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Abstract

We introduce a novel sequence-based localization technique for wireless sensor networks. We show that the
localization space can be divided into distinct regions that can each be uniquely identified by sequences that
represent the ranking of distances from the reference nodes to that regionréference nodes in the localization
space, combinatoriallyQ(n™) sequences are possible, but we show that, due to geometric constraints, the actual
number of feasible location sequences is much lower, éry*). Using these location sequences, we develop a
localization technique that is robust to random errors due to multi-path and shadowing effects of wireless channels.
Through extensive systematic simulations and a representative set of real mote experiments we show that our
light-weight localization technique provides comparable or better accuracy than other state-of-the-art radio signal
strength-based localization techniques over a range of wireless channel and node deployment conditions.

Index Terms

Wireless Sensor Networks, Localization, Location Sequence, Arrangement of Lines

I. INTRODUCTION

CCURATE localization is an essential part of many wireless sensor network applications. Over tt

years many researchers have proposed many different solutions for this problem ( [1], [2], [3], [4], [5
[6], [7], [8], [9], [10], [11]). In these techniques, there is a tradeoff between the accuracy of localizatior
and the complexity of implementation. For instance, least squares estimation techniques ( [1]) requ
accurate RF channel parameters such as the radio path loss exponent; finger-printing based techni
(such as [8]) require extensive pre-configuration studies that depend on the features of the localizat
space; other techniques require specialized hardware ( [5]) or a complex configuration procedure ( [11
On the other extreme, really simple techniques such as computing centroid of nearby beacons ( [
provide low accuracy. In this paper, we present a novel sequence-based RF localization technique f
is lightweight, works with any hardware and provides accurate localization without requiring accurat
channel parameters or any pre-configuration.

At the heart of our proposed technique is the division of a two-dimensional (2D) localization spac
into distinct regions by the perpendicular bisectors of lines joining pairefefence nodegnodes with
known locations). We show that each distinct region formed in this manner can be uniquely identified t
a location sequenc¢hat represents the distance ranks of reference nodes to that region. We present
algorithm to construct théocation sequence tablidat maps all these feasible location sequences to the
corresponding regions, using the locations of reference nodes. This table is used to localua@un
node(i.e. the node whose location has to be determined) as follows.

This project is supported by a Bosch RTC Gift Grant, NSF CAREER Award# CNS-0347621 and NSF Award# CNS-032587.
Kiran Yedavalli (kyedaval@usc.edu) and Bhaskar Krishnamachari (bkrishna@usc.edu) are with the Department of Electrical Engineer
- Systems at the University of Southern California, Los Angeles.
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Fig. 1. (a) The perpendicular bisector of the line joining two reference nodes divides the localization space into three distinct regions. |
lllustration of arrangement af bisector lines ford reference nodes placed uniformly randomly in a square localization space.

The unknown node first determines its own location sequence based on the measured strength of sig
between itself and the reference nodes. It then searches through the location sequence table to deter
the “nearest” feasible sequence to its own measured sequence. The centroid of the corresponding re:
is taken to be its location.

In this paper, we focus only on RF signal-based localization since radios are used for the essen:
task of communication and are therefore freely available on all devices in a wireless network. Ideall
the measured distance order of reference nodes should be identical to the distance order based on
Euclidean distances. But this is not true in the real world as the RF signals are subjected to multi-pe
fading and noise. These non-ideal effects corrupt the location sequence measured by the unknown ne
For n reference nodes in the localization space, the possible number of combinations of distance ra
sequences i®(n"). However, we prove in this paper that the actual number of feasible location sequence
is much lower due to geometric constraints, o6lyn*). The lower dimensionality of the sequence table
enables the correction of errors in the measured sequence. This is one of the reasons our propc
sequence-based localization technique performs well despite channel errors.

The rest of the paper is organized as follows: We formally define location sequences in Section Il at
describe the procedure of localization using them in Section Ill. In the same section, we derive tt
maximum number of feasible location sequences, illustrate the construction of the location sequence tal
discuss the effect of RF channel non-idealities on unknown node location sequences and describe metric
measure “distance” distance between sequences. In Section IV, we describe localization procedures for
different application scenarios and show their robustness to RF channel random errors through examp
In Section V, we present an exhaustive systematic performance study of our localization technique
addition to conducting a comparative study with state-of-the-art localization techniques. We present t
evaluation of our technique in real mote experiments in Section VI and discuss related work in Section V
We conclude and discuss our future work in Section VIII.

[l. LOCATION SEQUENCES

In this section we define location sequences and illustrate them through examples.

Assume that a 2D localization space consists:afeference nodes. Consider any two reference nodes
and draw a perpendicular bisector to the line joining their locations. This perpendicular bisector divide
the localization space into three different regions that are distinguished by their proximity to either of th



reference node, as illustrated in Figure 1(a). Similarly, if perpendicular bisectors are drawnff%:ﬁll
pairs of reference nodes, they divide the localization space in to many regions of three different type:
vertices, edgeandfaces as shown in Figure 1(b). This subdivision of a 2D space into vertices, edges
and faces by a set of lines is anrangementnduced by that set [12].

Now, for each region created by the arrangement induced by the set of perpendicular bisectors, detern
the ordered sequence of reference nodes’ ranks based on their distances from them. We define this ord
sequence of distance ranks as lbeation sequence

Proposition1: The location sequence of a given region is unique to that region.

Proof: The proof is by contradiction. Assume that two different regions in the arrangement have th
same location sequence. This implies that the distance ranks of reference nodes are the same for bott
regions. This further implies that there is no bisector line that separates the two regions. The implicati
applies to all possible combinations of regions such as two faces, two edges, two vertices, a face anc
edge, an edge and a vertex and a face and a vertex, in their own different ways. Otherwise, if there v
a bisector line of two arbitrary reference nodes that separated the two regions then it would rank thc
reference nodes differently for the two regions. But this is a contradiction, as by definition, two differer
regions in the arrangement are separated by at least a single bisector line. [ |

Therefore, each region created by the arrangement has a unique location sequence. Further, we maks
following observations:

« All locations inside a region have the same location sequence.

. If each region in the arrangement is represented by its centroid, there is a one-to-one mappi
between a location sequence and the centroid of the region it represents. For a vertex, the centroit
the vertex itself; for an edge, the centroid is its midpoint and for a face, the centroid is the centroi
of the polygon that bounds it.

« The total number of unique location sequences is equal to the sum of the number of vertices, t
number of edges and the number of faces created by the arrangement in the localization space.

