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Abstract— In this paper, we study the single-packet medium
accessproblem, which occurs in many wireless sensor network
applications. In this problem, each contending node in the one-
hop network has a single packet to transmit and the node is in
contention of the channel only until its packet is transmitted.
We analyze the performance of slotted multi-access techniques
for this problem using Markov chains and flow equations. We
verify the accuracy of these analyses through simulations. We also
present a thorough performance evaluation of these techniques
in terms of delay and energy consumption for various design
parameters.

I. I NTRODUCTION

Wireless sensor networks (WSN) are increasingly being
used in a variety of critical applications. The diversity of
these applications introduce equally diverse set of conditions
for wireless medium access. In this paper, we consider an
important set of WSN applications, in which the medium
access has a common structure and differs significantly from
the conditions in which traditional medium access problems
are solved. Three such applications are:

• Location Support for Mobile Users: In this application,
the mobile unknown node (sink) determines its location
using measured physical quantities and relevant data from
packets transmitted by several reference nodes (the sensor
nodes) in its radio range. Each reference node has a single
packet, that contains its coordinates, to transmit to the
unknown node.

• Node Discovery: Most applications of sensor networks
use sleep scheduling in which sensor nodes are mostly
in “sleep mode” and occasionally “wake up” to sense the
environment or for other duties. As a result, every time
a node wakes up, it could potentially have a different
set of neighbors. In applications that require a node to
be aware of its neighbors’ identities every time it wakes
up, the node could broadcast a discovery message and
all nodes in its radio range respond with their identities.
Here also, each contending node has a single packet, that
contains its ID, to send to the discoverer (sink).

• Data Gathering: Another important application in which
the medium access problem is very similar to that of the
above two applications is that of one-hop data-gathering.
For example, (i) large number ground sensors spread over
wide expanses of land, such as forests and farms, need
to transmit their data to a data-gathering aircraft that flies

over them as quickly as possible. (ii) A mobile user who
gathers inventory data from sensor nodes deployed on
shelves of ware-houses, requires that the sensor nodes
transmit their single packet of data as quickly as possible.

The underlying medium access concerns that are common
in the above set of applications are:

• All contending nodes have a single packet to transmit and
that they are out of contention once it is transmitted.

• All communication is one-hop.
• The delay for all nodes can transmit their packets is of

critical importance to the application.
• The energy consumed in this medium access operation

affects the life-time of the WSN.

We call the medium access problem with the above set of
concerns as thesingle-packet medium accessproblem. Clearly,
this problem differs significantly from that of the traditional
medium access problems. The analyses of wireless medium
access protocols (see [1], [2], [3]) are usually characterized by
the assumptions that each node always has many backlogged
packets to send and that all nodes in the network reach steady
state. These assumptions no longer hold for the problem we
address in this paper.

Traditionally, solutions for medium access problems have
been categorized into centralized TDMA schemes, Slotted
Multi-access schemes, Splitting Algorithms and Carrier Sens-
ing techniques (see [4]). In a previous work [5], we have
investigated the performance of centralized TDMA schemes,
for the single-packet medium access problem in the context
of location support for mobile users. In this paper, we present
the performance analysis for slotted multi-access schemes.
Performance analysis of splitting algorithms and asynchronous
carrier sensing techniques will be part of our future work.

We consider the following slotted multi-access schemes:
p-persistent slotted Aloha, slotted Aloha with constant back-
off window, slotted Aloha with binary exponential back-off,
and slotted CSMA with constant back-off window. To the
best of our knowledge ours is the first attempt at analyzing
these protocols for the single-packet medium access problem.
Tay et.al. in [6] present a non-persistent CSMA protocol in
which the transmission probabilities are optimized to minimize
collisions. However, the problem considered by the authors
is considerably different from that of ours as they assume
that the contending nodes have many backlogged packets to



send and consequently the network is in steady state. Also,
the authors concentrate on minimizing the delay for this first
packet successfully transmitted.

The rest of the paper is organized as shown in Table I.

Section II Problem Description
Section III p-persistent Slotted Aloha
Section IV Slotted Aloha with Constant Back-off
Section V Slotted Aloha with Binary Exponential Back-off
Section VI Slotted CSMA with Constant Back-off
Section VII Performance Evaluation
Section VIII Conclusion & Future Work

TABLE I

PAPER ORGANIZATION

II. PROBLEM DESCRIPTION

In the section we list the assumptions we make and define
the metrics that are used to measure the performance of the
protocols.
Assumptions:

• The number of nodes in the radio range of the sink isN .
• Each node has asinglepacket to send to the sink.
• Time is split into time slots of equal length.
• All nodes in the one-hop network are synchronized.
• Nodes contend for the channel at the beginning of a time

slot.
• When more than one node transmits in the same time

slot, collision occurs. Nodes involved in a collision that
leads to packet delivery failure, detect the failure through
acknowledgements from the sink within the same time
slot. We assume that the effect of acknowledgements on
protocol performance is negligible.

