
An Evaluation of Availability Latency in Carrier-based
Vehicular Ad-Hoc Networks

Shahram
Ghandeharizadeh

Dept of Computer Science
Univ of Southern California

Los Angeles, CA 90089, USA

shahram@usc.edu

Shyam Kapadia
Dept of Computer Science
Univ of Southern California

Los Angeles, CA 90089, USA

kapadia@usc.edu

Bhaskar Krishnamachari
Dept of Computer Science

Dept of Electrical Engineering
Univ of Southern California

Los Angeles, CA 90089, USA

bkrishna@usc.edu

ABSTRACT
On-demand delivery of audio and video clips in peer-to-peer vehic-
ular ad-hoc networks is an emerging area of research. Our target
environment uses data carriers, termed zebroids, where a mobile
device carries a data item on behalf of a server to a client thereby
minimizing its availability latency. In this study, we quantify the
variation in availability latency with zebroids as a function of a rich
set of parameters such as car density, storage per device, repository
size, and replacement policies employed by zebroids. Using analy-
sis and extensive simulations, we gain novel insights into the de-
sign of carrier-based systems. Significant improvements in latency
can be obtained with zebroids at the cost of a minimal overhead.
These improvements occur even in scenarios with lower accuracy
in the predictions of the car routes. Two particularly surprising
findings are: (1) a naive random replacement policy employed by
the zebroids shows competitive performance, and (2) latency im-
provements obtained with a simplified instantiation of zebroids are
found to be robust to changes in the popularity distribution of the
data items.

1. INTRODUCTION
Technological advances in areas of storage and wireless commu-

nications have now made it feasible to envision on-demand delivery
of data items, for e.g., video and audio clips, in vehicular peer-to-
peer networks. In prior work, Ghandeharizadehet al. [8] introduce
the concept of a Car-to-Car-Peer-to-Peer (C2P2) device equipped in
each vehicle. The notable features of a C2P2 include a mass storage
device offering hundreds of gigabytes of storage, a fast processor,
and several types of networking cards. In this study, we assume
each C2P2 is configured with two types of networking cards: 1)
a low-bandwidth networking card with a long radio-range in the
order of miles that enables a C2P2 device to communicate with
a nearby cellular or WiMax base station, and 2) a high-bandwidth
networking card with a limited radio-range in the order of hundreds
of feet.

The low-bandwidth connection serves as the control plane, en-
abling C2P2 devices to exchange meta-data with one or more cen-
tralized servers. This connection offers bandwidths in the order
of tens and hundreds of Kilobits per second. The high bandwidth

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ... $5.00.

connection supports data rates in the order of tens to hundreds of
Megabits per second and represents the ad hoc peer to peer net-
work between the vehicles. We term this the data plane and, as
suggested by its name, use it to exchange data items between de-
vices. The technical feasibility of such a two-tier architecture is
presented in [6], where some back-of-the-envelope calculations are
performed to indicate that the bandwidth of the control plane is
sufficient for exchange of control information needed for realizing
such an application.

In a typical scenario, a C2P2 device presents a passenger with
a list of data items,1 showing both the name of each title and its
availability latency. The latter, denoted asδ, is defined as the earli-
est time at which the client encounters a copy of its requested data
item. A data item is available immediately when it resides in the
local storage of the C2P2 device serving the request. Due to C2P2
storage constraints, the entire data item repository of interest to a
user may not be stored locally. In that case, availability latency is
the time from request initiation until when the C2P2 device will
encounter another vehicle containing the requested data item.

The availability latency for an item is a function of the current
location of the client, its destination and travel path, the mobility
model of the C2P2 equipped vehicles, the number of replicas con-
structed for the different data items, and the placement of data item
replicas across the vehicles. A method to improve the availability
latency is to employ data carriers which transport a replica of the
requested data item from a server car containing it to a client that
requested it. We term these data carriers as ‘zebroids’.

Selection of zebroids is facilitated by the two-tiered architecture.
The control plane enables centralized information gathering at a
dispatcher present at a base-station.2 Some examples of control in-
formation are currently active requests, travel path of the clients and
their destinations, and paths of the other cars. For each client re-
quest, the dispatcher may choose a set ofz carriers that collaborate
to transfer a data item from a server to a client (z-relay zebroids).
Here,z is the number of zebroids such that0 ≤ z < N , where
N is the total number of cars. Note thatz = 0 means no carriers,
requiring a server to deliver the data item directly to the client. The
chosen relay team ofz zebroids hand over the data item transitively
to one another to arrive at the client, thereby reducing availability
latency (see Section4.1 for details). To increase robustness, the
dispatcher may employ multiple relay teams of z-carriers for every
request. This may be useful in scenarios where the dispatcher has
lower prediction accuracy in the information about the routes of the

1Without loss of generality, we will use the term data item in this
paper with the understanding that a data item can be an audio clip,
video clip, generic data document, etc.
2There may be dispatchers deployed at a subset of the base-stations
for fault-tolerance and robustness. Dispatchers between base-
stations may communicate via the wired infrastructure.

1

cars. Finally, storage constraints may require a zebroid to evict ex-
isting data items from its local storage to accommodate the client
requested item.

In this study, we quantify the following main factors that affect
availability latency in the presence of zebroids: (i) data item repos-
itory size, (ii) car density, (iii) storage capacity per car, (iv) client
trip duration, (v) replacement scheme deployed by the zebroids,
and (vi) accuracy of the car route predictions. For a significant sub-
set of these factors, we address some key questions pertaining to
use of zebroids both via analysis and extensive simulations.

Our main findings are as follows. A naive random replacement
policy employed by the zebroids shows competitive performance
in terms of availability latency. With such a policy, substantial im-
provements in latency can be obtained with zebroids at a minimal
replacement overhead. In more practical scenarios, where the dis-
patcher has inaccurate information about the car routes, zebroids
continue to provide latency improvements. A surprising result is
that changes in popularity of the data items do not impact the la-
tency gains obtained with a simple instantiation of z-relay zebroids
called one-instantaneous zebroids (see Section4.1). This study
suggests a number of interesting directions to be pursued to gain
better understanding of design of carrier-based systems that im-
prove availability latency.

The rest of this paper is organized as follows. Section2 pro-
vides a brief overview of the related work in the area. Section3
provides an overview of the terminology along with the factors that
impact availability latency in the presence of zebroids. Section4
describes how the zebroids may be employed. Section5 provides
details of the analysis methodology employed to capture the per-
formance with zebroids. Section6 describes the details of the sim-
ulation environment used for evaluation. Section7 enlists the key
questions examined in this study and answers them via analysis
and simulations. Finally, Section8 presents brief conclusions and
future research directions.

2. RELATED WORK
Recently, several novel and important studies such as ZebraNet [9],

DakNet [12], Data Mules [13], Message Ferries [18], SWIM [14],
and Seek and Focus [15] have analyzed factors impacting inter-
mittently connected networks consisting of data carriers similar in
spirit to zebroids. Table1 provides an overview of these studies.
Factors considered by each study are dictated by their assumed
environment and target application. A novel characteristic of our
study is the impact on availability latency for a given database
repository of items. In future work, it may be useful to integrate
these diverse studies along with our work under a comprehensive
general model/framework that incorporates all possible factors, en-
vironmental characteristics, and application requirements.

