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ABSTRACT

In recent years different authors have proposed the used
of random-walk-based algorithms for varying tasks in the
networking community. These proposals include searching,
routing, self-stabilization, and query processing in wireless
networks, peer-to-peer networks and other distributed sys-
tems. This approach is gaining popularity because random
walks present locality, simplicity, low-overhead and inher-
ent robustness to structural changes. In this work we pro-
pose and investigate an enhanced algorithm that we refer
to as random walks with choice, in which at each step, in-
stead of selecting just one neighbor, the walk moves to the
next node after examining a small number of neighbors sam-
pled at random. Our empirical results on random geometric
graphs, the model best suited for wireless networks, suggest
a significant improvement in important metrics such as the
cover time and load-balancing properties of random walks.
To obtain more robust and systematic results, we investi-
gate random walks with choice on networks with a square
grid topology. For this case, our simulations indicate that
there is an unbounded improvement in cover time even with
a choice of only two neighbors. We also observe a large re-
duction in the variance of the cover time, and a significant
improvement in visit load balancing.

1. INTRODUCTION

A random walk on a graph is the process of visiting the
nodes of the graph in some sequential random order. The
walk starts at some fixed node, and at each step it moves
to a neighbor of the current node chosen randomly. The
random walk is called simple when the next node is chosen
uniformly at random from the set of neighbors. In a net-
working context, random walks result when messages are
sent at random from device to device. Since this process
presents locality, simplicity, low-overhead and robustness
to structural changes, applications based on random walk
techniques are becoming more and more popular in the net-
working community. In recent years different authors have
proposed the used of random walk for querying/searching,

routing, self-stabilization in wireless networks, peer-to-peer
networks, and other distributed systems [12, 28, 8, 27, 5, 15,
1].

For example, for a query processing task in wireless sen-
sor networks, a base station can issue a query with some
description, such as “return the maximum temperature in
the network”. The token then takes a random walk in the
network and updates its answer at each node; after visiting
enough nodes, or after enough time, the query trace its way
back to the base station with the answer.

One of the main reasons that random walk techniques are
so appealing for networking application is their robustness
to dynamics. Many wireless and mobile networks are sub-
ject to dramatic structural changes created by sleep modes,
channel fluctuations, mobility, device failures, and other fac-
tors. Thus, topology driven algorithms are at a disadvantage
for such networks as they need to maintain data structures
(e.g. pointers to cluster heads, routing tables and spanning
trees) and so have to handle recovery mechanisms for crit-
ical points of failure (e.g. cluster heads, nodes close to the
root in a spanning tree). Consequently, algorithms that re-
quire no knowledge of network topology, such as the random
walk, are at an advantage. In random walks there are no
critical points of failure; on the contrary, all the nodes are
equally unimportant at all times so long as the probability
of a node failing during the short time it holds the message
is considered negligible.

While at first glance, the process of a token wondering ran-
domly in the network may seem overly simplistic and highly
inefficient, many encouraging results that proves its com-
parability with other approaches have been obtain over the
years. Two basic properties of random walk need to be
evaluated in order to bound the efficiency of this approach:
cover time and partial cover time. The cover time Cg of
a graph G is the expected time taken by a simple random
walk to visit all nodes in G and the partial cover Cg(c) is
the expected time to visit a constant fraction ¢ of the nodes.
These properties are relevant to a wide range of algorith-
mic applications [17, 31, 20, 5, 15], and various methods of
bounding the cover time of graphs have been thoroughly in-
vestigated [4, 22, 3, 10, 9, 32]. Several bounds on the cover
time of random walks on different classes of graphs have
been obtained with many positive results [10, 9, 18, 19, 11].

One such example are random geometric graphs, which are



most suitable for modeling wireless networks. A random
geometric graph is a graph G(n,r) resulting from placing n
points uniformly at random on the unit square and connect-
ing two points iff their Euclidean distance is at most r. In
the last few years random geometric graphs have been used
as a fundamental model for randomly-deployed wireless ad-
hoc and sensor networks. Recently it has been proven that,
when 7 = O(7con) then w.h.p.t G(n,r) has optimal cover
time of O(nlogn) and optimal partial cover time of O(n)

logn

°£%) is the critical radius to

[6] where Tcon growing as O(

guarantee connectivity w.h.p.

