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ABSTRACT
We develop closed-form expressions of the expected minimumsearch
energy cost and replication energy cost for both unstructured sen-
sor networks (which use blind sequential search for querying) and
structured sensor networks (which use efficient hash-basedquery-
ing). We use both the square grid and random topology to derive
each cost modeling. We find that the search cost of unstructured
networks is proportional to the number of nodesN and inversely
proportional to(r + 1) (wherer denotes the number of copies of
the target event). The search cost of structured networks ispro-
portional to

√
N/

√
r while the replication cost of both structured

and unstructured networks is proportional to
√

N(r − 1). Further-
more, the proportionality of those costs is independent of whether
the topology is grid or random, which implies that the two topolo-
gies have common structural characteristics in terms of search and
replication costs.

1. INTRODUCTION
There are two popular ways in which the wireless sensor net-

work can be operated. One way is to be operated in a continuous
data gathering mode, and the other way is to consider the wire-
less sensor network as a decentralized data storage system.We
call the network of the latter mode the data-centric sensor network.
While the network in the continuous data-gathering mode is popu-
lar, mainly because it is easier to analyze and simpler to implement,
continuous data gathering from all sensors is generally very ineffi-
cient if most of the sensed information is not essential, or if there
are multiple sinks that may need different subsets of the sensed in-
formation at different times. In this case, however, the data-centric
network might be more suitable for the energy efficiency. In such a
data-centric approach, the sensed data can be stored eitherlocally
or at one or more remote locations within the network. Event infor-
mation is obtained by sinks through queries that are issued on an
on-demand basis.

When a sink knows where the nearest copy of the target event
information is stored (e.g. using hash-based data centric storage
techniques such as GHT [5], DIM [6], etc.), the search cost isthe
energy expenditure to send a query for the event to the targetnode
and bring the information back through the shortest path. Onthe
other hand, when a sink has no clue where the target resides, it
resorts to search for it blindly, which often is led to some sort of
flooding. We call the network which adopts the former scheme the
structured network and the latter scheme the unstructured network.
While the structured network has smaller search energy costat the
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cost of maintaining the location information of all events,the un-
structured network doesn’t need the overhead of maintenance.

In this work, we focus on deriving closed-form expressions for
the expected minimum search energy cost and replication cost con-
sidering structured and unstructured sensor networks withgrid and
random deployments. Since the energy is one of the most pre-
cious resources and searching is one of fundamental operations in
the data-centric sensor network, it can be very useful to derive the
closed-form expressions of such costs in the sense that theycan
be basis of other analytical modelings with tractable optimization.
There are several related works as follows. For the structured net-
work, the minimum search cost is related with the shortest path be-
tween a sink and a source. For the unstructured network, we use the
expanding ring search mechanism in which the sink sends a series
of controlled flooding until it finds the event information. Chang
and Liu [4] have found the way how to construct the series of con-
trolled flooding in order to minimize the expected search cost given
the distribution of the event’s location. And Krishnamachari and
Ahn [2] have found the approximate closed-form expression for the
minimum search cost under the uniform random node deployment
and the uniform distribution of the location of target event.

2. ASSUMPTIONS
The following are the key assumptions in our work:

• N nodes are deployed with constant density in a two-dimensional
square area. The constant density implies that if the network
size is increased, the deployment area grows proportionally.

• The radio radius of a node is R for all nodes.

• There arem atomic events that are sensed in the environ-
ment. The distribution of events is assumed to be uniform in
the deployment area.

• A total of ri copies of each event are maintained with a uni-
form distribution in the network by creatingri−1 additional
replicas when the event is first sensed.

• For each eventi, there are a total ofqi queries that are gener-
ated uniformly by the nodes in the network. Each query is a
one-shot query (i.e. requires a single response, not a contin-
uous stream), and is satisfied by locating a single copy of the
corresponding event.

• We assume that the links over which transmissions take place
are lossless (e.g., using blacklisting) and present no interfer-
ence due to concurrent transmissions (e.g., due to low traffic
conditions or due to the use of a scheduled MAC protocol).