Below, we provide an overview of the different projects and their
target applications. In ZebraNet, data sensed by sensors attached to
zebras is collected by humans as they drive by in a vehicle. In
DakNet, vehicles are used to transport data between villages and
cities using a store and forward mechanism. Message Ferries cap-
ture a more generalized scenario where the movement of the ferries
can be controlled to carry data from a source node to a destination
node. With Data Mules, intermediate carriers that follow a random
walk mobility model are used to carry data from static sensors to
base-stations. When all nodes move as per this mobility model,
end-to-end routing can be performed using a Seek and Focus strat-
egy presented in [15]. With the Shared Wireless Infostation Model
(SWIM), data collected by sensors on whales is replicated when
two sensors are in the vicinity of each other and ultimately relayed
to a small number of static on-shore base-stations when the whales
come to the surface.

We now describe how the previous studies are different from

ours, detailing the novel features of our study. None of these studies
predict the future movement trajectory of the nodes to accomplish
data delivery as we do in our study with zebroids. Moreover, while
DakNet, Message Ferries, and Seek and Focus employ end-to-end
data delivery, studies such as Data Mules, ZebraNet and SWIM
require data from many nodes to be sent to a single (or a few) base-
station(s) yielding a many-to-one or many-to-some delivery mode.
In our study, the mode of data delivery is any-to-one since a request
for a certain data item can be satisfied by any node that stores that
item.

Studies such as ZebraNet, Message Ferries, and Seek and Focus
seek to optimize the energy usage, especially with sensors. This
is not a constraint with a C2P2 environment. Instead, we seek to
optimize meeting time or latency to request satisfaction in the pres-
ence of storage constraints. This metric is similar to that considered
in the seek and focus study which ignores storage constraints per
node. Also, even though the Data Mules study considers a storage
constraint per node, it does not optimize for latency subject to this
constraint. Instead, that study provides the scaling behavior needed
in the storage per sensor (and mule) to maintain the data delivery
ratio over a certain threshold.

While reliable data delivery is required with DakNet, Seek and
Focus, and Message Ferries, storage constraints may cause data
loss, preventing Data Mules and Zebranet from achieving the same.
In our study, the notion of reliable data delivery has a different
connotation. This is because for each data item request, the client
stipulates a deadline, which is the maximum amount of time it is
willing to wait to encounter a copy of the requested item. Zebroids
are employed to improve the availability latency for each request,
increasing the likelihood of the client’s deadline being met.

Finally, studies like ZebraNet, DakNet and Data Mules can tol-
erate high delay as long as the appropriate data is delivered. How-
ever, the Seek and Focus and Ferries approach use delay as a met-
ric of interest. Also, with zebroids, SWIM, and ZebraNet, multiple
replicas of the data are employed to facilitate reduction in the de-
livery latency. Replicas are created when two nodes encounter each
other. While there are no storage constraints with SWIM, with Ze-
braNet, excess data is dropped from the sensors using a drop-tail
like scheme. Moreover, none of the studies mentioned above use a
two-tier architectural framework like ours that facilitates intelligent
selection of data carriers and creation of appropriate data replicas
to reduce latency for currently active requests. With storage con-
straints, we also explore a wide variety of replacement policies de-
ployed at the zebroids.

In prior work, Ghandeharizadehet al. [5] examine the perfor-
mance of replacement policies that employ location demographic
information about the areas native to a zebroid in order to perform
a replacement. The primary difference from our work is that in
their environment data items may be lost from the system.

3. OVERVIEW AND TERMINOLOGY
Table2 summarizes the notation of the parameters used in the

paper. Below we introduce some terminology used in the paper.
Assume a network ofN C2P2-equipped cars, each with stor-

age capacity ofα bytes. The total storage capacity of the system
is ST =N · α. There areT data items in the database, each with
sizeSi. The frequency of access to data itemi is denoted asfi,
with

PT
j=1 fj = 1. Let the trip duration of the client C2P2 under

consideration beγ.
We now define the normalized frequency of access to the data

item i, denoted byRi, as:

Ri =
(fi)

n

PT
j=1(fj)n

; 0 ≤ n ≤ ∞ (1)

2

Study Potentially Mobility Model Delivery Energy Optimize How many Storage
Mobile Efficiency Delay copies Constraint
Nodes created?

ZebraNet [9] All Controlled + species Many to One X Many X
dependent

DakNet [12] One Controlled One to One One
Message Ferries [18] All Random + One to One X X One

Controlled
SWIM [14] Most Random without Many to Some X Many

predictions
Data Mules [13] Some Random without Many to One One X

predictions
Seek and Focus [15] All Random without One to One X X One

predictions
Our Work All Random with Any to One X One or More X

predictions

Table 1: Related studies on intermittently connected networks.

Database Parameters
T Number of data items.
Si Size of data itemi
fi Frequency of access to data itemi.

Replication Parameters
Ri Normalized frequency of access to data itemi
ri Number of replicas for data itemi
n Characterizes a particular replication scheme.
δi Average availability latency of data itemi
δagg Aggregate availability latency,δagg =

PT
j=1 δj · fj

C2P2 System Parameters
G Number of cells in the map (2D-torus).
N Number of C2P2 devices in the system.
α Storage capacity per C2P2.
γ Trip duration of the client C2P2.
ST Total storage capacity of the C2P2 system,ST = N · α.

Table 2: Terms and their definitions

The exponentn characterizes a particular replication technique.
A square-root replication scheme is realized whenn = 0.5 [3].
This serves as the base-line for comparison with the case when ze-
broids are deployed.Ri is normalized to a value between 0 and
1. The number of replicas for data itemi, denoted asri, is: ri =
min (N, max (1, bRi·N·α

Si
c)). This captures the case when at least

one copy of every data item must be present in the ad-hoc network
at all times. In cases where a data item may be lost from the ad-hoc
network, this equation becomesri = min (N, max (0, bRi·N·α

Si
c)).

In this case, a request for the lost data item may need to be satisfied
by fetching the item from a remote server.

The availability latency for a data itemi, denoted asδi, is defined
as the earliest time at which a client C2P2 will find the first replica
of the item accessible to it. If this condition is not satisfied, then we
setδi to γ. This indicates that data itemi was not available to the
client during its journey. Note that since there is at least one replica
in the system for every data itemi, by settingγ to a large value we
ensure that the client’s request for any data itemi will be satisfied.
However, in most practical circumstancesγ may not be so large as
to find every data item.

We are interested in the availability latency observed across all
data items. Hence, we augment the average availability latency
for every data itemi with its fi to obtain the following weighted
availability latency (δagg) metric: δagg =

PT
i=1 δi · fi

We have identified the following critical parameters that affect
availability latency in the presence of zebroids: (i) title database
size (T), (ii) car density (N), (iii) storage per car (α), (iv) trip du-

ration (γ), (v) replacement scheme employed by the zebroids (see
Section4.2), and (vi) prediction accuracy of the car routes. We
study the variation in availability latency as a function of each of
these parameters in the presence of zebroids. Next, we present our
solution approach describing how zebroids are selected.