Improving the cover time without losing the locality, sim-
plicity and robustness of the random walk is an important
goal that is directly related to the performance and energy
usage of a random-walk-based query mechanism. There are
other properties of the walk also that need to be addressed
in order to improve overall application performance. One is
reducing the variance of cover time (i.e. preventing queries
that take a very long time), and another is balancing the
load on the nodes (i.e. number of visits) by the time of
cover, which will increase the system lifetime, in case of
battery-constrained wireless sensor networks. In this paper,
we take a step in this direction by offering and investigating
a new way to improve upon these desire properties by com-
bining random walks with a probabilistic tool known as the
power of choice.

The essential idea behind the power of choice is to make
some decision process more efficient by selecting the best
among a small number of randomly generated alternatives.
The most basic results about the power of choice are as fol-
lows: suppose one throws n balls into n bins one by one,
where at each time the next bin is chosen independently
and uniformly at random. It is well known that the most
loaded bin at the end of the process will have about log’lgogn
balls w.h.p. [24]. Consider the following change to the above
scheme involving choice. At each step, instead of one bin, we
choose a constant d > 2 bins independently and uniformly
and put the ball in the bin with the minimum number of
balls. In a somewhat-surprising result by Azar et al. [7],
it has been shown that with this change, the most loaded
bin will have lolgolgfl" + O(1) balls with high probability. So
with only a little more work a each step, (choosing two bins
instead of one) we see a large improvement. Notice that
increasing d farther yields only a constant factor improve-
ment giving diminishing returns. Since it was first offered,
the idea of the power of choice has spread in different di-
rections with new results and applications to hashing, load
balancing in distributed systems and low-congestion rout-
ing, among others [23].

In this work we propose (for the first time, to our knowledge)
to combine the power of choice with random walks. We in-
troduce the Random Walk with Choice, RWC(d), in which,
instead of selecting one neighbor at each step, the walk se-
lects d neighbors uniformly at random and then chooses to
steps to the least visited node among them (a related mod-
ification to random walks called Vertez-Reinforced Random
Walks, VRRW, was proposed in [25, 30] and studied outside

'Event &, occurs with high probability (w.h.p.) if probabil-
ity P(&,) is such that lim, . P(&n) = 1.

of the context of cover time. In VRRW the walk prefers
the most visited nodes, without choice.). Note that simple
random walk with choice consumes a bit more memory and
more energy (communication) at each step. This is because
we need to keep track of visits at each node and need to con-
sider and choose between d nodes at each step. The question
we wish to explore is whether there will be some substantial
gain from making this change.

For the complete graph (which resembles the balls-in-bins),
the analytical result shows that the cover time of RWC(d)
will be reduced by a factor of d. For general graphs the
lack of the Markov property? suggest that the analytical
results may be harder to obtain. In the current work we
therefore turn to a simulation-based study of the behavior
of the random walk with choice. Our results demonstrate
the power that comes with choice. We observe a consistent
improvement in the cover time, cover time distribution and
the load balancing at cover time for different graphs and
different sizes. A surprising result is that, for 2-dimensional
square grid networks, choice seems to improve the cover time
and the load on the most visited node by an unbounded
factor. Specifically, the cover time of the n nodes mesh is
known to be ©(nlog?n), our simulations shows that with
d = 2 random walk with choice has lower cover time than the
simple random walk on the hyper-cube that is known to have
optimal cover time of ©(nlogn). We also find improvements
in the variance of the cover time, and load balancing of visits.

The rest of the paper is organized as follows: Section 2 gives
background and formal definitions. Section 3 presents the
RWC(C(d) and proves results for the complete graph. In sec-
tion 4 we describe the simulation details and discuss the
metrics of interest. Section 5, 6 and 7 and presents the re-
sults for various graph models. We present our conclusions
in Section 8.