• The total energy cost for storage and querying is assumed to
be proportional to the total number of transmissions. Partic-
ularly, the unit successful transmission cost is assumed one
since it turns out to play a role only on scaling. And this pro-
portionality assumption is reasonable particularly for sleep-
cycled sensor networks where radio idle times are kept to a
minimum.

3. MODELING SEARCH COSTS

3.1 Under the Unstructured Network of Grid
Topology

We derive this search cost expression using the trajectory-based
query. We consider a two dimensional square grid topology ofN
nodes. The number of node in a row or a column is

√
N . Each node

can communicate with the direct neighbors: the nodes located on
the up, down, left, or right direction. We assume that a querier
issues a query which follows a path covering the whole network.
Note that by Lemma 1 we can find a path or linear topology corre-
sponding to the given grid topology which covers all nodes without
visiting any node more than once if

√
N is even. If it is odd, then

we need only one node which is visited twice by Lemma 2. We
therefore ignore the latter situation. Consider that linear topology.
And let X denote the hop count to the nearest copy of the desired
event. The probability that the nearest one amongr copies is lo-
cated no more thank hops away from the querier is then given by
the expression:

P{X ≤ k} = 1 −
�

1 − k

N

�r

Its probability mass function is simply as follows;

P{X = k} =

�
1 − k − 1

N

�r

−
�

1 − k

N

�r

Since each successful transmission is assume to incur a unitcost
one, the expected search cost of unstructured system with the grid
topology, denoted byCs,ug, is given by,

Cs,ug =

N−1X
k=0

k P{X = k}

=

N−1X
k=1

k

��
1 − k − 1

N

�r

−
�

1 − k

N

�r�
=

NX
i=2

�
i

N

�r

− (N − 1)

�
1

N

�r

(∵ using the telescoping method)

=
1

Nr

(
NX

i=2

ir − (N − 1)

)
Since the following inequalities holds,

NX
i=2

ir ≥
Z N

1

irdi =
Nr+1 − 1

r + 1

NX
i=2

ir ≤
Z N+1

2

irdi =
(N + 1)r+1 − 2r+1

r + 1

the bounds ofCs,ug are given by,

Cs,ug ≤ 1

Nr

�
(N + 1)r+1 − 2r+1

r + 1
− N + 1

�

Cs,ug ≥ 1

Nr

�
Nr+1 + r

r + 1
− N

�
This lower bound provides a good approximation (especiallywhen
r is not large) and a lower bound is more meaningful in this work,
we can approximate the search cost as follows:

Cs,ug =
1

Nr

�
Nr+1 + r

r + 1
− N

�
≈ N

r + 1

Note that we ignore the cost of way back here since it can be shown
to be proportional to

p
N/r from section 3.3, which is ignorably

small compared to the cost to locate a copy.

LEMMA 1. Given a square grid graph G where the number of
node in a row or column is n which is even, there is always a path
starting from any node s in G such that the path visits all node in
G exactly once.

Proof: Note that the path is a Hamiltonian path starting from
s ∈ G to any other nodet ∈ G, t 6= s. Let B = (V 0 ∪ V 1, E) be
a bipartite graph with|V 0| ≥ |V 1|. We will think of the vertices of
B as colored by two colors, black and white. All the vertices ofV 0

will be colored by one color, themajority color, and the vertices
V 1 by theminority color.

The Hamiltonian path problem(B, s, t) is color compatible if

1. B is even (|V 0| = |V 1|) ands andt have different coloror

2. B is odd (|V 0| = |V 1| + 1) ands andt are colored by the
majority color (i.e.,s, t ∈ V 0).

The Hamiltonian path problem(K, s, t) is forbidden if it satisfies
one of the conditions as follows:

1. K is a 1-rectangle, and eithers or t is not a corner.

2. K is a 2-rectangle, and(s, t) is a nonboundary edge (i.e.,
(s, t) is an edge, and it is not on the outermost face).

3. (K, s, t) is isomorphic to(K′, s′, t′) which satisfies:

(a) K′ is an-by-m grid graph withn = 3 andm even.