The order in which the ranks of reference nodes are written in a location sequence is determined
a pre-defined order of reference node IDs. We illustrate the above ideas through examples. Figure 2
shows the location sequences four different regions. In the example the pre-defined order of referer
node IDs is ABCD. Region 1 is a face and its location sequence is 1234, since the distance rank of
from it is 1 (A is the closest) and the respective distance ranks of B,C and D are 2,3 and 4 (D is tt
farthest). Similarly, for Region 3 the location sequence is 4321 as the distance rank of A is the farthe
(distance rank 4), D is the closest (distance rank 1) and B is closer than C and A. For Region 4, which i
vertex, the distance ranks of A,B and C,D are equal in pairs as it lies on the intersection of perpendicu
bisectors of those pairs of reference nodes. Also, the pair C,D is closer to it than the pair A,B. Therefol
its location sequence is 3311. Similarly, for Region 2, which is an edge, the distance ranks of A and
are the same and its location sequence is 1134. Figure 2(b) shows all feasible location sequences for
topology of reference nodes of Figure 2(a).

Next, we describe how location sequences can be used for localization.

[1l. L OCALIZATION USING LOCATION SEQUENCES

The procedure for localization of unknown nodes using location sequences is as follows:

1) Determine all feasible location sequences in the localization space and list thenoaaten
sequence table
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Fig. 2. (a) Examples of location sequences for a four reference node topology. (b) All feasible location sequences for the topology of (

2) Determine the location sequence of the unknown node location using received signal strength (RS
measurements of localization packets exchanged between itself and the reference nodes. The |
based location sequence will be a corrupted version of the original location sequence.

3) Search in the location sequence table for the “nearest” location sequence to the unknown na
location sequence. The centroid mapped to by that sequence is the location estimate of the unknc
node.

The above procedure opens itself to the following questions: How many feasible location sequences
there in a 2D localization space? How can we get them? How do random errors in RSS measureme
affect the unknown node location sequence? What is the meaning of “nearest” location sequence and |
do we measure distances between location sequences?

In the rest of this section we answer the above questions. We begin by determining the maximum numl
of feasible location sequences in the localization space.

A. Maximum Number of Location Sequences

For n reference nodes in the localization space, the number of possible combination sequences of dista
ranks isO(n"). However, we show that the actual number of feasible location sequences is much lowe
in the order ofO(n?) at worst.

As stated previously, the number of feasible location sequences is equal to the sum of the number
vertices, edges and faces created by the arrangement induced by the perpendicular bisectors of refer
nodes. Therefore, its upper bound can be obtained by determining the maximum number of such vertic
edges and faces, given the locations of the reference nodes. In [12], the authors show that the maxirr

number of vertices, edges and faces for an arrangement inducedifgs is ”("2‘1), n? and ”—22 +5+1

respectively. Using these results, f’éﬁfg—l) perpendicular bisectors of reference nodes,

1) The number of vertices is at mo@;-i S 7.

4 8
2) The number of edges is at mogt — » + =,
3) The number of faces is at mo&t — - % - T+ 1L

Owing to the properties of perpendicular bisectors, it is possible to derive tighter upper bounds on tl
number of vertices, edges and faces.



Theorem1: Let L be the set of bisector lines for reference nodes,L| = . Let A(L) be the
arrangement induced hb¥. Then,

1) The number of vertices afi(L) is at most— — + —2 -,
2) The number of edges of(L) is at most% — n? + 722 —n.
3) The number of faces afi(L) is at most?- — 2 4 ™2 _Tn 4

Proof: We make use of the property that the perpendlcular bisectors of the sides of a triang|
intersect at a single point. Assume that- 1) reference nodes have already been added, implying that
the localization space already h@é@ bisector lines. When thé” reference node is addef,— 1)
new bisector lines are added to the localization space.

Vertices The first of the(i — 1) bisector lines intersects the already present lines in at #ﬁ%ﬁﬂ new
vertices. The second new line is the perpendicular bisector of a side of the triangle in which the first ne
line is also a perpendicular bisector. Therefore, the second new line has to pass through at least on
the vertices created by the first new line, thus creating at rie8f~2 — 1 new vertices. Similarly the
third new line creates at mow — 2 new vertices. This is illustrated in Figure 3 far= 4. Finally

the (i — 1)"* new line creates at mow — (1 —2) new vertices. Therefore, the total number of new
vertices added by thé" reference node is at most

(—1@E—-2) (i—1)(i—2) (i—1)(1—2)
2 * 2 - 2 ST 2

(i —1)(i—2)
2

i ) @
)

=(i—1) —(1+24---+(GE—-2)=(i—

- ®)

The maximum number of vertices far= 3 is 1. Therefore, for reference nodes, the maximum number
of vertices is

1+Z(1—1);’—2)2—1+i[§—5§+4¢—2}—i{i—f+4@—2} (4)

-t - ©)

Edges As explained previously, the first new line intersects the already present lines in at‘migé 2)

vertices and creates at mo$t2=2 1 1 new edges on the new line and at m&stl~2 new edges

on the old lines which add up tg%ﬂ) -2 4 1 new edges at most. Since the second new line passes
through at least one of the vertices created by the first new line, it creates afiﬁ%é%f—) +1 new edges

on the second new line and it creates at m‘é*s]%“i — 1 new edges on the old lines including the first

new line. This adds up to at mow -2 new edges in the localization space. This trend is again
illustrated in Figure 3 for four reference nodes in the localization space. Finally; the )" new line
addsw -2 — (i —3) new edges to the localization space. Therefore, the total number of new edge
added by the' reference node is at most
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Fig. 3. Addition of fourth reference node adds3 new bisector lines to the localization space. (a) The first oBthew bisector lines, line

1, the perpendicular bisector 61D, creates3 new vertices (equal to the number of pre-existing lines in the localization spaoejy faces

and7 new edges at most. (b) The second line, linehe perpendicular bisector @D, has to pass through the intersection point of the
bisectors ofC'D and BC because{ BD,CD, BC'} form a triangle and the perpendicular bisectors of the three sides of a triangle intersect
at a single point. Therefore lin2 creates2 new vertices4 new faces and new edges at most. (¢) Similarly, lire the perpendicular
bisector of AD has to pass through the intersection points of perpendicular bisectot®pfBD and AC, CD as{AD,AB,BD} and

{AD, AC,CD} are two triangles with a common sidéD. Therefore, line3 createsl new vertex,4 new faces and new edges at most.

(i—1)(i—2) (i—1)(i—2) (i—1)(i—2) (i —1)(i —2) ,
5 241+ | 5 -2+ 5 214t 5 .2_(?_3) (6)
:2-(2'—1)(’_1)2(Z 2)+1—(1+2+--~+(z‘—3)):1+(z‘—1)2(z’—2)—(’_3)2(’_2) @

5 92 15
=it 4 (8)

The maximum number of edges far= 3 is 6. Therefore, forn reference nodes, the maximum number
of edges is

92 15 9% 15 4 n?
6+ > {i3—l+l—4}:§ [i3—;+22—4 Z%—TLS—‘F%—TL 9)
« :

Faces The number of new faces created by a new line is equal to the number of edges on the new lir
Therefore, the number of new faces created by the first new line among thé) new lines is at most

W + 1. Since the second new line has to pass through one of the intersection points of the fir

line, it would also creatéi_l)zﬂ + 1 new faces and this trend continues for all ftie- 1) new lines
as illustrated in Figure 3. Therefore, the total number of new faces added kY tleference node is at
most

(i—1) <<’_1)2(’_2) + 1> (10)

The localization space has one face whes 1. Therefore, form reference nodes the maximum number
of faces in the localization space is given by:

1+2”:(i_1)((i—1)(i—2)+1>:7#_51ﬁ+7n?_m+1 (11)



Corollary 1: The maximum number of unique location sequences duergference nodes i?; —2n° +
7n?
- —=2n+ 1.