2. BACKGROUND AND PRELIMINARIES

2.1 Cover Time and Partial Cover

Let G(V, E) be an undirected graph with V' the set of nodes
and F the set of edges. Let n = |V| and m = |E|. Forv € V
let N(v) = {u € V| (vu) € E} the set of neighbors of v and
0(v) = |N(v)| the degree of v. A §-regular graph is a graph
in which the degree of all the nodes is §.

A Random Walk is the process of visiting the nodes of a
graph G(V, E) in some sequential random order. The walk
starts at some fixed node, and at each step it moves to a
neighbor of the current node chosen randomly according to
an arbitrary distribution. The simple random walk, SRW, is
a walk where the next node is chosen uniformly at random
from the set of neighbors. That is when walk is at the v the
probability to move in the next step to u is P(v,u) = +*

3(v)
for (v,u) € E and 0 otherwise.

The cover time Cg of a graph G is the expected time taken
by a simple random walk on G to visit all nodes in G. For-
mally, for v € V let C, be the expected number of steps for
the simple random walk starting at v to visit all the nodes

2In the simple random walk the next step is independent of
past steps, in the random walk with choice this is not the
case.



in G, and the cover time of GG is C¢ = max, C,. The cover
time of graphs and methods of bounding it have been ex-
tensively investigated [22, 3, 10, 9, 32, 4]. Results for the
cover time of specific graphs vary from the optimal cover
time of ©(nlogn) associate with the complete graph to the
worst case of ©(n?) associate with the lollipop graph [14,
13]. The known best cases correspond to dense, highly con-
nected graphs, on the other end when connectivity decreases
and bottlenecks exist in the graph, the cover time increases.
In this paper we consider three types of graphs:

1. meshes: G2 - the 2 dimensional mesh (i.e. grid on
the torus) of size n. Its is known to have non-optimal
cover time of ©(nlog?n) [10].

2. hyper-cubs: H, - the hyper-cube which is the d-
dimensional mesh of size n with d = log,(n). H, is
known to have an optimal cover time [24].

3. random geometric graphs: G(n,r) - for r > v/8rcon
G(n,r) has optimal cover time w.h.p. [6].

The partial cover time [5] is the expected time taken by a
random walk to visit a constant fraction of the nodes and
is define formally as follow: For 0 < ¢ < 1, let Cg(c) be
the expected time taken by a simple random walk on G to
visit |cn] of the nodes of G. Let Hy, be the hitting time,
the expected time for a random walk starting at u to arrive
to v for the first time and let Hyax be the maximum Hay,
over all ordered pairs of nodes. In [5] it was proven that for
any graph G, and 0 < ¢ < 1 we have Cg(c) = O(Hmax)-
This implies the following interesting results: for graphs in
which Hpnax = n, the partial cover becomes linear in n and
we consider it to be optimal partial cover; known graphs of
this type are the complete graph, the star, the hyper-cube,
the 3-dimensional mesh and random geometric graph which
have been added to this list recently. On the other hand,
for the 2-dimensional mesh, the maximum hitting time is
O(nlogn) [32] so partial cover becomes O(nlogn).

Note that the analytical results about cover and partial are
about the expected time. Less is known about the distri-
bution of the cover time, but it been observed that random
walk based algorithm usually have “heavy tailed” distribu-
tion, meaning that with non-negligible probability we should
expect some very long cover times [16].

2.2 Load Balancing and the Stationary Distri-

bution

The probabilistic rules by which a random walk operates
are defined by the corresponding Markov chain. Let 9 be a
Markov chain over state space ) and probability transition
matrix P (i.e. P(z,y) is the probability to move from z
at time ¢ to y at time ¢ + 1). In such terms, the stationary
distribution of 9, if such exists, is then defined as the unique
probability vector 7 such that

P =7

It is well known that the simple random walk 9t = (€2, P)
over a connected graph G = (V, E) has a stationary distri-

bution 7 such that, for any node ¢ € V [21],
5(q)

= —= 1
n(g) = AL 1)
Further, when the underlying graph G is ¢ regular, the sta-
tionary distribution is the uniform distribution [21]
0 1
=—=-VYqeQ
mq) =5 = V¢

where n = |Q] = |V].