4. SOLUTION APPROACH

4.1 Zebroids
When a client references a data item missing from its local stor-

age, the dispatcher identifies all cars with a copy of the data item
as servers. Next, the dispatcher obtains the future routes of all cars
for a finite time duration equivalent to the maximum time the client
is willing to wait for its request to be serviced. Using this informa-
tion, the dispatcher schedules the quickest delivery path from any
of the servers to the client using any other cars as intermediate car-
riers. Hence, it determines the optimal set of forwarding decisions
that will enable the data item to be delivered to the client in the
minimum amount of time. Note that the latency along the quickest
delivery path that employs a relay team ofz zebroids is similar to
that obtained with epidemic routing [17] under the assumptions of
infinite storage and no interference.

A simple instantiation of z-relay zebroids occurs whenz = 1
and the transfer of a copy of the requested data item, from a server
to a zebroid in its vicinity, occurs at the instant when the client is-
sues a request. We refer to such a zebroid as aone-instantaneous
zebroid. It should also be noted that in some cases, the dispatcher
might have inaccurate information about the routes of the cars.
Hence, a zebroid scheduled on the basis of this inaccurate informa-
tion may not rendezvous with the client for whom it was employed.

The time required to transfer a data item from a server to a ze-
broid depends on the data item size and the available link band-
width. With data items of smaller size, it is reasonable to assume
that this transfer time is small, especially in the presence of the
high bandwidth provided by the data plane. Use of zebroids for
data items of larger size remains a future research direction.

Initially, the data item replicas are distributed across the C2P2s
using a replication scheme defined by Equation1. This scheme
computes the number of data item replicas as a function of their
popularity. It is static since once allocated the number of replicas
in the system do not change and no replacements are performed.
Hence, this is referred to as the ‘no-zebroids’ environment. We
quantify the performance of the various replacement policies with
reference to this base-line that does not employ zebroids.

3

4.2 Carrier-based Replacement policies
The replacement policies considered in this paper are reactive

since a replacement occurs only in response to a request issued for a
certain data item. When the local storage of a zebroid is completely
occupied, it needs to replace one of its existing items to carry the
client requested data item. For this purpose, the zebroid must se-
lect an appropriate candidate for eviction. This decision process
is analogous to that encountered in operating system paging where
the goal is to maximize the cache hit ratio to prevent disk access
delay [16]. We present below a list of carrier-based replacement
policies employed in our study which are adapted from different
page replacement policies.

1. Least recently used (LRU)LRU-K [11] maintains a slid-
ing window containing the time stamps of theKth most re-
cent references to data items. During eviction, the data item
whoseKth most recent reference is furthest in the past is
evicted. Here, we consider the case withK = 1. Depending
on whether the evictions are based on the least recently used
data item across all client requests (lru-global) or only the
individual client’s requests (lru-local), we consider global or
local variants of the LRU policy.

2. Least frequently used (LFU) (a) Local (lfu-local): Each
C2P2 keeps track of the least frequently used data item within
its local repository. During eviction3, this is the candidate
replica that is replaced. (b)Global (lfu-global): The dis-
patcher maintains the frequency of access to the data items
based on requests from all clients. When a zebroid contacts
the dispatcher for a victim data item, the dispatcher chooses
the data item with the lowest frequency of access.

3. Random policy (random) In this case, the chosen zebroid
evicts a data item replica from its local storage chosen uni-
formly at random.

The replacement policies incur the following overheads. First,
the complexity associated with the implementation of a policy. Sec-
ond, the bandwidth used to transfer a copy of a data item from a
server to the zebroid. Third, the average number of replacements
incurred by the zebroids. Note that in the no-zebroids case neither
overhead is incurred.

The metrics considered in this study are aggregate availability la-
tency,δagg, percentage improvement inδagg with zebroids as com-
pared to the no-zebroids case and average number of replacements
incurred per client request which is an indicator of the overhead
incurred by zebroids.

Note that the dispatchers with the help of the control plane may
ensure that no data item is lost from the system. In other words,
at least one replica of every data item is maintained in the ad-hoc
network at all times. In such cases, even though a car may meet a
requesting client earlier than other servers, if its local storage con-
tains data items with only a single copy in the system, then such a
car is not chosen as a zebroid.

5. ANALYSIS METHODOLOGY
Here, we present the analytical evaluation methodology and some

approximations as closed-form equations that capture the improve-
ments in availability latency that can be obtained with both one-
instantaneous and z-relay zebroids. First, we present some prelim-
inaries of our analysis methodology.

• Let N be the number of cars in the network performing a 2D
random walk on a

√
G×√G torus. An additional car serves

3The terms eviction and replacement are used interchangeably.

as a client yielding a total ofN + 1 cars. Such a mobility
model has been used widely in the literature [15, 13] chiefly
because it is amenable to analysis and provides a baseline
against which performance of other mobility models can be
compared.

• We assume that all cars start from the stationary distribution
and perform independent random walks. Although for sparse
density scenarios, the independence assumption does hold, it
is no longer valid whenN approachesG.

• Let the size of data item repository of interest beT . Also,
data itemi hasri replicas. This impliesri cars, identified as
servers, have a copy of this data item when the client requests
item i.

All analysis results presented in this section are obtained assum-
ing that the client is willing to wait as long as it takes for its request
to be satisfied (unbounded trip durationγ = ∞). With the ran-
dom walk mobility model on a 2D-torus, there is a guarantee that
as long as there is at least one replica of the requested data item
in the network, the client will eventually encounter this replica [2].
Later, we extend our analysis to consider finite trip durationγ.

Consider a scenario where no zebroids are employed. In this
case, the expected availability latency for the data item is the ex-
pected meeting time of the random walk undertaken by the client
with any of the random walks performed by the servers. Aldouset
al. [2] show that the the meeting time of two random walks in such
a setting can be modelled as an exponential distribution with the
meanC = c ·G · log G, where the constantc ' 0.17 for G ≥ 25.
The meeting time, or equivalently the availability latencyδi, for
the client requesting data itemi is the time till it encounters any of
theseri replicas for the first time. This is also an exponential distri-
bution with the following expected value (note that this formulation
is valid only for sparse cases whenG >> ri): δi = cGlogG

ri
The aggregate availability latency without employing zebroids is

then this expression averaged over all data items, weighted by their
frequency of access:

δagg(no− zeb) =

TX
i=1

fi · c ·G · log G

ri
=

TX
i=1

fi · C
ri

(2)

5.1 One-instantaneous zebroids
Recall that with one-instantaneous zebroids, for a given request,

a new replica is created on a car in the vicinity of the server, pro-
vided this car meets the client earlier than any of theri servers.
Moreover, this replica is spawned at the time step when the client
issues the request. LetNc

i be the expected total number of nodes
that are in the same cell as any of theri servers. Then, we have

Nc
i = (N − ri) · (1− (1− 1

G
)ri) (3)

In the analytical model, we assume thatNc
i new replicas are

created, so that the total number of replicas is increased tori +Nc
i .

The availability latency is reduced since the client is more likely to
meet a replica earlier. The aggregated expected availability latency
in the case of one-instantaneous zebroids is then given by,

δagg(zeb) =

TX
i=1

fi · c ·G · log G

ri + Nc
i

=

TX
i=1

fi · C
ri + Nc

i

(4)

Note that in obtaining this expression, for ease of analysis, we
have assumed that the new replicas start from random locations
in the torus (not necessarily from the same cell as the originalri

4

servers). It thus treats all theNc
i carriers independently, just like

the ri original servers. As we shall show below by comparison
with simulations, this approximation provides an upper-bound on
the improvements that can be obtained because it results in a lower
expected latency at the client.