2

Proof: The maximum number of unique location sequences is the sum of the maximum number
vertices, edges and faces duentoeference nodes, derived in Theorem 1.

24_7777/3_’_77”2_57” + n74_n3+77n2_n + ﬁ_@+@_7j+1 (12)
8 12 8 12 4 4 8 12 8 12
4 2
:%—2n3+%—2n+1 (13)

Next, we illustrate how to obtain all these feasible location sequences in the localization space and st
them in the location sequence table.
B. Location Sequence Table Construction

Below, we present the pseudo-code for an algorithm that constructs the location sequence table given
locations of the reference nodes and the boundaries of the localization space.

Algorithm 1: CONSTRUCTLOCATIONSEQUENCETABLE?®.
Input

1) Location coordinates of reference nodé&z;,ay;) | i =0 — n — 1}.
2) Boundaries of the localization spaége

Output Location Sequence Table.

0 L={l]i=0—("2Y 1)} « BiSECTORLINES({(az;,ay;) | i =0 — n — 1}, B)
1 (FL,EL,VL) < CONSTRUCTARRANGEMENT(L)
» Get vertex sequences.

2 fori—0to (|VL —1)

3  Centroid[i] « VL][i]

4  Sequenc@]| «— GETSEQUENCHCentroid|i])

5 end for

» Get edge sequences.

6 fori«— |VL|to ([VL|+|EL|l—1)

7  Centroid[i] <« GETEDGECENTROID(EL[i])

8  Sequenc@] «— GETSEQUENCHCentroid[i])

1C++ code files that construct the arrangement of lines and the location sequence table are available for download
http://anrg.usc.edu/downloads.html



9 end for

» Get face sequences.

10
11
12
13

for i — ([VL|+ |EL|) to ([VL|+ |EL|+ |FL|—1)
Centroid|[i] < GETFACECENTROID(F'L][i])
Sequenc@| «— GETSEQUENCHCentroid|:])

end for

» Return the location sequence table

14

return {Sequence Centroid }

BISECTORLINES takes in the locations of the reference nodes and the boundaries of the localizatio
space as input and returns the seatf all pair-wise perpendicular bisector lines within the boundaries
of the localization space. Each line is represented by the intersection points on the left and rig
boundaries of the localization space.

CONSTRUCTARRANGEMENT constructs the arrangement given a set of lines as input and returns :
doubly connected edge list that consists of a vertex list); an edge list £L) and a face listk'L).
Please refer to [12](Section 8.3) for a detailed description of this algorithm.

Vertex List, V' L: Contains pointers to all vertices of the arrangement induced by thg. set

Edge List, EL: Contains pointers to all edges of the arrangement induced by the set

Face List,F'L: Contains pointers to all faces of the arrangement induced by thg. set
GETEDGECENTROID takes in an edge pointer as the input and returns the centroid of the edge. Th
centroid of an edgéc,, ¢,) is its mid point given by:

(cw,cy) - (Ox_gdx70y;dy) (14)

where, (0,, 0,) and (d,, d,) are the origin and destination vertices of the edge.
GETFACECENTROID takes in a face pointer as the input and returns the centroid of the face. The
centroid of a fac€c,, ¢,), given its vertices{(z;,y;)|0 <1i < p — 1}, is calculated as follows:

—1
1
Cx _A Z Ti + Tig1)(TiYis1 — Tit1Yi) (15)

Cy 6A Z yz + yz—l—l)( TilYi+1 — xz-{—lyz) (16)

where,p is the number of vertices that bound a given face dnid its area given by

15
A B} Z(l’iyiﬂ — Ziy1¥i) 5 (Tps Yp) = (0, Yo) 17)

=0

GETSEQUENCEtakes in the coordinates of a point in the localization space and returns the locatio
sequence for that point with respect to the locations of the reference nodes.

Theorem2: Algorithm 1 takesO(n®log(n)) worst-case time and(n°) worst case space to construct
the location sequence table.



Number of| Number of|  Average Minimum Maximum Maximum
Reference| Bisector | Number of | Number of | Number of | Number of
Nodes Lines Location Location Location Location
(n) (@) Sequences| Sequences| Sequences| Sequences

(Simulations)| (Simulations)| (Simulations)| (Analytical)

3 3 12.3 7 13 13

4 6 44.0 23 49 49

5 10 117.3 51 141 141
6 15 274.8 217 331 331
7 21 548.4 441 653 673
8 28 988.6 840 1147 1233
9 36 1663.9 1447 1881 2089
10 45 2630.2 2321 2933 3331

TABLE |

PROGRESSION OF NUMBER OF LOCATION SEQUENCES WITH NUMBER OF REFERENCE NODES IN THE LOCALIZATION SPACE. THE
LAST TWO COLUMNS COMPARE THE SIMULATION AND ANALYTICAL RESULTS FOR THE MAXIMUM NUMBER OF LOCATION SEQUENCES
SIMULATION RESULTS ARE GATHERED FROM1000 RANDOM TRIALS (WITH 100 DIFFERENT RANDOM SEED$ IN EACH OF WHICH
REFERENCE NODES WERE PLACED UNIFORMLY AT RANDOM IN A SQUARE LOCALIZATION SPACE

Proof: The functionBISECTORLINES in line 0 takesO(n?) time and space. The algorith@on-
STRUCTARRANGEMENT that constructs the arrangement of lines tak&s*) time, which is optimal, as
proven in Theorems 8.5 and 8.6 of [12]. Since this algorithm returns the vertéxllighe edge listZ L and
the face listF'L, it requiresO(n?) space to store all the three lists. The functi®@sTFACECENTROID
and GETEDGECENTROID in lines 3 and 7 respectively tak@(1) time and space each. The function
GETSEQUENCE involves sortingn reference nodes based on their distances from the centroid of the
region in consideration. This takésn logn) time andO(n) space. Since the number of faces, edges and
vertices isO(n*) the worst case time requirement for lines 2-13 in the above algoritlitri$log (n)) and
the worst case space requiremen®is:”). Therefore, in total, Algorithm 1 take8(n’ log(n)) worst-case
time andO(n>) worst case space to construct the location sequence table. [

Table | compares simulation results for the number of location sequences obtained using the abc
algorithm with analytical values from Corollary 1. The simulation results are gathered @¥@random
trials (with 100 different random seeds) in each of whiehreference nodes were placed uniformly at
random in the localization space. From the last two columns of the table it can be seen that the simulat
results match the analytical results very closely. Note that for higher number of reference nodes t
probability of occurrence of the arrangement that would produce the maximum of location sequences
less thanl in 1000 i.e., 0.001. Also, for increasing number of reference nodes, the average number o
location sequences is increasingly smaller than the maximum number. Next, we discuss the effect of
channel random errors on the unknown node location sequence.