At stationary distribution, it is clear that the random walk
has optimal load-balancing qualities for regular graphs G.
Similarly, it is clear that the faster the random walk on a
regular graph converges to stationarity, the greater its load-
balancing qualities. The efficiency with which a random
walk of 91 may be used to sample over state space {2 with
respect to stationary distribution 7 is precisely given by the
rate at which the distribution of the states at time ¢ con-
verges to m as t — oo. In order to speak of convergence of
probabilities, one must have a notion of distance over time.
Let x be the state at time ¢t = 0 and denote by P*(z,-) the
distribution of the states at time ¢. The variation distance
at time ¢t with respect to the initial state x is defined to be
[29, 26]

Au(t) = max | P (@, 8) = 7(8)| = 5 3 [P'(a,9) = 7()|

ISy

Here we will be using the variation distance at time of cover
to evaluate the load balancing of the random walk. In gen-
eral the variation distance is used to determine the mizing
time (i.e. the time in which the chain is e close to station-
ary) of the chain and if the chain is rapidly mizing, namely
the mixing time is O(poly(logn)).

3. RANDOM WALKS WITH CHOICE

The balls in bins scenario can be described as a random
walk on the complete graph K, (with the addition of one
self-loop for each node). The most loaded bin correspond to
the most visited node after n steps of the walk. The idea
we set to investigate here is to generalize choice at each step
to random walks on arbitrary graphs. Formally we define
the Random Walk with d Choice RWC(d) as the following
process: let c'(v) be the number of visits to v up to time
t. When the walk reaches v at time t it does the following;:

RWC(d) at node v, at time ¢

1. Select d nodes from N (v) independently and uniformly
at random (with replacement).

t+1
2. Step to node u that minimizes < é(u()“)

(break ties in
an arbitrary way).

Few remarks are in place: If the graph is regular, the walk
steps to the least visited node; if not, the walk steps to the
node that is farther a way from its stationary distribution
m(u). Clearly for d = 1 this is the simple random walk. For



d > 1 the Markov property doesn’t hold anymore since the
current step depends on past steps.

The last property is what seems to make the analytical re-
sults harder to obtain. We can regain the Markov property
by changing the state space to one in which each state is a
vector of size n + 1 that holds the number of visits at time
t for each node and the current node. This is a direction
we have been following to prove theoretical results similar
in flavor to those obtained for the balls in bins problem, but
it is still challenging. In this work, we will focus, instead, on
providing some preliminary observations obtained through
careful simulations.

Our overall goal, as mentioned above, is to use choice in or-
der to reduce the cover time and to obtain better load bal-
ancing. At first it may not be clear that choice will have any
asymptotic affect on the cover time. The complete graph is
easy to analyze, and we can show a constant factor improve-
ment in this case. Let C3 denote the cover time of algorithm
A on the graph G.

LEMMA 1. For a constant d > 2 and the complete graph

K, (with self-loops) the cover time Cﬁ‘:/c(d) 18

RWC(d) Cv
A )

n.—1

Proor. Let h,, be the harmonic sum h, = 1t =~

logn. It is well known that CISQ}LW = nhyp—1. For simplicity

we present the case of d = 2 and we will follow the proof

for the simple random walk, SRW, from [2]. Let C™ be the

first time at which m distinct nodes have been covered. For

each step after time C™ we will step to a visited node with

probability (2)* (sampling twice from visited nodes), so we
2 2

n“—m

will hit a new node with probability “—3"- and the expected

time to hit such a node is E(C™T! — C™) = 22 . The
. . n<—m
cover time will be:

n—1 n—1 2
RWC(d m m n
Crn W =3 B =) =3 s
m=1 m=1
taking m = n — x we get:
n—1 n2
CRWC() _
S
=1
o 2nr — x2
=1
B ﬁ n—l(l 1 )
T2 r 2n—x
x=1
n n
Ehn—l + §(h2n71 hn)
n n 2n—1
= Zhuos + 2 (log(—))
CSRW
= o o(CRY) O

Intuitively, since the complete graph has the lowest cover
time for the simple random walk, SRW, over all graphs, it

will have the lowest cover time for RWC' as well. It follows
then that for any graph that has optimal cover time we can
expect at most a constant factor improvement in the cover
time (regardless of the order of improvement in the load
balancing). What will be the results of choice in a non-
optimal graph? In the next sections we will explore this
on the the 2-dimensional grid that is known to have a non-
optimal cover time of @(n log?n).