(b) s′ is colored differently fromt′ and the left corners of
K′.

(c) s′x < t′x − 1 or S′
y = 2 ands′x < t′x.

We say that a Hamiltonian path problem(K, s, t) is acceptable
if it is color compatible and not forbidden. Then, it has beenproven
by Itai et al. ([7]) that there exists a Hamiltonian path froms to t
in K if and only if (K, s, t) is acceptable. SinceG is a square grid
graph with even number of rows, it is not forbidden. MoreoverG
is even and two of four corner nodes are white while the other two
corners are black. Hence, ifs is black (or white), we sett 6= s as
one of the corners that are white (or black). Then,(G, s, t) is color
compatible. Therefore, there exists such a Hamiltonian path.
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LEMMA 2. Given a square grid graph G where the number of
node in a row or column is n which is odd, there is always a path
starting from any node s in G such that the path visits one node
either once or twice but the other nodes exactly once.



Proof: SinceG is a square grid graph with odd number of rows,
it is not forbidden and is odd (i.e.|V 0| = |V 1| + 1). Now, we
sett 6= s as one of the four corners each of which has the majority
color. If s has the majority color, then(G, s, t) is color compatible
and so, there exists a Hamiltonian path for(G, s, t) by [7].

If s has the minority color, its neighbors have the majority color.
Denoting one of it neighbors ass′ 6= t, there exists a Hamiltonian
path for(G, s′, t) because it is color compatible, and so the path
{s, H(G, s′, t)} visits all nodesx ∈ G, x 6= s exactly once ands
twice.
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3.2 Under the Unstructured Network of Ran-
dom Topology

We derive the search cost expression using the optimal expand-
ing ring-based flooding query in our previous work [2]. We con-
sider a square area with nodes deployed with a uniform random
distribution with the node densityρ. Each node can communicate
with any other node that is placed within a radio rangeR, and it
is assumed that the network is sufficiently dense so that all nodes
within distancekR of the querier can be reached ink hops. The
width of the area isW . When modeling this search cost, we as-
sume that the querier is located in the center of the region. From
our previous work [2], the expected search cost is given by,

Cs,ua = c1 · α aL2

n + 2
(1)

wherec1 ≈ 2.15, α is the cost of unit successful transmission,a =
πR2ρ (which is the number of one-hop neighbors),n is the number
of replicas excluding the original copy, andL is the smallest hop
distance from the querier to cover all nodes.

Note that the above equation (1) works well for the square area
topology as our previous work [2] suggests in its simulationsection
even though it assumes the circular area topology. Becauseα = 1,
n + 1 = r andaL2 = N in context of this work, we can get

Cs,ua = c1
N

r + 1
(2)

Note that the previous work [2] also suggests in its simulation sec-
tion that this model also works well even in the case that any node
can be a querier equally likely.

3.3 Under the Structured Network of Grid
Topology

In the structured network, the search cost is related to a path of
the lowest cost from a querier to the nearest node which has one of
the copies. We assume the shortest path routing scheme, so that the
path would be their shortest path. We assume that allr copies of an
event are evenly deployed in the network so that there are

√
r rows,

each of which has
√

r copies of the event; and between the two con-
secutive columns or rows, there are(

√
N /

√
r − 2) nodes which

do not have a copy of the event. Furthermore, the querier can be
any node with same probability in this network. Other assumptions
are same as those of the unstructured network.