It should be noted that the procedure listed above will yield a
similar latency to that employed by a dispatcher employing one-
instantaneous zebroids (see Section4.1). Since the dispatcher is
aware of all future car movements it would only transfer the re-
quested data item on a single zebroid, if it determines that the ze-
broid will meet the client earlier than any other server. This selected
zebroid is included in theNc

i new replicas.

5.2 z-relay zebroids
To calculate the expected availability latency with z-relay ze-

broids, we use a coloring problem analog similar to an approach
used by Spyropouloset al. [15]. Consider a data itemi requested
by the client. Recall that, there areN total cars andri replicas for
data itemi. Assume that each of theseri replicas is colored red,
while the other cars including the client are colored blue. Whenever
a red car encounters a blue car, the latter is colored red.

The expected number of steps until the client is colored red then
gives the average availability latency with z-relay zebroids. If at a
given step, there arek red cars (k ≥ ri), then there will beN − k
blue cars. Recall that movements of the cars can be modelled as
exponential distributions. Hence, by the property of exponential
distribution, the average time until any of thek red cars meets any
of theN + 1− k blue cars is C

k·(N+1−k)
. Now, the expected time

until all the cars are colored red is
PN

k=ri

C
k·(N+1−k)

Note that the client may be colored red in any one of these steps
with equal probability. Consequently, the expected time till the
client is colored red is given by,

δi =
C

N + 1− ri

NX
m=ri

mX

k=ri

1

k · (N + 1− k)
(5)

Evaluating the above expression, we get,

δi =
C

N + 1
· 1

N + 1− ri
· [N · log

N

ri
− log (N + 1− ri)] (6)

Now, the aggregate availability latency (δagg) with z-relay ze-
broids is obtained by definition,

δagg(zeb) =

TX
i=1

[fi · C

N + 1
· 1

N + 1− ri
·

(N · log
N

ri
− log (N + 1− ri))] (7)

6. SIMULATION METHODOLOGY
The simulation environment considered in this study comprises

of vehicles such as cars that carry a fraction of the data item reposi-
tory. A prediction accuracy parameter inherently provides a certain
probabilistic guarantee on the confidence of the car route predic-
tions known at the dispatcher. A value of100% implies that the
exact routes of all cars are known at all times. A70% value for this
parameter indicates that the routes predicted for the cars will match
the actual ones with probability0.7. Note that this probability is
spread across the car routes for the entire trip duration. We now
provide the preliminaries of the simulation study and then describe
the parameter settings used in our experiments.

• Similar to the analysis methodology, the map used is a 2D
torus. A Markov mobility model representing a unbiased 2D

random walk on the surface of the torus describes the move-
ment of the cars across this torus.

• Each grid/cell is a unique state of this Markov chain. In each
time slot, every car makes a transition from a cell to any of
its neighboring8 cells. The transition is a function of the
current location of the car and a probability transition matrix
Q = [qij] whereqij is the probability of transition from state
i to statej. Only C2P2 equipped cars within the same cell
may communicate with each other.

• The parametersγ, δ have been discretized and expressed in
terms of the number of time slots.

• A C2P2 device does not maintain more than one replica of a
data item. This is because additional replicas occupy storage
without providing benefits.

• Either one-instantaneous or z-relay zebroids may be employed
per client request for latency improvement.

• Unless otherwise mentioned, the prediction accuracy para-
meter is assumed to be100%. This is because this study
aims to quantify the effect of a large number of parameters
individually on availability latency.

Here, we set the size of every data item,Si, to be1. α represents
the number of storage slots per C2P2. Each storage slot stores one
data item.γ represents the duration of the client’s journey in terms
of the number of time slots. Hence the possible values of avail-
ability latency are between0 andγ. δ is defined as the number of
time slots after which a client C2P2 device will encounter a replica
of the data item for the first time. If a replica for the data item re-
quested was encountered by the client in the first cell then we set
δ = 0. If δ > γ then we setδ = γ indicating that no copy of the
requested data item was encountered by the client during its entire
journey. In all our simulations, for illustration we consider a5× 5
2D-torus withγ set to10. Our experiments indicate that the trends
in the results scale to maps of larger size.

We simulated a skewed distribution of access to theT data items
that obeys Zipf’s law with a mean of0.27. This distribution is
shown to correspond to sale of movie theater tickets in the United
States [4]. We employ a replication scheme that allocates replicas
for a data item as a function of the square-root of the frequency of
access of that item. The square-root replication scheme is shown
to have competitive latency performance over a large parameter
space [7]. The data item replicas are distributed uniformly across
the C2P2 devices. This serves as the base-line no-zebroids case.
The square-root scheme also provides the initial replica distribu-
tion when zebroids are employed. Note that the replacements per-
formed by the zebroids will cause changes to the data item replica
distribution. Requests generated as per the Zipf distribution are is-
sued one at a time. The client car that issues the request is chosen
in a round-robin manner. After a maximum period ofγ, the latency
encountered by this request is recorded.

Initially, all cars are distributed across the map as per the steady-
state distribution governed byQ. This initial placement of cars
across the map is determined by a random number generator initial-
ized with a seed. All results presented in this section are averages
over 10 such seeds each invoking 20,000 requests. Hence, each
point in all the presented results is an average of 200,000 requests.

The95% confidence intervals are determined for all sets of re-
sults. These intervals are quite tight for the metrics of latency and
replacement overhead, hence, we only present them for the metric
that captures the percentage improvement in latency with respect to
the no-zebroids case.

5

0 20 40 60 80 100
0

0.5

1

1.5

2

2.5

3

3.5

4

Number of cars

Aggregate availability latency (δ
agg

)

lru_global

lfu_global

lru_local

lfu_local
random

Figure 1: Figure 1 shows the availability latency when employ-
ing one-instantaneous zebroids as a function of (N ,α) values,
when the total storage in the system is kept fixed,ST = 200.

7. RESULTS
In this section, we describe our evaluation results where the fol-

lowing key questions are addressed. With a wide choice of re-
placement schemes available for a zebroid, what is their effect on
availability latency? In fact, a more central question may be: Do
zebroids provide significant improvements in availability latency?
What is the associated overhead incurred in employing these ze-
broids? What happens to these improvements in scenarios where
a dispatcher may have imperfect information about the car routes?
What inherent trade-offs exist between car density and storage per
car with regards to their combined as well as individual effect on
availability latency in the presence of zebroids? We present both
simple analysis and detailed simulations to provide answers to these
questions as well as gain insights into design of carrier-based sys-
tems.

7.1 How does a replacement scheme employed
by a zebroid impact availability latency?

For illustration, we present ‘scale-up’ experiments where one-
instantaneous zebroids are employed (see Figure1). By scale-up,
we mean thatα andN are changed proportionally to keep the total
system storage,ST , constant. Here, we setT = 50 andST = 200.
We choose the following values of (N ,α) = {(20,10), (25,8), (50,4),
(100,2)}. The figure indicates that a random replacement scheme
shows a competitive performance. This is because of several rea-
sons.