4. SIMULATION SET UP

We run our simulations on three types of graphs: (i) the
random geometric graph G(n, r), (ii) the 2-dimensional mesh
grid - G2 and (iii) the hyper cube - H,. The random ge-
ometric graphs have been widely used to model link con-
nectivity and protocol behavior in randomly deployed wire-
less networks. The grid mesh (with wrap around of bound-
aries into a torus to avoid edge-effects) provides a deter-
ministic graph which also has geometric locality and is also
used to model carefully deployed wireless sensor networks.
Note that both the grid and the hyper-cube are regular
graph with a uniform stationary distribution. For the ran-
dom geometric graph, G(n,r), we used n = 900 and r =
2rcon = 0.0981. On the grid we run the simulation for
n = {100z> | = = 1,2,3,...,10}. For the hyper-cube
we used n = {2° | x = 7,8,...13}. For each graph we
execute the RWC(d) for d = 1,2,3 and in each case we
average over 1000 runs. The results for the grid of sizes
n = 100, 400,900 and G(900,0.0981) are an exception; they
are based on 10,000 walks for each case, and used in partic-
ular to obtain histograms for the cover time.

4.1 Metrics and Questions of Interest
We set out to consider and explore the following metrics and
related questions:

1. Cover time progress up to full cover: What is
the improvement in cover time and partial cover for
RWC(d), d > 2?7 When dealing with cover time we
normalize the number of steps by dividing out by n,
the graph size. This allows us to compare different
graphs sizes on one figure.

2. Asymptotic behavior and asymptotic improve-
ment: The cover time improvement ratio for a con-
stant d > 2 is defined to be:

CRWC — 1)
Ta(n) = —Zros
(d)
Ca

What is the asymptotic behavior of I4(n) for the dif-
ferent graphs? We know that for the complete graph
Ky, Is(n) = d —o(1). Note that if Iz(n) = w(1) (i.e.
an order larger than a constant) then ngc(d) is of a
lower order than ngc(‘i -, Similarly we define the
improvement ratio for the partial cover (e.g. 50%) and
ask the same question.

3. Cover time distribution: Will d > 2 change the
variance of the cover time? Does it eliminate or min-
imize the long tail of the cover time distribution of
the simple random walk? How else does it change the
distribution?
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Figure 1: The distribution of the cover time on
G(900,0.0981) as an histogram from 10000 runs

Table 1: Statistical data for the cover time distribu-
tion of G(900,0.0981) (normalized by n)
[ Type [ mean | std [ median | max | 95% |
SRW 15.66 | 5.42 | 14.07 | 67.59 | 25.99
RWC(2) | 6.52 | 1.95 6.04 32.03 | 10.25
RWC(3) | 4.59 | 1.26 4.29 16.21 | 7.03

4. Load balancing: Load balancing is of crucial inter-
ested in energy-limited wireless networks where such
protocols may be implemented. To measure load bal-
ancing, we check the effect of choice on the most visited
node. Let ngc(d) be the expected number of visits
to the most visited node at cover time. For a graph G
and a constant d > 2 we define the improvement ratio
of the most visited node as:

RWC(d — 1)
Lg

La(n) = [ RWC(@
G

Finding L4(n) was the original result for the power
of choice in the balls in bins (complete graph), do we
have a similar effect on the grid? Note one difference
in our setting — the original result is for the load bal-
ancing time ¢ = n, while here we consider the load
balancing at time of cover. Next we extend this to all
the nodes: at cover time we order the nodes from the
most loaded to the least loaded (which always has 1
visit at cover time) and average over all runs. This
yields the expected number of visits to the i'th most
visited node.