Note that a querier is in the squareD in which there are four
copies of the event which locate at the four corners ofD. Note
that the width ofD is

√
N/

√
r hop distance, hence the expected

hop distance from the querier to the nearest of these four copies
becomes the expected search cost. Consider the squareD1 that is
one of four equal-sized small squares after dividing the squareD

by four; each side ofD1 has⌈
√

N
2
√

r
⌉ nodes. If a node in the square

D1 sends a query for the event, the appropriate corner node has its
nearest copy. Suppose the the corner node is located at(1, 1) and

a querier inD1 at (x, y), 1 ≤ x ≤ m, 1 ≤ y ≤ m, (x, y) 6=
(1, 1) without loss of generality, wherem =

√
N

2
√

r
. Since the hop

distanceH(x,y) between the two nodes is(x−1+y−1) and every
node except the corner node can be the querier equally likely, the
expected hop distance is given as follows:

E[X] =

Pm
x=1

Pm
y=1 H(x,y)

m2 − 1
=

m2(m − 1)

m2 − 1

=

N
4r

�√
N

2
√

r
− 1

�
N
4r

− 1

≈
√

N

2
√

r

Therefore, the search cost which consists of the locating cost and
the feedback cost (note that both costs are same) is as follow;

Cs,sg = 2E[X] =

√
N√
r

3.4 Under the Structured Network of Random
Topology

Note that the expected hop distance from a querier to the near-
est copy of an event is given in the section II.D. of our previous
work [2] as follows:

E[X] =

√
N

2R
√

ρ
· r · Γ(r)

Γ(r + 3/2)

Since both lower bound and upper bound ofr·Γ(r)
Γ(r+3/2)

is proven to

be proportional to1 /
√

r by Lemma 3, we can approximateE[X]
to be proportional to1 /

√
r in terms ofr with good accuracy as

follow:

E[X] ≈ c2

2R
√

ρ
·
√

N√
r

where0.66 < c2 < 1.71 (we can get the more accurate value ofc2

using the curve fitting.)
Therefore, the search cost composed of the locating cost andthe

feedback cost is given by,

Cs,sa = 2E[X]

=
c2

R
√

ρ
·
√

N√
r

LEMMA 3. For r ≥ 1, the following double inequality holds:

0.4
√

e
1√
r

<
r · Γ(r)

Γ(r + 3/2)
< e0.531 1√

r

Proof: From Robbins 1955 [1], Stirling’s approximation can be
extended to the following double inequality:

√
2πrr+1

2 e−r+ 1
12r+1 < Γ(r + 1) <

√
2πrr+ 1

2

Using this inequality,

r · Γ(r) = Γ(r + 1)

>
√

2πrr+ 1
2 e−r+ 1

12r+1

Γ(r +
3

2
) <

√
2π(r +

1

2
)r+1e−r− 1

2
+ 1

12r+6

Thus,

r · Γ(r)

Γ(r + 3
2
)

> r−
1
2

�
1 − 1

2r + 1

�r+1

e
1
2
+ 5

(12r+1)(12r+6)

> 0.4
√

e
1√
r

(3)



1. The expected search energy cost

i) Grid topology

(a) The unstructured network

Cs,ug =
N

r + 1

(b) The structured network

Cs,sg =

√

N
√

r

ii) Random Topology

(a) The unstructured network

Cs,ua = c1
N

r + 1

(b) The structured network

Cs,sa =
c2

R
√

ρ
·

√

N
√

r

2. The Expected Replication Energy Cost

i) Grid Topology

Cr,g =
2

3

√

N · (r − 1)

ii) Random Topology

Cr,a =
0.521405

R
√

ρ

√

N(r − 1)

Table 1: Summary of expected energy costs

The inequality of the equation (3) holds because of the following

facts. Since
�
1 − 1

2r+1

�r+1

is an increasing function and its value

is 4/9 whenr = 1, this term is larger than 0.4 for allr ≥ 1. In

addition,e
1
2
+ 5

(12r+1)(12r+6) is greater thane
1
2 sincer is positive.