C. Unknown Node Location Sequence

The unknown node determines its location sequence using RSS measurements of RF localization pac
exchanged between itself and the reference nodes. The RSS measurements are subjected to random
due to RF channel non-idealities such as multi-path and shadowing. In the absence of such non-idealit
the RSS measurements accurately represent the distances between the unknown node and the refe
nodes. If reference nodes are ranked in a decreasing order of these RSS values then this order repre
the increasing order of their separation from the unknown node.
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This is not true in reality. Reference nodes that are farther from the unknown node might measure higt
RSS values than reference nodes that are closer. If the reference nodes are ranked on their respective
measurements, the location sequence formed by these ranks will be a corrupted version of the origi
sequence. Corruption in unknown node location sequence results in erroneous estimation of its locati
In the ideal case, when there is no corruption, the unknown node location would be the centroid of tl
region represented by its location sequence. However, corruption in its location sequence could erroneol
estimate its location to be the centroid of some other region.

For example, if the ranks of reference nodes C and D are interchanged because of corruption due to
channel non-idealities for Region 1 of Figure 2(a), the new location sequence wouldtbénstead of
1234. And 1243 represents a region that is adjacent to the original region as shown in Figure 2(b).

D. Feasible and Infeasible Sequences

As discussed previously, combinatorially,reference nodes produce(n™) location sequences. But as
shown in the previous section, a localization space witkference nodes has ony(n*) distinct regions

and consequently only)(n*) feasiblelocation sequences in the worst case. For given reference node
locations, the location sequence table includes all feasible location sequences. All other sequences
infeasible The non-idealities of the RF channel could corrupt a feasible location sequence either 1
another feasible sequence or an infeasible sequence as illustrated in Figure 4. If the corrupted seque
is infeasible, then it would be possible to detect the corruption in the sequence, whereas, if the corrup
sequence is feasible, corruption detection is not possible.

Here, we would like to emphasize the importance of low density of location sequences compared to t
full sequence space. The low density of location sequences implies that many infeasible sequences
mapped to a single feasible sequence and this in turn could provide robustness to location estimat
against RF channel non-idealities.

Sequence space of size O(n")

Corruption due to wireless
channel non-idealities

Space of infeasible
location sequences

Space of feasible
location sequences
(Size: O(n%)

Fig. 4. RF channel non-idealities could corrupt a location sequence from the feasible space either to another sequence in the feasible s
or to a sequence in the infeasible space.

Next, we present metrics to measure distance between two location sequences.

E. Distance Metrics

Given two location sequencés = {u;} andV = {v;}, 1 <i < n, wherew;’s andv;’s are the ranks of
reference nodes, we consider two metrics that measure the distance between them.
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1) Spearman’s Rank Order Correlation Coeffici¢hB]: It is defined as the linear correlation coefficient
of the ranks and is given by
16 > i (Wi — vi)?

n(n? —1)

2) Kendall’s Tau[13]: In contrast to Spearman’s coefficient in which the correlation of exact ranks is
calculated, this metric calculates the correlation between the relative ordering of ranks of the tw
sequences. It compares all tﬁ@;—l) possible pairs of ranksu;, v;) and (u;,v;) to determine the
number of matching and non-matching pairs. A pair is matching or concordant-ifu; = v; > v;
or u; < u; = v; < v; and non-matching or discordantdf > u; = v; < v; or u; < u; = v; > v,.

The correlation between the two sequences is calculated as follows:

p= (18)

_ (nc - nd)
Ve + ng + Npu/Ne + ng + Ny

where,n.. is the number of concordant pairs; is the number of discordant pairs,, is the number
of ties inu's andny, is the number of ties in’s.

T

(19)

The range of botlp and is [—1, 1]. Next, we describe the procedure to determine locations of unknown
nodes using their location sequences.

F. Location Determination

The location of the unknown node is determined as follows:

1) Calculate distances between the unknown node location sequence and all location sequences in
location sequence table using the above distance metrics.

2) Choose the centroid represented by the location sequence that is closest to the unknown ne
location sequence as its location estimate.

Mathematically,

LocationEstimate = Centroid(arg min ;) (20)
1<i<O(n#)

where, 7; is the Kendall’s Tau or Spearman’s correlation between the unknown node location sequen
and thei'" location sequence in the location sequence table.

Due to RF channel non-idealities, the unknown node location sequence could be a feasible seque
different from its uncorrupted version or an infeasible sequence. In any case, the above procedure m
it to the centroid of the nearest feasible location sequence in the location sequence table that repres
a different region in the arrangement than the original uncorrupted version.

We measure the amount of corruption in the unknown node location sequence by calculating its distar
from the uncorrupted version, using the above metrics, and denotdit YWe denote the distance between
the corrupted unknown node location sequence and the nearest feasible sequence in the location seqL
table byr.

Calculating the Spearman’s coefficient and Kendall's Tau between two sequenc@$rarand O(n?)
operations respectively. Since the location sequence table is ofCgiz€), searching through it takes
O(n®) and O(n®) operations respectively for the above two metrics. Later in the paper, in Section V
we compare the performance of the two distance metrics in terms of error in the unknown node locati
estimate.
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IV. LOCALIZATION SCENARIOS

In this section we illustrate two localization procedures for two different scenarios that are determined
the localization space size.

1) Entire localization space is within the radio range of the unknown ndadléhis case, the location
sequence table remains constant for all locations of the unknown node in the localization spac
Therefore, the localization procedure is as follows:

a) Pre-construct and store the location sequence table using the locations of the reference noc

b) When the unknown node initiates the localization process by broadcasting a localization packe

provide the stored location sequence table along with the RSS measurements from the referel
nodes.

¢) The unknown node determines its location sequence using the RSS measurements and de

mines its location by searching through the provided location sequence table for the neare
feasible location sequence.
Here, the time cost incurred by the unknown node to estimate its location is equal to the sum of t
time to determine its location sequence,@fn logn) operation, and the time to search through the
location sequence table,@(n%) operation. The amount of memory space required is of the order
of O(n°) bytes.

2) Localization space is much larger than the radio range of the unknown: hodeis case, the location
sequence table changes with the location of the unknown node as a different set of reference no
are encountered at each location. Therefore, the localization procedure is as follows:

a) The unknown node collects the locations and RSS measurements of the reference nodes in

radio range.

b) It constructs the location sequence table, using Algorithm 1, using the locations of the referent

nodes and calculates its location sequence using the RSS measurements.

c) It determines its location by searching for the nearest sequence in the location sequence tat
In this case, the time cost incurred by the unknown node to estimate its location is equal to tt
sum of the time to calculate its location sequence(dnlogn) operation, the time to construct
the location sequence table, arn®logn) operation, and the time to search through it)°)
operation. The memory requirement(@¥n®) in this case also.