5. Speed of mixing time: At each step ¢t we take the

probability to be at node v as % and find the
variation distance of this t'th-step distribution from
the stationary distribution. What is the affect of choice
on the variation distance and the corresponding mixing
time (the time at which the variation distance goes
below some €)?
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Figure 2: The load balance at cover time for random
geometric graph G(900,0.0981)

5. RANDOM GEOMETRIC GRAPHS

As mention earlier random geometric graphs are the most
popular graph model for random wireless networks. To give
a flavor of the improvements achieved by random walk with
choice, we present data from 10,000 random walk runs on
an instance of G(900,0.0981).

Fig 1 compares the histograms of cover times for the simple
random walk with random walk with choices 2 and 3. Ta-
ble 1 presents statistical data of these distributions. Note
that the x axis in all three figure is set fo be from the min-
imum cover time of the random walk with choice 3 to the
time that is larger than 99.9% of the cover times of the sim-
ple walk. The strong affect of choice on the distribution is
clear from the figure and the table. It seems as the choice
eliminates the heavy tail of the distribution and makes it
more concentrated around its mean. This property is ex-
tremely important in practice as one want to avoid very
long random-walk-based queries even if this happens only
occasionally. In centralized random walk application (e.g.
solving satisfiability) the heavy tail can be eliminated by
rapid restarts of new walks in the case where retrieving an
answer takes too long. In distributed systems there is a
problem: while the base station can issue a repeated query
if the random walk doesn’t return fast (i.e. rapid restart), it
cannot terminate the long walk which is somewhere in the
network, and it will continue to move and consume energy.

The expected load balancing at cover time is shown in Fig
2. From left to right, the figure shows the expected number
of visits to the i’th most visited node at cover time. The
first node on the left is the most visited node and right-
most node always has one visit at cover time. Note that the
total number of visits (or the area under each curve) is the
expected cover time. Again we can clearly see the reduction
in cover time as a result of choice. Moreover, not only is
there a large improvement in the most visited node, but the
visits are distributed much more evenly. Intuitively it looks
like the use of choice pushes "down” the most loaded bin
causing the load to be distributed more evenly.
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To obtain more systematic results, and to eliminate the noise
created by the generation of random graphs, we next turn to
determininstic mesh grids (with wrap-around into a torus to
avoid edge effects). This allows us to more carefully check
the asymptotic behavior of choice across different graphs
size.

6. GRIDS
6.1 Expected Cover and Partial Cover Time

Fig 3 present the expected cover time progress up to full
cover for meshes of size n = 100,400,900. The results are
based on 10,000 runs. In all cases we can see the improve-
ment in cover and partial cover times as well as the dimin-
ishing returns type of behavior. Choice of 2 gives a large
improvement compare to the simple random walk, but for
d = 3 the gain is much smaller. We analytically know
that for the simple random walk the partial cover is an
order less than the cover time (i.e. O(nlogn) instead of
O(nlog®n)), meaning that most of the time in the cover
process is "wasted” on the last few nodes. We observe that
the same type of behavior is also presented by random walk
with choice.

6.1.1 Different grid sizes

Fig 4 is one of the most significant figures in this work, and
its results are surprising. Part (A) shows the expected cover
time for meshes varying from size 100 to 10000. Note that
the x axis is on log scale and the y axis is the expected num-
ber of steps to cover normalized by n. As we expected the
simple random walk gives a cover time of ©(n log? n) which
results in ©(log® n) curve in the figure. More interesting is

the cover time CEZVC(Q)
2. Tt seems to have a lower order of O(log n) which implies a
cover time of order O(nlogn). This suggests that a choice of
2 on the 2-dimensional mesh achieves optimal cover time, the
same order of cover as the complete graph. Selecting d = 3
doesn’t seems to offer significant further improvement (in
any case improvement in order is impossible if indeed d = 2
already gives optimal cover time). Part (B) of Fig 4 displays
the expected time to cover 50% of the graph. For the simple
random walk we know that partial cover is O(nlogn) and
this what the figure shows. For the choice of 2, it is harder
to conclude what is the order, but it doesn’t seem to be op-
timal partial cover time. Recall that optimal partial cover
time is linear which should result in a constant line since
we normalize by n. The partial cover of the random walk
with choices d = 2,3 is not a constant and therefore does