Recall that the initial replica distribution is set as per the square-
root replication scheme. The random replacement scheme does not
alter this distribution since it makes replacements blind to the pop-
ularity of a data item. However, the replacements cause dynamic
data re-organization so as to better serve the currently active re-
quest. Moreover, the mobility pattern of the cars is random, hence,
the locations from which the requests are issued by clients are also
random and not known a priori at the dispatcher. These findings
are significant because a random replacement policy can be imple-
mented in a simple decentralized manner.

The lru-global and lfu-global schemes provide a latency per-
formance that is worse than random. This is because these poli-
cies rapidly develop a preference for the more popular data items
thereby creating a larger number of replicas for them. During evic-
tion, the more popular data items are almost never selected as a
replacement candidate. Consequently, there are fewer replicas for
the less popular items. Hence, the initial distribution of the data

item replicas changes from square-root to that resembling linear
replication. The higher number of replicas for the popular data
items provide marginal additional benefits, while the lower number
of replicas for the other data items hurts the latency performance of
these global policies. The lfu-local and lru-local schemes have sim-
ilar performance to random since they do not have enough history
of local data item requests. We speculate that the performance of
these local policies will approach that of their global variants for a
large enough history of data item requests. On account of the com-
petitive performance shown by a random policy, for the remainder
of the paper, we present the performance of zebroids that employ a
random replacement policy.

As part of our future work, it remains to be seen if there are
other more sophisticated replacement schemes that may have a per-
formance better than random. Moreover, the distribution of repli-
cas seems to have a profound impact on the availability latency
in the presence of zebroids. Exploring and analyzing the cumula-
tive effect of different replica distributions with zebroids presents
a promising future research direction. A concrete goal is the in-
vestigation of a replacement scheme that over time converges to a
replica distribution resembling that provided by a square-root repli-
cation scheme.

7.2 Do zebroids provide significant improve-
ments in availability latency?

We find that in many scenarios employing zebroids provides sub-
stantial improvements in availability latency.

7.2.1 Analysis
We first consider the case of one-instantaneous zebroids. Fig-

ure2.a shows the variation inδagg as a function ofN for T = 10
andα = 1 with a10× 10 torus using Equation4. Both the x and y
axes are drawn to a log-scale. Figure2.b show the % improvement
in δagg obtained with one-instantaneous zebroids. In this case, only
the x-axis is drawn to a log-scale. For illustration, we assume that
theT data items are requested uniformly.

Initially, when the network is sparse the analytical approximation
for improvements in latency with zebroids, obtained from Equa-
tions2 and4, closely matches the simulation results. However, as
N increases, the sparseness assumption for which the analysis is
valid, namelyN << G, is no longer true. Hence, the two curves
rapidly diverge. The point at which the two curves move away from
each other corresponds to a value ofδagg ≤ 1. Moreover, as men-
tioned earlier, the analysis provides an upper bound on the latency
improvements, as it treats the newly created replicas given byNc

i

independently. However, theseNc
i replicas start from the same cell

as one of the server replicasri. Finally, the analysis captures a one-
shot scenario where given an initial data item replica distribution,
the availability latency is computed. The new replicas created do
not affect future requests from the client.

Next, we consider the case where z-relay zebroids are employed
(see Figure3). Similar observations, like the one-instantaneous ze-
broid case, apply since the simulation and analysis curves again
start diverging when the analysis assumptions are no longer valid.
However, the key observation here is that the latency improvement
with z-relay zebroids is significantly better than the one-instantaneous
zebroids case, especially for lower storage scenarios. This is be-
cause in sparse scenarios, the transitive hand-offs between the ze-
broids creates higher number of replicas for the requested data item,
yielding lower availability latency. Moreover, it is also seen that
the simulation validation curve for the improvements inδagg with
z-relay zebroids approaches that of the one-instantaneous zebroid
case for higher storage (higherN values). This is because one-
instantaneous zebroids are a special case of z-relay zebroids.

6

10
1

10
2

10
3

10
−1

10
0

10
1

10
2

Number of cars

no−zebroids
anal

no−zebroids
sim

one−instantaneous
anal

one−instantaneous
sim

Aggregate Availability latency (δ
agg

)

2.a)δagg

10
1

10
2

10
3

0

10

20

30

40

50

60

70

80

90

100

Number of cars

% Improvement in δ
agg

 wrt no−zebroids (ω)

analytical upper−bound

simulation

2.b) ω

Figure 2: Figure 2 shows the latency performance with one-
instantaneous zebroids via simulations along with the analyti-
cal approximation for a 10× 10 torus with T = 10.

7.2.2 Simulation
We conduct simulations to examine the entire storage spectrum

obtained by changing car densityN or storage per carα in order to
also capture scenarios where the sparseness assumptions for which
the analysis is valid do not hold. We separate the effect ofN and
α by capturing the variation ofN while keepingα constant (case
1) and vice-versa (case 2) both with z-relay and one-instantaneous
zebroids. Here, we set the repository size asT = 25. Figure4
and5 respectively capture the two cases mentioned above. With
Figure4.b, keepingα constant, initially increasing car density has
higher latency benefits because increasingN introduces more ze-
broids in the system. AsN is further increased,ω reduces because
the total storage in the system goes up. Consequently, the number
of replicas per data item goes up thereby increasing the number of
servers. Hence, the replacement policy cannot find a zebroid as of-
ten to transport the requested data item to the client earlier than any
of the servers. On the other hand, the increased number of servers
benefits the no-zebroids case in bringingδagg down. The net effect
results in reduction inω for larger values ofN . Similar trends are
seen by keepingN constant and increasingα (see Figure5.b).

The trends mentioned above are similar to that obtained from the
analysis. However, somewhat counter-intuitively with relatively
higher system storage, z-relay zebroids provide slightly lower im-
provements in latency as compared to one-instantaneous zebroids.
We speculate that this is due to the different data item replica dis-
tributions enforced by them. Note that replacements performed by

10
1

10
2

10
3

10
−1

10
0

10
1

10
2

Number of cars

no−zebroids
sim

no−zebroids
anal

z−relays
sim

z−relays
anal

Aggregate availability latency (δ
agg

)

3.a)δagg

10
1

10
2

10
3

0

10

20

30

40

50

60

70

80

90

100

Number of cars

analytical upper−bound

simulation

% Improvement in δ
agg

 wrt no−zebroids (ω)

3.b) ω

Figure 3: Figure 3 shows the latency performance with z-relay
zebroids via analysis and simulations for a10 × 10 torus with
T = 10.

the zebroids cause fluctuations in these replica distributions which
may effect future client requests. We are currently exploring suit-
able choices of parameters that can capture these changing replica
distributions.

7.3 What is the overhead/cost associated with
achieving improvements in latency with
zebroids?

We find that the improvements in latency with zebroids are ob-
tained at a minimal replacement overhead (< 1 per client request).

7.3.1 Analysis
With one-instantaneous zebroids, for each client request a maxi-

mum of one zebroid is employed for latency improvement. Hence,
the replacement overhead per client request can amount to a maxi-
mum of one. Recall that to calculate the latency with one-instantaneous
zebroids,Nc

i new replicas are created in the same cell as the servers.
Now a replacement is only incurred if one of theseNc

i newly cre-
ated replicas meets the client earlier than any of theri servers.