In the other hand, using the above double inequality of Robbins
in the other way,

r · Γ(r) <
√

2πrr+ 1
2 e−r+ 1

12r

Γ(r + 3/2) >
√

2π(r +
1

2
)r+1e−r− 1

2
+ 1

12r+7

Hence,

r · Γ(r)

Γ(r + 3/2)
< r−

1
2

�
2r

2r + 1

�r+1

e
1
2
+ 7

12r(12r+7)

< e0.531 1√
r

(4)

Sincer ≥ 1,
�

2r
2r+1

�r+1

< 1, ande
1
2
+ 7

12r(12r+7) is an decreasing

function with respect tor > 0, the inequality (4) holds.
2

4. THE REPLICATION COST

4.1 Grid Topology
The assumptions are same as those in the search cost. Note

that the expected replication cost does not depend on the querying
schemes, but on the topologies. Suppose the leftmost and bottom-
most node is at (1,1) on the XY plane, and a node which locates in
theith column from left andjth row from bottom is at(i, j) on the
XY plane. Suppose the original event is generated atp = (px, py)

where1 ≤ px ≤ n(=
√

N), 1 ≤ py ≤ n. The hop distance from
p to an arbitrary node at(x, y) is given by(|x − px| + |y − py|).
Now let’s divide the whole square network into four rectangles so
that a internal boundary is a line parallel toy-axis and atpx − 1 <
x < px, and the other internal boundary is a line parallel tox-axis
and atpy − 1 < y < py. Let R11(p) denote the sum of hop dis-
tances fromp to each node in the left bottom rectangle,R12(p) the
right bottom rectangle,R21(p) the left top rectangle, andR22(p)
the right top rectangle. It is easy to calculate those quantities. For
example,R12(p) =

Pn
x=px

Ppy−1
y=1 (x − px + py − y)

Using those quantities, we can simply get the average distance
from the event sourcep to a node in the network as,

E[Hr,g|p = (px, py)] =
1

N − 1

X
i,j

Rij(p)

whereHr,g denotes the hop distance between two nodes in the net-
work.

Therefore, the average hop distance between an event sourceto
a node is given by,

E[Hr,g] =
1

N

√
NX

px=1

√
NX

py=1

E[Hr,g|p = (px, py)]

=
2

3

√
N(N + 2)

N − 1

≈ 2

3

�√
N +

2√
N

�
≈ 2

3

√
N

Since there are(r − 1) replicas in the network, the expected
replication cost is given by,

Cr,g = E[Hr,g] · (r − 1) =
2

3

√
N · (r − 1)

4.2 Random Topology
The assumptions for the replication cost of the random topology

are also same as that of the search cost of the random topology.
Let Hr,a andDr,a denote the number of hops needed to make one
replica of an event and the corresponding Euclidean distance, re-
spectively. Then, the expected replication cost is as follows;

Cr,a = E[Hr,a] · (r − 1) =
E[Dr,a]

R
· (r − 1) (5)

whereR is the radio radius of a node.
But, E[Dr,a] is the average of Euclidean distances over all pos-

sible pairs of points in the square area, which is known to be as



follows;

E[Dr,a]

= W

Z
· · ·
Z 1

0| {z }
4

q
(x1 − y1)

2 + (x2 − y2)
2dx1dy1dx2dy2

= W
2 +

√
2 + 5 ln

�
1 +

√
2
�

15
≈ 0.521405 W (6)

Substituting the equation (6) into the equation (5), we can get the
expected replication cost as,

Cr,a =
0.521405W

R
(r − 1)

=
0.521405

√
N

R
√

ρ
(r − 1)

�
∵ ρ =

N

W 2

�
= c3

√
N(r − 1)

where

c3 =
0.521405

R
√

ρ

5. CONCLUSIONS
We have derived minimum expected search costs and replication

costs in the several kinds of data-centric wireless sensor networks.
In Particular, we have considered structured and unstructured net-
works under grid and random topologies. The final expressions are
summarized in Table 1. One important thing to note is that thedif-
ference of each costs between the grid topology and the random
topology is only the value of coefficient. This fact implies that the
grid and random topologies have common structural characteristics
in terms of search and replication costs.

As an extended work of this paper, we have developed funda-
mental scaling laws for energy-efficient storage and querying in
wireless sensor networks [3]. In the paper, we have found that the
scalability of a sensor network’s performance depends on whether
or not the increase in energy and storage resources with morenodes
is outweighed by the concomitant application-specific increase in
event and query loads.
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