A wireless device that is typically used as an unknown node is of the form factor of an IPAQ [14] (that ca
communicate with the reference node devices, usually of the form factor of Berkeley MICA 2 motes [15]
which typically has a 300MHz processor and 128MB of RAM . In real application scenarios, a typica
value for the number of reference node$ s less tharn5 after which there is only very marginal gain in

location accuracy of the unknown node. Therefore, for a typical value-efl0 reference nodes, the time

and space requirements for the unknown node to construct the location sequence table are approxime
0.3 milliseconds an®2 KB respectively. And the time required to search through it is approximately 0.45
milliseconds. Thus, including the associated overhead, the total localization time taken by sequence-ba
localization is in milliseconds in typical application scenarios, which is very efficient. Next, we illustrate
the robustness of our localization technique to RF channel non-idealities through some examples.

A. Examples

Figure 5 shows a sample layout of nine reference nodes placed in a grid and a single unknown nc
(P). Figure 5(a) plots the location estimate (E) for the ideal case when there are no erroneous rat
i.e., the location sequence is uncorruptedioe 1. In these examples we use Kendall's Tau to measure
the distance between sequences. Figures 5(b), 5(c) and 5(d) show the location estimates for increa:
corruption in unknown node location sequences. Even though the location estimate error increases v
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Fig. 5. Robustness exampldsocation estimate (E) for the unknown node (P) &t3) for a grid layout of 9 reference nodes. The number
adjacent to a reference node is its corresponding rank. The average inter-reference node digiddcené&ters. The location error is
expressed as a percentage of the average inter-reference node distante—=(d) ¢ = 1), Estimate (E):(1.33,1.33) , Location Error:

7.1% (b) (T" = 0.722, 7 = 0.783), Estimate (E):(2.0,2.0), Location Error:21.6% (c) (T' = 0.556, 7 = 0.667), Estimate (E):(2.0,2.0),
Location Error:21.6% (d) (I" = 0.111, 7 = 0.278), Estimate (E):(2.0,1.33), Location Error:29.8%

increasing corruption or decreasing correlatibnpetween the RSS location sequence and the true location
sequence of P, it is small compared to the average inter reference node disfeinese examples suggest
that sequence-based localization is robust to multi-path and shadowing effects of the RF channel up
some level. Intuitively, the three main reasons to which this robustness can be attributed to are:

1) The low densityO(n?), of location sequence space relative to the entire sequence spaxeof

2) The inherent redundancy of compariﬂ&;—l) rank pairs in calculating the distance between two
sequences using Kendall's Tau.

3) The rank order in the location sequence of the unknown node due to two reference nodes with R:
readingsR; and R; is robust to random errors in them up to a tolerance levelRof- R;|.

V. EVALUATION

In this section, we present a complete performance evaluation of sequence-based localization (SBL). Fi
we discuss its inherent location error characteristics and then using simulations, we study its performat
as a function of RF channel and node deployment parameters. We also present a comparative study
three other state-of-the-art localization techniques.

A. Location Error Characteristics

Each location sequence maps to the centroid of the region it represents. Representing all locations i
region by its centroid comes at the cost of error in the location estimate of the location sequence. If t
region is a face, then the location error is of the order of the square-root of the area of the face and
the region is an edge then it is of the order of the length of the edge. Figure 6 plots the average, aver:
maximum and average minimum face areas and edge lengths gathereth@veandom trials in each

of which n reference nodes were placed uniformly randomly in a square localization space 6f>sige

sqg. meters. The main error characteristics obtained from curve fitting can be summarized as follows:

« The average face area varies proportionaln%;o Since the location estimate error of locations in
a face region is proportional to the square-root of its area, the average location estimate error |
locations in a face region reduces proportionahto

2The average inter reference node distance is the average of distances between all pairs of reference nodes. The motivation to use tt
a reference distance is described in Section V.



14

35

A Avg. Max. Length
—u— K3/(n+1.5)

Avg. Length
©- gz.s 9

_A_‘Avg. Max. Area

—s= K1/n? 807

-©- Avg. Area
K2/n*

w
o
T

- Avg. Min. Length I

N;;257 - Avg. Min. Area || “u_)
S)

o X
=

&20r =

S >
<154 3
b )

g 2
%10t fi

5
Number of Reference Nodes (n) Number of Reference Nodes (n)

(@) (b)

Fig. 6. Simulation results averaged ov100 random trials (with100 different random seeds) in each of whighreference nodes were
placed uniformly at random in a 2D square localization are& af S sq. meters. (a) The average maximum, average and average minimum
face areas as a function of the number of reference nodes. (b) The average maximum, average and average minimum edge lengths
function of the number of reference noddsl, K2 and K3, K4 are scaling constants.

« The average maximum face area varies proportiong tdherefore, the maximum location estimate
error in a face region reduces proportionahtavhich is slower than the reduction in average location
estimate error.

. The average edge length varies proportionalﬁg. Since, the location estimate error for locations
on an edge is proportional to its length, the average location estimate error for locations on an ed
reduces proportional ta?° which is faster than that for locations in a face region.

« The maximum edge length varies proportional(—rgglﬁ). Therefore, the maximum location estimate
error for locations on an edge reduces proportional wehich is slower than the reduction of average
location estimate error.

Apart from the above location errors, the performance of sequence-based localization is affected by rand
errors in RSS measurements due to multi-path and shadowing effects of the RF channel. In the res:
this section, we present results from simulation studies that capture the effect of these random errors
the performance of SBL.

B. Simulation Model

The most widely used simulation model to generate RSS samples as a function of distance in RF chanr
is the log-normal shadowing model [16]:

d
Pr(d) = Pr — PL(dy) — 10nlogq T + X, (22)
0

where, Py, is the received signal poweF) is the transmit power an&L(d,) is path loss for a reference
distance ofd,. n is the path loss exponent and the random variation in RSS is expressed as a Gauss
random variable of zero mean and variance, X, = N(0, 0?). All powers are indBm and all distances
are in meters. In this model we do not provision separately for any obstructions like walls. If obstructior
are to be considered an extra constant needs to be subtracted from the right hand side of the above equ.
to account for the attenuation in them (the constant depends on the type and number of obstructions)
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C. Simulation Parameters

The location estimate of any RF-based localization technique depends on a fundamental set of parame
which can be broadly categorized into RF channel characteristics and node deployment parameters.

1) RF Channel Characteristics ( [17], [16])

a) Path loss exponent): Measures the power attenuation of RF signals relative to distance.
b) Standard deviationo(): Measures the standard deviation in RSS measurements due to log
normal shadowing.