Let Xri andXNc
i

respectively be random variables that capture

the minimum time till any of theri andNc
i replicas meet the client.

SinceXri andXNc
i

are assumed to be independent, by the property
of exponentially distributed random variables we have,

7

0 50 100 150 200 250 300 350 400
0

1

2

3

4

5

6

Number of cars

Aggregate availability latency (δ
agg

)

no−zebroids

one−instantaneous

z−relays

4.a

0 50 100 150 200 250 300 350 400
0

10

20

30

40

50

60

Number of cars

% Improvement in δ
agg

 wrt no−zebroids (ω)

one−instantaneous

z−relays

4.b

Figure 4: Figure 4 depicts the latency performance with both
one-instantaneous and z-relay zebroids as a function of the car
density whenα = 2 and T = 25.

Overhead/request = 1 · P (XNc
i

< Xri) + 0 · P (Xri ≤ XNc
i
)

(8)

Overhead/request =
ri
C

ri
C

+
Nc

i
C

=
ri

ri + Nc
i

(9)

Recall that the number of replicas for data itemi, ri, is a function
of the total storage in the system i.e.,ri = k ·N ·α wherek satisfies
the constraint1 ≤ ri ≤ N . Using this along with Equation2, we
get

Overhead/request = 1− G

G + N · (1− k · α)
(10)

Now if we keep the total system storageN · α constant since
G andT are also constant, increasingN increases the replacement
overhead. However, ifN ·α is constant then increasingN causesα
to go down. This implies that a higher replacement overhead is in-
curred for higherN and lowerα values. Moreover, whenri = N ,
this means that every car has a replica of data itemi. Hence, no
zebroids are employed when this item is requested, yielding an
overhead/request for this item as zero. Next, we present simula-
tion results that validate our analysis hypothesis for the overhead
associated with deployment of one-instantaneous zebroids.

0 2 4 6 8 10
0

1

2

3

4

5

6

Storage per car

no−zebroids

one−instantaneous

z−relays

Aggregate availability latency (δ
agg

)

5.a

0 2 4 6 8 10
0

10

20

30

40

50

60

Storage per car

% Improvement in δ
agg

 wrt no−zebroids (ω)

one−instantaneous

z−relays

5.b

Figure 5: Figure 5 shows latency performance with both one-
instantaneous and z-relay zebroids as a function ofα whenN =
50 and T = 25.

7.3.2 Simulation
Figure6shows the replacement overhead with one-instantaneous

zebroids when (N ,α) are varied while keeping the total system stor-
age constant. The trends shown by the simulation are in agreement
with those predicted by the analysis above. However, the total sys-
tem storage can be changed either by varying car density (N) or
storage per car (α). Figures7.a and Figure7.b respectively indicate
the replacement overhead incurred with both one-instantaneous and
z-relay zebroids whenα is kept constant andN is varied and vice-
versa.

We present an intuitive argument for the behavior of the per-
request replacement overhead curves. When the storage is extremely
scarce so that only one replica per data item exists in the C2P2 net-
work, the number of replacements performed by the zebroids is
zero since any replacement will cause a data item to be lost from
the system. The dispatcher ensures that no data item is lost from
the system. At the other end of the spectrum, if storage becomes
so abundant thatα = T then the entire data item repository can
be replicated on every car. The number of replacements is again
zero since each request can be satisfied locally. A similar scenario
occurs ifN is increased to such a large value that another car with
the requested data item is always available in the vicinity of the
client. However, there is a storage spectrum in the middle where
replacements by the scheduled zebroids result in improvements in
δagg (see Figures4.b and5.b).

Moreover, we observe that for sparse storage scenarios, the higher

8

0 20 40 60 80 100
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Number of cars

one−instantaneous
 zebroids

Average number of replacements per request

(N=20,α=10)

(N=25,α=8)

(N=50,α=4)

(N=100,α=2)

Figure 6: Figure 6 captures replacement overhead when em-
ploying one-instantaneous zebroids as a function of (N ,α) val-
ues, when the total storage in the system is kept fixed,ST =
200.

improvements with z-relay zebroids are obtained at the cost of a
higher replacement overhead when compared to the one-instantaneous
zebroids case. This is because in the former case, each of thesez
zebroids selected along the lowest latency path to the client needs
to perform a replacement. However, the replacement overhead is
still less than1 indicating that on an average less than one replace-
ment per client request is needed even when z-relay zebroids are
employed.

Note that the average replacement per request metric does not ex-
plicitly capture the bandwidth overhead associated with the transfer
of items to the zebroids. This bandwidth overhead may be signif-
icant in the case of multiple simultaneous active requests. We in-
tend to explicitly incorporate these bandwidth considerations in our
model as part of our future research.

7.4 What happens to the availability latency
with zebroids in more practical scenarios
with inaccuracies in the car route predic-
tions?

We find that zebroids continue to provide improvements in avail-
ability latency even with lower accuracy in the car route predic-
tions. We use a single parameterp to quantify the accuracy of the
car route predictions. This parameter inherently provides a certain
probabilistic guarantee on the confidence of the car route predic-
tions for the entire trip duration.

7.4.1 Analysis
Sincep represents the probability that a car route predicted by the

dispatcher matches the actual one, hence, the latency with zebroids
can be approximated by,

δerr
agg = p · δagg(zeb) + (1− p) · δagg(no− zeb) (11)

δerr
agg = p · δagg(zeb) + (1− p) · C

ri
(12)

Expressions forδagg(zeb) can be obtained from Equations4
(one-instantaneous) or7 (z-relay zebroids).

7.4.2 Simulation
Figure8 shows the variation inδagg as a function of this route

prediction accuracy metric with one-instantaneous zebroids. We

0 50 100 150 200 250 300 350 400
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of cars

z−relays

one−instantaneous

Average number of replacements per request

7.a

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Storage per car

Average number of replacements per request

z−relays

one−instantaneous

7.b

Figure 7: Figure 7.a and Figure 7.b respectively show the re-
placement overhead with zebroids for the cases whenN is var-
ied keepingα = 2 and α is varied keepingN = 50.

observe a smooth reduction in the improvement inδagg as the pre-
diction accuracy metric reduces. For zebroids that are scheduled
but fail to rendezvous with the client due to the prediction error,
we tag any such replacements made by the zebroids as failed. It is
seen that failed replacements gradually increase as the prediction
accuracy reduces.

In this study, we have considered a metric that probabilistically
governs errors in the car route predictions. Another possible choice
for the metric is similar to that used by Junet al. [10] where the
car routes are assumed to follow a Gaussian distribution defined
by a mean and a variance. The estimates about the mean and the
variance can be built at the dispatcher based on the history of the
individual car movements. Exploring such alternate choices of pre-
diction control metrics presents a promising future research direc-
tion.

7.5 Under what conditions are the improve-
ments in availability latency with zebroids
maximized?

Surprisingly, we find that the improvements in latency obtained
with one-instantaneous zebroids are independent of the input dis-
tribution of the popularity of the data items.

