are processed as raw data withoutconsidering individual semantics. As a result,

both complete and partial configuration schemes can be supported. The required decompression hardware

is simple and does not depend on the individual semantics of configuration bit-streams or specific features

of the configuration mechanism. Moreover, the decompression process does not affect the time to configure

the device and the decompression rate scales with the speed of the memory used for storing the dictionary.

Using our technique, we have demonstrated11− 41 % savings in memory for various configuration bit-

streams of real-world applications. Considering the lowerbounds derived for the compression ratios, the

achieved compression ratios were higher than the lower bounds by 14.5 % on the average. In addition,

a unified-dictionary approach was proposed for compressing sets of configurations. Such an approach

achieves better compression ratios than compressing the configurations independently while leading to a

simple memory organization that does not require multiple memory modules of different word-length.

Future work includes the development of askeleton-based approach for our compression technique.

A skeleton corresponds to the correlation among a set of configuration bit-streams. By removing the

data redundancy of theskeleton in the bit-streams, savings in memory can be achieved. Givena set

of configurations, we plan to address the problem of derivinga skeleton in order to reduce the size of

individual indices. Related problems are addressed in [4].

The work reported here is part of the USC MAARCII project (http://maarcII.usc.edu). This

project is developing novel mapping techniques to exploit dynamic reconfiguration and facilitate run-time

mapping using configurable computing devices and architectures.

REFERENCES

[1] Altera PLD Devices,http://www.altera.com

[2] Atmel FPGA,http://www.atmel.com

22

[3] K. Bondalapati, P. Diniz, P. Duncan, J. Granacki, M. Hall, R. Jain, and H. Ziegler,DEFACTO: A Design Environment for Adaptive

Computing Technology, Reconfigurable Architectures Workshop, April 1999.

[4] A. Dandalis,Dynamic Logic Synthesis for Reconfigurable Devices, PhD Thesis, Dept. of Electrical Engineering, University of Southern

California, December 2001.

[5] A. Dandalis, V. K. Prasanna, and J. D. P. Rolim,A Comparative Study of Performance of AES Final Candidates Using FPGAs,

Workshop on Cryptographic Hardware and Embedded Systems, August 2000.

[6] O. Diessel and H. ElGindy,On dynamic task scheduling for FPGA-based systems, International Journal of Foundations of Computer

Science, Special Issue on Scheduling: Theory and Applications, 12(5), pp. 645 - 669, October 2001.

[7] J.G. Eldredge and B.L. Hutchings,Run-Time Reconfiguration: A Method for Enhancing the Functional Density of SRAM-Based FPGAs,

Journal of VLSI Signal Processing, Vol. 12(1), pp. 67-86, January 1996.

[8] R. Hartenstein, J. Becker, M. Herz, and U. Nageldinger,An Embedded Accelerator for Real World Computing, IFIP International

Conference on Very Large Scale Integration, August 1997.

[9] S. Hauck, Z. Li, and E. J. Schwabe,Configuration Compression for the Xilinx XC6200 FPGA, IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, Vol. 18, No. 8, pp. 1107-1113, August 1999.

[10] S. Hauck and W. D. Wilson,Runlength Compression Techniques for FPGA Configurations, IEEE Symposium on Field-Programmable

Custom Computing Machines, April 1999.

[11] R. D. Hudson, D. I. Lehn, and P. Athanas,A Run-Time Reconfigurable Engine for Image Interpolation, IEEE Symposium on Field-

Programmable Custom Computing Machines, April 1998.

[12] H. Kim, A. K. Somani, and A. Tyagi,A Reconfigurable Multi-function Computing Cache Architecture, IEEE Transactions on Very

Large Scale Integration Systems, Volume 9(4), pp. 509-523,August 2001.

[13] M. Klimesh, V. Stanton, and D. Watola,Hardware Implementation of a Lossless Image Compression Algorithm Using a Field

Programmable Gate Array, The Telecommunications and Mission Operations Progress Report, Jet Propulsion Laboratory, California

Institute of Technology, February 2001.

[14] S. Laio, S. Devadas, and K. Keutzer,A Text-Compression-Based Method for Code Size Minimization in Embedded Systems, ACM

Transactions on Design Automation of Electronic Systems, Vol. 4, No. 1, pp. 12-38, January 1999.

[15] C. Lefurgy, P. Bird, I-C. Cheng, and T. Mudge,Improving Code Density Using Compression Techniques, 29th Annual IEEE/ACM

Symposium on Microarchitecture, December 1997.

[16] Z. Li and S. Hauck,Configuration Compression for Virtex FPGAs, IEEE Symposium on Field-Programmable Custom Computing

Machines, April 2001.

[17] R. Maestre, F.J. Kurdahi, N. Bagerzadeh, H. Singh, R. Hermida, and M. Fernandez,Kernel Scheduling in Reconfigurable Computing,

Design, Automation and Test in Europe Conference, March 1999.

[18] J. T. McHenry, P. W. Dowd, F. A. Pellegrino, T. M. Carrozzi, and W. B. Cocks,An FPGA-based coprocessor for ATM firewalls, IEEE

Symposium on Field-Programmable Custom Computing Machines, April 1997.

[19] M. Nelson and J-L. Gaily,The Data Compression Book, M&T Books, New York, 1996.

[20] S. Ogrenci-Memik, E. Bozorgzadeh, R. Kastner, and M. Sarrafzadeh,A Super-Scheduler for Embedded Reconfigurable Systems,

International Conference on Computer-Aided Design, November 2001.

[21] N. Shirazi, W. Luk, and P.Y.K. Cheung,Framework and Tools for Run-Time Reconfigurable Designs, IEE Proceedings Computers and

Digital Techniques, Vol. 147, No. 3, pp. 147 - 152, May 2000.

[22] S. Swanchara, S. Harper, and P. Athanas,A Stream-Based Configurable Computing Radio Testbed, IEEE Symposium on Field-

Programmable Custom Computing Machines, April 1998.

23

[23] J. Villasenor and W. H. Mangione-Smith,Configurable Computing, Scientific American, pp. 66-71, June 1997.

[24] Xilinx FPGA Devices,http://www.xilinx.com

[25] Xilinx Success Products Stories,http://www.xilinx.com/company/success/csprod.htm