The values of) ando change with the frequency of operation and the obstructions and disturbanc
in the environment.
2) Node Deployment Parameters
a) Number of reference nodes)(
b) Reference node density)

Table Il lists the typical values and ranges for different parameters used in our simulations.

| Parameter | Typical Value | Typical Range |
Pr 4dBm (max.) NA
PL(do) 55dB (do = 1m) [18] NA
n 4 (indoors) 1-71[17]
4 (outdoors)
o 7 (indoors) 2 - 14 [17]
4 (outdoors)
n 10 3-10
) 0.1 (one node in 10 sq.m) {0.01,0.04,0.1,1}
TABLE I

TYPICAL VALUES AND RANGES FOR DIFFERENT SIMULATION PARAMETERS

D. Simulation Procedure

We assume that all reference nodes are in radio range of each other and also that of the unknown nc
A 48 bit arithmetic linear congruential pseudo random number generator was used and results we
averaged ovet(00 random trials usind0 different random seeds. In each trialreference nodes were
placed uniformly randomly in a square localization space of SizeS sg. meters and the unknown node
was placed at00 different locations on a grid of% separation. In total, the results presented are averaged
over 10000 different scenarios.

The performance of sequence-based localization is measured in tetotawdn error for a wide range

of RF channel conditions and node deployment parameters. Location error is defined as the Euclide
distance between the location estimate and the actual location of the unknown node. The location er
is averaged ovet00 random trials as described previously and presented as a percentage of the avere
inter reference node distanc®/). D, is calculated as the average of the distances between all possible
reference node pairs. On an averagg, ~ § The motivation to usé), as the reference distance for
location error is that it provides a normalization with respect to the reference node density.

Figure 7 plots the two distance metrics described in the previous section as a function of the number
reference nodesj or in other words the length of the location sequence. There is a growing difference
however small, between the two metrics with increasing length of the sequence, with Kendall's Te
performing increasingly better than Spearman’s correlation in terms of the location estimate error.
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E. Simulation Results: Sequence Corruption

Figure 8 plots the corruption in location sequences, representedl, ue to RF channel and node
deployment parameters. According to these results, the corruption in location sequences

« increases with increasing randomness in the RF channel represented by standard deviation in R
o. (Figure 8(a))

. decreases with increasing path loss expongnfFigure 8(b))

« is independent of the number of reference nodes in the localization spa@eégure 8(c))

F. Simulation Results: Performance Study

Figure 9 plots the average location error due to SBL as a function of RF channel and node deployme
parameters. The main results are:

« Location error due to SBL is higher for RF channels with higher standard deviatipwajues
(Figure 9(a)). This is due to higher levels of corruption in location sequences at higher valwes of

« Location error due to SBL is lower for RF channels with higher path loss expomgnta{ues
(Figure 9(b)). This is due to lower levels of corruption in location sequences at higveues.
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« Location error due to SBL reduces with increasing number of reference nolissiggesting that
longer sequences are more robust to RF channel non-idealities than shorter sequences. (Figure ¢

« Location error due to SBL reduces with increasing reference node dehdiigure 9(b) shows that
it is constant withs, but the inter reference node distang reduces with increasing reference node
density.

« Location error due to SBL depends on the location of the unknown node. Figure 9(c) plots th
average location error for all possible unknown node locations in the localization space. It shows th
unknown node locations that are closer to the center of the localization space have lower locati
error than unknown node locations closer to the boundaries of the localization space. This can
verified from the observatiorEQ. Figure 1(b)) that for any arrangement of bisector lines, the faces
and edges towards the center of the localization space have smaller areas and lengths respecti
compared to that of at its boundaries. Consequently, for unknown node locations towards the centel
the localization space, the location to which the nearest feasible sequence of the corrupted seque
maps will be closer to the true location of the unknown node than for locations towards the boundarie
This results in lower location errors for unknown node locations towards the center of the localizatio
space than for locations towards its boundaries.

« Figure 10(a) plots average location error as a function of Kendall's Tau vdluasd = and Fig-
ure 10(b) plotsr as a function ofl". The figures suggest that:

— The location error is correlated B, the corruption due to RF channel.
— The location error is correlated tq the distance between the corrupted sequence and the neare:
feasible sequence.
— A correlation exists between andT'.
This suggests that,, which is a measurable quantity, as apposed,toould be used as a quantitative
indicator of the location error due to sequence-based localization. Also, owing to its correlation t
T, it could also be used as an approximate indicator of the state of the RF channel.

G. Simulation Results: Comparative Study

We compare SBL with three other localization techniquisast squares estimatoproximity localization
and 3-centroid

« Least Squares Estimatdt.SE): It is identical to the maximum likelihood location estimator ( [1],
[2]) and works as follows:
1) Measure the distance between each of the reference nodes and the unknown node using

s = 107 a0 (22)

where, d,,; is the measured distance amt}; is the mean received signal power between a
given reference nodeand the unknown node. Accurate distance measurement requires accura
estimation of the path loss exponen) ©f the environment. This requires expensive ranging
techniques and/or extensive pre-configuration surveys of the localization space.

2) For each grid point location in the localization space, determine the sum of the squares «
differences in the measured distances and the true Euclidean distances of all the referer
nodes from the grid point.

Se) = 3 (A = dpyi)? (23)

Where,dg””’y) is the Euclidean distance between the grid locatieny) and the reference node
i
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3) Choose the grid point location with the least value of the above S, as the location of
the unknown node. In our study, we consider a grid resolution thei(igimes higher than the
dimensions of the localization spades., for a S x S sg. meters localization space, we search
10000 grid points with a separation qﬁ—o meters between them, to determine the location of
the unknown node.

« Proximity Localization The location of the closest reference node by RSS value is chosen as th
location of the unknown node. This is an extreme special case of SBL in which the sequence is
length 1.

« 3-Centroid The centroid of all the reference nodes in the radio range of the unknown node is chose
as its location ( [7]). Since, in our case, all reference nodes are in the radio range of the unknov
node the location error would be independent of the RF channel characteristics. In order to meas
the effect of these characteristics on the centroid technique we choose the centroid of the clos
three reference nodes by RSS values as the location of the unknown node.

Figure 11 plots the average location error due to SBL, LSE, Proximity and 3-Centroid as a function ¢
the standard deviation in RSS log-normal distributiofor different values of path loss exponentsand
for different values of number of reference nodesThe main results of the comparison are:

« SBL performs better than Proximity and 3-Centroid over a range of RF channel and node deployme
parameters.

« SBL performs better than LSE for higher valuesogfwhereas LSE performs better than SBL for
lower values ofo. There is a crossover value ofbetween the error due to SBL and LSE and this
value of o is higher for environments that have more attenuatien higher values of path loss

exponentn. There is no significant change in the value of crossavevith changing number of
reference nodes.
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« For lower values ofr, the location error due to SBL decreases faster than location error due to LSE
for increasing values of. This can be seen in Figures 11(a)(b)(c) in which the difference between
the location error due to SBL and LSE reduces with increasing values of

« LSE is out performed by all other localization techniques after some valueaod this value is the
lowest for SBL.

It should be noted that, in the above simulations LSE operates at a considerable advantage over o
techniques as the exact value of the path loss expopenknown. This advantage vanishes in real world
scenarios where the value ofis very difficult to estimate accurately owing to its dependence on the area
features such as walls, furniture, etc. Thus, LSE may not perform as well in real world scenarios.