, of the random walk with choice of
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Figure 5: The improvement ratio of cover time for
the choices of 2 and 3 for different grid sizes

not appear optimal. Some interpolation suggests a behavior
of O(nloglogn) but this is highly speculative.

Fig. 5 presents the improvement ratios I2(n) and I3(n) for
cover time achieved by random walk with choice. Clearly we
notice that the improvement ratio for d = 2 is non-constant,
supporting the claim that there is an unbounded improve-
ment in the cover time. On the other hand I3(n) behaves
as a constant, demonstrating concretely the diminishing re-
turns. The results are similar for the 50% cover time; there
seems to be an unbounded improvement ratio for a choice
of 2, and a constant for a choice of 3. Nevertheless, the im-
provement ratio for partial cover is smaller than the one for
cover time.

6.2 Cover Time Distribution

As in the case of the random geometric graph, Fig. 6 shows
a consistent behavior in term of the cover time distribution
for different grid sizes. For all three sizes choice is reducing
the cover time as well as the variance. Choice eliminates
the heavy tail and seems to change the distribution envelop.
The statistical data is summarize in Table 2.

6.3 Load Balancing

Reproducing the load balance figure of the random geomet-
ric graph, Fig 7 presents the same behavior for different grid
sizes. The effect of choice is seen clearly as flattening the
load on nodes. Note that the y axis is normalized such that
the max bin in each sub-figure is 1. The original results on
the power of choice were stated in term of the most visited
bin (after n balls, or n random walk steps), proving a non
constant improvement on the ratio between the most visited
node in the random walk with choice of 2 compare to the
simple random walk. Does something similar happens on
grids at cover time?

Fig 8 gives a positive answer to this question. It presents
the improvement ratios L2(n) and Ls(n). Our experiments
show that the radio between choice of 2 and the simple
walk, Ls(n), is unbounded and seems to be of the order

-8~ L3(n)

=)

o

w
T
I
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Figure 8: The improvement ratios, L2(n) and Ls(n),
of the most visited node in SRW, RWC(2) and
RWC(3) for different grid sizes

of O(logn). On the other end, L3(n), the improvement be-
tween choice of 2 and 3 is a constant, similarly to what we
observed for the improvement ratio of the cover time. This
figure, as before, confirms our observation that the addi-
tion of choice has a large effect on the final outcome of the
random walk.

6.4 Mixing Rate

As stated before, the mixing time is another key metric of
interest. Since our graphs are regular, the stationary distri-
bution of the random walk is the uniform distribution which,
by definition, balances the load (number of visits) at mixing
time. Therefore when the mixing time is smaller, the faster
P'(x,-) (i.e. the distributions of states at time t) coverage
to the uniform distribution, and we should expect a bet-
ter load balancing at cover time. Fig 9 plots the expected
variation distance at step ¢ until cover time (presented as
fraction of cover) between P'(x,-) and the uniform distribu-
tion. For the three grids we observe the impact of choice on
the rate by which the variation distance decreases. At the
start of the random walk, many new nodes are been visited,
which decreases the variation distance “fast”; later, when
discovering new nodes takes longer, the rate in which the
variation distance decrease is “slower”. From Fig 9 it seems
as choice extends the time for which the walk often discovers
new nodes and the variation distance decreases fast. This
behavior results in a smaller variation distance at cover time
for random walks with choice.

7. COMPARING THE GRID AND THEHYPER-

CUBE

In order to validate our results from Fig. 4 on the order of
the cover time of the random walk with choice on grids we
set out to compare those results with the cover time of a
graph which has optimal cover time. We repeated the same
set of experiment on the hyper-cube, H,, and compared the
results with the grids.