7.5.1 Analysis
The fractional difference (labelledω) in the latency between the

no-zebroids and one-instantaneous zebroids is obtained from equa-

9

10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

3

3.5

4

Prediction percentage

Aggregate Availability Latency (δ
agg

)

no−zebroids (N = 50)

one−instantaneous (N = 50)

no−zebroids (N = 200)

one−instantaneous (N = 200)

Figure 8: Figure 8 showsδagg for different car densities as a
function of the prediction accuracy metric with α = 2 and T =
25.

tions2, 3, and4 as

ω =

PT
i=1

fi·C
ri

−PT
i=1

fi·C
ri+(N−ri)·(1−(1− 1

G)ri)PT
i=1

fi·C
ri

(13)

HereC = c ·G · log G. This captures the fractional improvement
in the availability latency obtained by employing one-instantaneous
zebroids. Letα = 1, making the total storage in the systemST =
N . Assuming the initial replica distribution is as per the square-

root replication scheme, we have,ri =

√
fi·NPT

j=1

√
fj

. Hence, we get

fi =
K2·r2

i
N2 , whereK =

PT
j=1

p
fj . Using this, along with the

approximation(1 − x)n ' 1 − n · x for smallx, we simplify the
above equation to get,

ω = 1−
PT

i=1
ri

1+
N−ri

GPT
i=1 ri

(14)

In order to determine when the gains with one-instantaneous ze-
broids are maximized, we can frame an optimization problem as
follows:

Maximize ω, subject to
TX

i=1

ri = ST (15)

THEOREM 1. With a square-root replication scheme, improve-
ments obtained with one-instantaneous zebroids are independent of
the input popularity distribution of the data items.

Proof: Using the Lagrangian multipliers method, the optimiza-
tion can be expressed as:

Max

(
1−

TX
i=1

G · ri

N · (G + N − ri)
+ λ ·

"
TX

i=1

ri −N

#)
(16)

We solve forri to obtain:

ri = G + N −G ·
r

G + N

G ·N · λ (17)

Note that in Equation17, while ri is independent ofi, it is the
same for all titlesi. It can be verified that the maximumω occurs
at this value ofri since ∂2ω

∂r2
i

< 0. This implies that as long as the

constraint
PT

i=1 ri = N is satisfied, improvements in latency can
be maximized.

0 20 40 60 80 100

0

10

20

30

40

50

60

Number of cars

% Improvement in δ
agg

 wrt no−zebroids (ω)

 one−instantaneous
 zebroids

(N=20,α=10)

(N=25,α=8)

(N=50,α=4)

(N=100,α=2)

Figure 9: Figure 9 captures improvement in availability latency
with one-instantaneous zebroids as a function of (N ,α) values,
when the total storage in the system is kept fixed,ST = 200.

7.5.2 Simulation
We perform simulations with two different frequency distribu-

tion of data items: Uniform and Zipfian (with mean=0.27). Simi-
lar latency improvements with one-instantaneous zebroids are ob-
tained in both cases. This result has important implications. In
cases with biased popularity toward certain data items, the aggre-
gate improvements in latency across all data item requests still re-
main the same. Even in scenarios where the frequency of access
to the data items changes dynamically, zebroids will continue to
provide similar latency improvements.

7.6 What combinations of car-density and stor-
age per car offer the highest improvements
in latency with zebroids for the same total
system storage?

Our findings indicate that higher latency improvements can be
obtained with zebroids when there are more cars with lower storage
than fewer ones with higher storage.

7.6.1 Analysis
Consider the case of one-instantaneous zebroids. The fractional

difference (labelledω) in δagg between the no-zebroids and one-
instantaneous zebroids cases is obtained in Equation13. Using the
approximation(1 − x)n ' 1 − n · x for smallx, we simplify the
above equation to get,

ω = 1−
PT

i=1
G·fi

ri·(G+N−ri)PT
i=1

fi
ri

(18)

Recall that the number of replicas for data itemi, ri, is a function
of the total storage in the system i.e.,ri = k ·N ·α wherek has to
satisfy the constraint that1 ≤ ri ≤ N . Given a total system storage
N · α, we find that except forN all other terms in Equation18 are
constant. Also, with increasingN , ω increases. However, for a
constantN · α, if N increases,α has to reduce. This indicates
for a given system storage, higher improvements in latency with
zebroids are obtained with higher car density and lower storage per
car.

7.6.2 Simulation
Figure9 validates the insight obtained from the analysis in that

the improvements in latency go up with higherN and lowerα val-
ues whenN · α = 200. The increase inN increases the zebroid

10

density enabling the dispatcher to almost always find a zebroid that
can deliver the requested data item to the client earlier than any of
the potential servers. This trade-off between the two system para-
meters of number of cars and storage per car may have important
implications in the design of carrier-based networks that improve
availability latency.

Although we have assumed a constant storage per car for all cars,
in practical scenarios, there may be variable storage per car. Part
of the C2P2 device storage space may be reserved by a user for his
preferred titles which the user may not seek to erase/evict. These
considerations may create a more heterogeneous environment with
variable storage per car. In addition, zebroids may need to take
into account user preferences prior to making these replacements.
Incorporating all these considerations into the model is likely to
pay richer dividends in estimating latency in real deployments.

0 20 40 60 80 100
0

5

10

15

20

25

30

35

40

45

Replicas per data item

% Improvement in δ
agg

 wrt no−zebroids (ω)

γ=5

γ=20

γ=10

10.a) Analysis

0 20 40 60 80 100
0

5

10

15

20

25

30

35

40

45

Replicas per data item

% Improvement in δ
agg

 wrt no−zebroids (ω)

γ=5

γ=10

γ=20

10.b) Simulation

Figure 10: Figures 10.a and10.b % show improvement in δagg

with one-instantaneous zebroids for different client trip dura-
tions in case of10× 10 torus with a fixed car density,N = 100.

7.7 What is the impact of different trip dura-
tions and repository sizes on availability
latency in the presence of zebroids?

7.7.1 Analysis
In most practical scenarios, the client will wait for a maximum

duration within which it expects its issued request to be satisfied.
Here, we consider the case where the client has a finite trip duration
γ, similar to that considered in the simulation environment (γ =

10). The availability latency,δi, can be any value between0 and
γ−1. If the client’s request is not satisfied, we setδi = γ indicating
that the client’s request for itemi was not satisfied.

Recall that latency in the case of a 2D-random walk on a torus
can be modelled as an exponential distribution as:

P (δi > t) = λ · exp (−λ · t) (19)

whereλ = ri
c·G·log G

. The average availability latency with finite
trip durationγ is then given by,

δi =

Z γ

0

x · λ · exp (−λ · t)dx +

Z ∞

γ

γ · λ · exp (−λ · t)dx

(20)
Hence, we get

δi =
c ·G · log G

ri
· [1− exp (

−γ · ri

c ·G · log G
)] (21)

The aggregate availability latency with finite trip duration is then
given by,

δagg(no−zeb) =

TX
i=1

fi · c ·G · log G

ri
· [1− exp (

−γ · ri

c ·G · log G
)]

(22)
In the presence of one-instantaneous zebroids, the aggregate avail-

ability latency can be obtained using a procedure similar to that
used in Section5.1, giving

δagg(zeb) =

TX
i=1

fi · c ·G · log G

(ri + Nc
i)

· [1− exp (
−γ · (ri + Nc

i)

c ·G · log G
)]

(23)

0 50 100 150 200
0

10

20

30

40

50

60

70

Number of cars

% Improvement in δ
agg

 wrt no−zebroids (ω)

T=5

T=10

T=20

T=25

T=50

Figure 11: Figure 11shows improvement in availability latency
as a function of the car density for different repository sizes
with α = 2 and γ = 10.