VI. REAL WORLD EXPERIMENTS

The performance of sequence based localization in real systems is studied through two experimel
representing different RF channel and node deployment parameters, conducted using Berkeley MIC/
motes [15]. The first experiment was conducted in a parking lot which represents a relatively obstructic
free RF channel and the second experiment was conducted in an office building with many rooms a
furniture that represents a typical indoor environment. For comparison, the locations of the unknown noc
were also estimated using the three localization techniquesst squares estimator (LSE), proximity
localization, 3-centroid- described in the previous Section.

A. Outdoor Experiment: Parking lot

The RF channel in an outdoor parking lot represents a class of relatively obstruction free channels. Ele\
MICA 2 motes were placed randomly on the ground as shown in Figure 12. All motes were in line o
sight of each other and all of them were programmed to broadcast a single packet without interferit
with each othet. The motes recorded the RSS values of the received packets and stored them in th
EEPROMs which were later used off-line for location estimation.

The locations of all the motes were estimated and compared with their true locations. Since all mot
were in radio range of each other each mote had ten reference nodes. For the LSE method, to estin
the distances between the motes, the RSS model described by Equation 21 in Section V-B was uset
there were no obstructions between motes in this experiment. The performance of the LSE technic
depends on the value of the path loss expongrior the area in which the experiment was conducted.
For this experiment we used the true distances and the corresponding RSS values between the refer
nodes and the unknown node to estimate the valug &figure 12(a) plots RSS values as a function of
distance. Linear regression analysis applied to the RSS vs distance data gives its slope as -2.9, imply
thatn = 2.9. We used this value of to evaluate the LSE technique.

Figure 12(b) compares the true mote locations with SBL location estimates for all the motes. The Figu
also shows the arrangement induced by the perpendicular bisectors between all pairs of reference no
Figure 12(c) plots the error at each mote location as a percentage of the average inter-reference nc
distance D, ), due to all the four techniques. Evidently, SBL performs better than Proximity and 3-Centroic
in ten out of eleven cases and it performs better than LSE in all the eleven cases.

Figure 12(d) plots the sequence corruptidr) @t each mote location and the distaneg ljetween the
corrupted sequence and the nearest feasible sequence in the location sequence table for all the 11 n

3We had actually measured RSS of 100 packets in one minute and observed that their standard deviation wa$ éBthalherefore,
we decided to use only a single packet for localization. In real application scenarios this would help in conserving energy at the mote &
reducing the delay in localization without affecting its accuracy.
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Fig. 12. Outdoor experimentl1 MICA 2 motes, placed randomly in a 144 sq.meters area, were used as reference nodes as well as unknov
nodes. Consequently, each unknown node hadeference nodeslf, = 6.36 meters). (a) Path loss exponent calculatign= 2.9. (b)
Comparison between true locations and SBL location estimates. (c) Location error due to SBL, LSE, Proximity and 3-Centroid (the nod
are ordered in increasing error of SBL). (d) Corruption meadum@nd error indicator-.

The correlation betweeff’ and = can be clearly seen from the Figure. Comparing Figure 12(c) and
Figure 12(d), broad correlations betwe®&nand location error and betweenand location error can be
observed for SBL. For example, the location error is highest for nodellBsd 9, in that order, and-

is the lowest for the same node IDs in the same order. Also, the location error is almost equal for nod
8,2,7 and 10. This trend is also reflected in the values fur those nodes.

B. Indoor Experiment: Office building

Office buildings with features such as rooms, corridors, furniture and other obstructions represent a distil
class of RF channels. Twelve MICA 2 motes (reference nodes) were placed on the ground randomly ir
corner of the Electrical Engineering building at USC spanning different rooms and corridors. Figure 1
shows a schematic of the experimental setup. In this experiment, an unknown node was placed at 1
different locations and these locations were estimated using all the twelve motes as reference nodes.
in the outdoor experiment, the unknown node was programmed to broadcast a single packet from e
location and the reference nodes recorded the RSS values of this packet in their respective EEPRC
which were later used off-line for location estimation.
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Unlike in the outdoor experiment not all motes were in line of sight of each other even though they wel
in each other’s radio range. A subset of the motes had obstructions in between them in the form of wal
As for the outdoor experiment, for the LSE method, the valug wias calculated using linear regression
analysis for RSS vs. distance values between the reference nodes and the unknown node. Figure 1
shows the data. In this case, the valuejag 2.2.

Figure 13(b) compares the SBL location estimates of the five unknown node locations with their tru
locations. It can be seen that the path of the location estimates closely follows the true path of tl
unknown node. Figure 13(c) plots the location estimate error due to SBL, LSE, Proximity and 3-Centro
techniques for each unknown node location. It can be observed that SBL performs better than LSE &
3-centroid in four out of the five cases and better than Proximity in two out of five cases. A possibl
reason why proximity is performing well is the relatively dense distribution of the reference nodes.

Figure 13(d) plots the sequence corruptidr) @t each mote location and the distaneg ljetween the
corrupted sequence and the nearest feasible sequence in the location sequence table for all the 5 unkr
node locations. Comparing this Figure and Figure 12(d) shows that sequences are more corrupted in
indoor experiment than the outdoor experiment, which was expected. Also, as in the outdoor experim
there is a clear correlation betwe&nhandr for the indoor experiment also. But the correlations between
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T and location error and betweenand location error are not as clear as that in the outdoor experiment.

C. Discussion

Experimental results show that localization techniques are more accurate for relatively clutter free F
channel environments (outdoors with line of sight) than RF channels with many obstructions (indoc
environment). Also, the performance of LSE in real world scenarios is worse than in simulations, &
was conjectured in Section V-G. This is mainly because the radio propagation model of Equation -
is an approximate model and the location estimate accuracy for the LSE technique depends heavily
the accuracy of) estimate. The RSS measurements in the experiments depend on antenna orientatio
antenna height and transmitter/receiver non-determinism. For simulations, these issues can be captt
within the log-normal random term in Equation 21.

VIl. RELATED WORK

In an earlier work [19], we presented a novel localization algorithm catlealocationthat usedocation
constraintsfor robust localization. A location constraint is a relationship between the distances of twc
reference nodes from the unknown node that determines its proximity to either of the reference nod
as shown in Figure 1(a). Location constraints can be graphically represented by perpendicular bisect
between reference nodes (Section 1) and each location sequence can be written as a set of loca
constraints. Thus, the location constraint set is also unique to each region in the arrangement.

In this localization algorithm, the unknown node determines its set of location constraints using RS
measurements and estimates its location by searching through grid points in the localization space
determine the grid point with the highest number of matched location constraints. In [19] we show th:
this is aO(”f;EQ) time operation, where5 is the side of the square localization space ant the
resolution of grid points. Thus, the localization algorithm using location constraints is dependent on tf
localization space size, the resolution of the grid points and the number of reference nodes. In contre
the localization algorithm using location sequences which depends only on the number of reference noc
albeit at higher time cost ab(n°) . In fact, constraint based localization results tend to sequence-baset
localization ones for very high values of grid point resolutianThe cost differences suggest that, for
smaller localization spaces and lower location accuracy requirements, constraint based localization is be
compared to sequence-based one, whereas, the reverse is true for bigger localization spaces and h
location accuracy requirements.