Fig 10 shows the cover time for hyper-cube and grid of dif-



Table 2: Mean and variance

of cover times on grids

(normalized by n)

Walk n = 100

n = 400

n = 900

Type

mean | std [ 99%

mean | std | 99%

mean | std | 99%

SRW

8.285

2.325

15.420

13.018

3.077

22.625

16.205

3.463

26.460

RWC(2)

3.414

0.715

5.560

4.527

0.736

6.780

5.185

0.745

7.404

RWC(3)

2.495

0.458

3.870

3.242

0.475

4.692

3.666

0.476

5.082

B Simple random ialk: mean=8.285, st9=2.325 B Simpl random ialk: mean=13.0185, sid=3.0776. B Simple random walk: mean=16 2053, sd=3.463.
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Figure 6: The distribution of the cover time on a grid as an histogram from 10000 runs for the simple random
walk, and choice of 2 and 3. (A) 100 nodes (B) 400 nodes (C) 900 nodes
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Figure 11: The improvement ratio of cover time for
the choice of 2 in the hyper-cube and grid for differ-
ent sizes

ferent sizes. The cover time of the simple random walk on
the grid, C25", behaves as O(log® n) as we saw before. Re-

garding the hyper-cube, CIS{%W, behaves as O(logn) as we
know analytically. The interesting result here is that the
RWC(2)
G%L ’
is less than the cover time of the simple random walk on
the hyper-cube, C’IS.IEW. When interpolating this two line
as straight lines (on the log scale), CSZVC(Q) has a slightly
smaller slop than C’E}EW. This gives, yet another, evidence
for the order improvement of cover time on the grid with
choice of 2.

cover time of the walk with choice 2 on the grid, C

We proved that the improvement ratio for the complete
graph is constant. Since the hyper-cube has cover time of
the same order of the complete graph we expect that sim-
ilar results will apply to it. Fig 11 validates this intuition.
It compares the improvement ratio of the cover time of the

grid and the hyper-cube. We stated earlier that the improve-
ment ratio for the grid is unbounded for both the cover and
partial cover times. On the other hand for the hyper-cube,
the figure shows that both for the cover and partial cover
time the improvement ratio is constant. This is the case
because both the cover and partial cover are optimal for the
hyper-cube.

8. CONCLUSIONS

It is of fundamental interest to understand and enhance the
behavior of simple low-state protocols for wireless networks
such as query and routing mechanisms based on random
walks. Motivated by the successful use of the power of choice
technique for load-balancing problems, we have proposed a
novel random walk with choice in this work. In this modified
random walk algorithm, at each step the least visited among
a set of randomly selected neighbors is chosen as the next
node. The intuition behind this idea is that this choice will
push the walk to visit less visited areas in the graph in order
to improve upon the cover time. Our analytical results for
the completed graph shows that when choosing between a
constant number of neighbors we will have a constant im-
provement in the cover time. This suggests that for any
graph with cover time on the order of the complete graph
we should expect at most a constant improvement in the
cover time. In particular, we should expect this to be the
case for random geometric graph with radius r > v/8reon.
It is an open question whether for a lower radius the im-
provement will be unbounded. Our simulation results sug-
gest that the effect of random walk with choice is larger for
graphs that have non-optimal cover time. For 2-dimensional
grid networks, we observed via simulations that the random
walk with choice can offer unbounded improvement in cover
time and the number of visits to the most visited node at
cover time. We formulate this observation in the following
conjecture:

CONJECTURE 1. For the 2-dimensional mesh, G2,

Cga ™ (n) = o(CEE" (n)) = o(nlog” n)
or in words, the cover time of the random walk with choice
2 1s an order less than the simple random walk.

It will be challenging to prove this conjecture as well as other
theoretical results for the random walk with choice regarding
the distribution of cover time and the load balance at cover
time.

At any rate, our simulation results give a strong evidence
that incorporating choice into random-walk-based query or
routing applications for wireless networks can provide sig-
nificant performance improvements.
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