The above equations yield the improvements in latency with fi-
nite trip duration. We consider a10 × 10 torus withN = 100
cars each with one storage slot (α = 1). The distribution of data
item replicas is assumed to be uniform. Hence, as we increase
the size of the data item repository (T) the number of replicas
per data item decreases. Specifically, the value ofT is varied as
{1, 2, 4, 10, 20, 25, 50, 100}. Then, the number of replicas per data
item changes as{100, 50, 25, 10, 5, 4, 2, 1}. Figure10.a and10.b
capture the latency performance obtained via analysis and simula-
tions respectively for different trip durations.

11

We now describe the behavior of the curves for a given finite trip
durationγ. WhenT = 1, every car has a copy of the item, hence,
no car can serve as a zebroid. AsT increases, replicas per item
go down. Hence, some cars can potentially serve as zebroids, pro-
viding some improvements in availability latency. AsT is further
increased, a peak is reached beyond which the improvements start
diminishing. This is because ifT is large then the number of server
replicas per item becomes small. Hence, the likelihood of finding
another car in the vicinity of such a server that will meet the client
earlier also reduces. Moreover, asγ increases, peak improvements
in latency are obtained with higherT .

7.7.2 Simulation
Here, we present simulation results that capture the effect of dif-

ferent repository sizes on the availability latency when the trip du-
rationγ = 10 (see Figure11). For a fixed storage per car, sufficient
car density is needed to provide higher improvements in latency for
a given repository size. This implies that from a system designer’s
point of view, if an estimate of the total car density is known, then
sufficient gains in latency with zebroids can be realized by adjust-
ing the repository size of titles presented to the users.

While a homogeneous repository of data items has been assumed
throughout this study, sizes of data items such as audio clips are
typically smaller than video clips. One way in which our model
can be extended to consider such a heterogenous repository is to
assume that every data item can be divided into a set of constant-
sized blocks. Different blocks of an item may be stored across
different cars. During data delivery, zebroids will be scheduled to
ensure timely delivery of the various blocks of a requested data item
to a client. We intend to consider repositories with different-sized
data items as part of our future work.

8. CONCLUSIONS AND
FUTURE RESEARCH DIRECTIONS

In this study, we examined the improvements in latency that can
be obtained in the presence of carriers that deliver a data item from
a server to a client. We quantified the variation in availability la-
tency as a function of a rich set of parameters such as car den-
sity, storage per car, title database size, and replacement policies
employed by zebroids. Our key findings are summarized below.
A naive random replacement policy employed by the zebroids ex-
hibits competitive latency benefits at a minimal replacement over-
head. Zebroids continue to provide improvements even in the pres-
ence of lower accuracy in the predictions of the car routes. Im-
provements in latency obtained with one-instantaneous zebroids
are independent of the input distribution of the popularity of the
data items. Also, for a given total system storage, presence of more
cars with lower storage as compared to fewer cars with more stor-
age yields higher improvements in availability latency.

A contribution of this work is to identify a significant research
direction for each question presented and discussed in Section7.
Comprehensive analytical models that enable a study of the differ-
ent factors for each question remain an important future research
topic. Below we summarize some key future research directions
we intend to pursue. First, we are currently investigating the ef-
fect of different replica distributions on availability latency in the
presence of zebroids. Second, we intend to explore alternate def-
initions for the parameter that controls the prediction accuracy of
the car routes known at the dispatcher. Third, to better reflect re-
ality we would like to validate the observations obtained from this
study with some real world simulation traces of vehicular move-
ments (for example using CORSIM [1]). This will also serve as a
validation for the utility of the Markov mobility model used in this
study. Fourth, we intend to include bandwidth constraints in our

model so that it can be better equipped for scenarios where multi-
ple simultaneous requests are active in the system.

9. REFERENCES
[1] Federal Highway Administration. Corridor simulation (corsim/tsis).

Version 5.1, http://www.ops.fhwa.dot.gov/trafficanalysistools/cors
im.htm.

[2] D. Aldous and J. Fill. Reversible markov chains and random walks
on graphs. Under preparation.

[3] E. Cohen and S. Shenker. Replication strategies in unstructured
peer-to-peer networks. InSIGCOMM, pages 177–190. ACM Press,
2002.

[4] A. Dan, D. Dias, R. Mukherjee, D. Sitaram, and R. Tewari. Buffering
and Caching in Large-Scale Video Servers. InCOMPCON, 1995.

[5] S. Ghandeharizadeh and S. Kapadia. An Evaluation of
Location-Demographic Replacement Policies for Zebroids. InIEEE
CCNC, 2006.

[6] S. Ghandeharizadeh, S. Kapadia, and B. Krishnamachari. Pavan: a
policy framework for content availabilty in vehicular
ad-hocnetworks. InVANET, New York, NY, USA, 2004. ACM Press.

[7] S. Ghandeharizadeh, S. Kapadia, and B. Krishnamachari.
Comparison of Replication Strategies for Content Availability in
C2P2 networks. InMDM, May 2005.

[8] S. Ghandeharizadeh and B. Krishnamachari. C2p2: A peer-to-peer
network for on-demand automobile information services. InGlobe.
IEEE, 2004.

[9] P. Juang, H. Oki, Y. Wang, M. Martonosi, L. Peh, and D. Rubenstein.
Energy-efficient computing for wildlife tracking: design tradeoffs
and early experiences with zebranet.SIGARCH Comput. Archit.
News, 2002.

[10] H. Jun, M. Ammar, and E. Zegura. Power Management in Delay
Tolerant Networks: A Framework and Knowledge-Based
Mechanisms. InSECON, September 2005.

[11] E. O’Neil, P. O’Neil, and G. Weikum. The lru-k page replacement
algorithm for database disk buffering. InACM SIGMOD, pages
297–306, 1993.

[12] A. Pentland, R. Fletcher, and A. Hasson. DakNet: Rethinking
Connectivity in Developing Nations.Computer, 37(1):78–83, 2004.

[13] R. Shah, S. Roy, S. Jain, and W. Brunette. Data mules: Modeling and
analysis of a three-tier architecture for sparse sensor networks.
Elsevier Ad Hoc Networks Journal, 1, September 2003.

[14] T. Small and Z. J. Haas. The shared wireless infostation model: a
new ad hoc networking paradigm (or where there is a whale, there is
a way). InMobiHoc, pages 233–244, New York, NY, USA, 2003.
ACM Press.

[15] T. Spyropoulos, K. Psounis, and C. Raghavendra. Single-Copy
Routing in Intermittently Connected Mobile Networks. InSECON,
April 2004.

[16] A. Tanenbaum.Modern Operating Systems, 2nd Edition, Chapter 4,
Section 4.4. Prentice Hall, 2001.

[17] A. Vahdat and D. Becker. Epidemic routing for partially-connected
ad hoc networks. Technical report, Department of Computer Science,
Duke University, 2000.

[18] W. Zhao, M. Ammar, and E. Zegura. A message ferrying approach
for data delivery in sparse mobile ad hoc networks. InMobiHoc,
pages 187–198, New York, NY, USA, 2004. ACM Press.

12