In related works, Chakrabarst alin [9] and Rayet alin [10] use identity codes to determine the location
of sensor nodes in grid and non-grid sensor fields respectively. In this, each grid point or region in tt
localization space is identified by a unique set of reference node IDs whose signals can reach the pc
or region and this unique set is an identity-code for that point or region. The two main drawbacks of th
approach are that (i) in order to uniquely identify all unknown node locations in the localization space tf
reference nodes need to be placed carefully according to rules determined by an optimization algoritl
(i) and that for acceptable location accuracies, the number of reference nodes required is prohibitive
expensive and for sparse networks of reference nodes the accuracy is coarse-grained, in the orde
radio range. For example, the number of reference nodes required to uniquely identify the location of
unknown node using identity-codes ¥ p™), wherem is the number of dimensions of the localization
space ang is the number of grid points per dimension [9].

In another related work, authors in [6] propose a RF-based localization technique in which the unknov
node location is determined by the intersection of all triangles, formed by reference nodes, that are like
to bound it. The unknown node determines its existence inside a triangle by comparing its measured R
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values to that of its neighbors to detect a trend in RSS values in any particular direction. This techniq
depends on the weak assumption that signal strength decreases monotonically with distance, which is
true in real world scenarios.

VIIl. CONCLUSION AND FUTURE WORK

In this paper we presented a simple and novel localization technique based on location sequences ce
Sequence-Based Localization (SBL). In Sequence Based Localization location sequences are uset
uniquely identify distinct regions in the localization space. The location of the unknown node is estimate
by first determining its location sequence using RSS measurements of RF signals between the unknc
node and the reference nodes. And then searching through a pre-determined list of all feasible locat
sequences in the localization space, called the location sequence table, to find the region represented b
“nearest” one. In this chapter, we derived expressions for the maximum number of location sequence &
presented an algorithm to construct the location sequence table. We described distance metrics that mee
the distance between location sequences and used them to determine the corruption in location seque
due to RF channel non-idealities. We identified an approximate indicator of the extent of location estimatic
error using the same distance metrics. Through examples we demonstrated the robustness of seque
based localization to RF channel non-idealities. Through exhaustive simulations and systematic real m
experiments we evaluated the performance of our localization system and presented a comparison \
other state-of-the-art localization techniques for different RF channel and node deployment paramete
Results showed that SBL performs well and better than other state-of-the-art localization techniques
both indoor and outdoor environments.

As part of future work we would like to incorporate location probability into the location sequence table
Owing to the features and topology of objects and obstructions in the localization space, unknown noc
are more likely to be in some locations than others. This could be incorporated into sequence-bas
localization by weighing feasible location sequences in the location sequence table in proportion to t
location likelihoods of the regions they represent.

ACKNOWLEDGMENTS

We wish to thank Abtin Keshavarzian of Bosch Research, Palo Alto, CA and Prof. Isaac Cohen of US
CS Department for valuable discussions on the subject.

REFERENCES

[1] N. Patwari and A. H. Ill, “Using Proximity and Quantized RSS for Sensor Localization in Wireless NetworR&/SNA San Diego,
CA, September 2003.

[2] K. Yedavalli, “Location Determination Using IEEE 802.lIb,” Master’s thesis, The University of Colorado at Boulder, December 2002.

[3] A. Savvides, H. Park, and M. Srivastava, “The Bits and Flops of the N-hop Multilateration Primitive For Node Localization Problems,’
in WSNA Atlanta, Georgia, September 2002.

[4] A. Savvides, C. Han, and M. Srivastava, “Dynamic Fine Grained Localization in Ad-Hoc Sensor Networksgceedings of the
Fifth International Conference on Mobile Computing and Networking, Mobicom ,2R0fne, Italy, July 2001, pp. 166-179.

[5] N. B. Priyantha, A. Chakraborty, and H. Balakrishnan, “The Cricket Location-Support SysterACh MOBICOM Boston, MA,
August 2000.

[6] T. He, B. B. C. Huang, J. Stankovic, and T. Abdelzaher, “Range-Free Localization Schemes for Large Scale Sensor Networks,”
Mobicom San Diego, CA, September 2003.

[7]1 N.Bulusu, J. Heidemann, and D. Estrin, “Gps-less low-cost outdoor localization for very small deltes Personal Communications
Magazing October 2000.

[8] Victor Bahl and V. N. Padmanabhan, “RADAR: An In-Building RF-Based User Location and Tracking SystelBEEINFOCOM
Tel Aviv, Israel, 2000.

[9] Krishnendu Chakrabarty and S. Sitharama lyengar and Hairong Qi and Eungchun Cho, “Grid Coverage for Surveillance and Tart
Location in Distributed Sensor NetworkdEEE Transactions on Computergol. 51, no. 12, pp. 1448-1453, December 2002.



[10]

[11]

[12]
[13]

[14]
[15]
[16]
[17]
[18]

[19]

25

S. Ray, D. Starobinski, A. Trachtenberg, and R. Ungrangsi, “Robust Location Detection with Sensor Netif#kks,JSAC Special
Issue on Fundamental Performance Limits of Wireless Sensor Netwalk®2, no. 6, pp. 1016-1025, August 2004.

M. Maroti, P. Volgyesi, S. Dora, B. Kusy, A. Nadas, A. Ledeczi, G. Balogh, and K. Molnar, “Radio interferometric geolocation,” in
SenSys '05: Proceedings of the 3rd international conference on Embedded networked sensor syétemsork, NY, USA: ACM
Press, 2005, pp. 1-12.

M. de Berg, M. van Krevald, M. Overmars, and O. Schwarzképdmputational Geometry - Algorithms and Applications, Second
Edition, 2nd ed. Springer, 2000.

W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterlgmerical Recipes in C: The Art of Scientific Computigd ed.
Cambridge University Press, 1992.

http://welcome.hp.com/country/us/en/prodserv/handheld.html

http://www.xbow.com/Products/productsdetails.aspx?sid=72

T. S. RappaportWireless Communications, Principles & PracticePrentice Hall, 1999.

H. Hashemi, “The indoor radio propagation channel,Proceedings of the IEEE/ol. 81, no. 7. |EEE, July 1993, pp. 943-968.
Marco Zuniga and Bhaskar Krishnamachari, “Analyzing the Transitional Region in Low Power Wireless LinkSifsinlEEE
International Conference on Sensor and Ad hoc Communications and Networks (SE€DN) Clara, CA, October 2004.

K. Yedavalli, B. Krishnamachari, S. Ravula, and B. Srinivasan, “Ecolocation: A Sequence Based Technique for RF Localization i
Wireless Sensor Networks,” ifihe Fourth International Conference on Information Processing in Sensor Networks (IPSN ROS5)
Angeles, CA, April 2005.