• The transmission power of the nodes is such that all
packets successfully transmitted by them reach the sink
without any errors.

Performance Metrics:

• Expected delay for the delivery of the firstk packets
(D(k)): The number of time slots required for the first
k, 1 ≤ k ≤ N packets are successfully delivered to the
sink.

• Expected number of transmissions per node for the de-
liver of the firstk packets(E(k)): The energy consumed
by each node for it to successfully transmit its packet to
the sink is measured in terms of the number of packet
transmissions it has to make for the same.

III. P-PERSISTENTSLOTTED ALOHA

In p-persistent Slotted Aloha, each contending node (the
sink is not a contending node) attempts to transmit its packet
with probability p in each time slot, until it is successfully
transmitted. In this case we assume that the packet length is
equal to the length of the time slot.

The network can be modeled by a Markov chain as shown
in Figure 1. Each state in the chain represents the number of
nodes in the network with the passage of time. The network

Fig. 1. Markov chain showing the states for p-persistent Slotted Aloha.

changes from statei to statei− 1 when there is a successful
packet transmission from statei; 0 is the absorbing state.

Given the transmission probability ofp, the probability of
making the transition from statei to statei− 1 in the present
time slot, pi, which is same as the probability of successful
transmission from statei, is equal to the probability of a single
node transmitting from statei. Thus,

psuc,i = ip(1− p)i−1, p0 = 0 (1)

The number of time slots required to transition from statei
to statei− 1 is a geometric random variable with probability
of success ofpsuc,i. Therefore, the expected number of time
slots the network spends in statei is 1

psuc,i
. Thus, the expected

delay for the firstk packets are successfully delivered to the
sink is given by,

D(k) =
N−k+1∑

i=N

1
psuc,i

=
N−k+1∑

i=N

1
ip(1− p)i−1

(2)

Similarly, when the network is in statei, the expected
number of transmissions in a time slot is equal toip and
therefore, the expected number of transmissions for there is
a successful transmission from that state isip · 1

psuc,i
. Thus,

the expected number of transmissions per node for the firstk
packet deliveries is given by:

E(k) =
1
N

N−k+1∑
i=N

ip · 1
ip(1− p)i−1

=
1
N

N−k+1∑
i=N

1
(1− p)i−1

=
1− p

Np

(
1

(1− p)N
− 1

(1− p)N−k

)
(3)

The value ofk is determined by the type of application and
the value ofN depends on the sensor node density and the
radio range of the sink. Thus bothk andN are not independent
variables. However,p is an independent variable that can be
changed to obtain desired values ofD(k) andE(k).

The optimal expected delay for p-persistent slotted Aloha
can be obtained by minimizingD(k) with respect top.
Differentiating the denominator1 of each term in Equation 2
with respect top and setting it equal to zero yieldspopt = 1

i .
This value ofpopt is clearly expected because, the delay is
minimized when a single node transmits in each time slot,
and this can be achieved on average if each node in network
transmits with a probability which is the inverse of the number
of nodes left in the network.

1The value ofp that maximizes the denominator of each term in the sum,
minimizes the sum, since all terms in the sum are positive.



Substitutingpopt into Equation 2,

Dopt(k) =
N−k+1∑

i=N

(
1 +

1
i− 1

)i−1

≤ k · e for N >> 1

(4)
Similarly, substitutingpopt = 1

i into Equation 3 yields
E(k) ≤ e · k

N .
However, it is not clear how the value ofi can be determined

at every time slot. One possible mechanism could be that of the
sink informing the sensor nodes of the number of successfully
transmitted packets and the value ofk through acknowledge-
ment packets. Also, if the sink has estimates of the sensor node
density and its own radio range, it can determine the initial
expected value ofN and using this estimate can determine the
optimal value ofp at which the nodes should transmit their
packets after each successful transmission.

IV. SLOTTED ALOHA WITH CONSTANT BACK-OFF

In slotted Aloha with constant back-off, each contending
node starts out by choosing a time slot uniformly at random
within a constant contention window of sizeW . In the event
that more than one nodes chooses the same time slot, a
collision occurs and all nodes involved in the collision back-
off, again choosing a future time slot uniformly at random
from the contention window of sizeW . As in the previous
Section, we assume that the packet length is equal to the
time slot length. In addition, we assume that the back-off time
counter length for each node is equal to that of the time slot.

Fig. 2. Markov chain of states for a contending node using slotted Aloha
with constant back-off protocol.

Figure 2 shows the Markov chain of possible states for
a contending node in slotted Aloha with constant back-off
protocol. A node is in statei, 0 ≤ i ≤ W − 1, if it had
backed-offi time slots ago. The node transitions to stateS,
the absorbing state, if it has successfully transmitted its packet.
If a node backs-off when it is in any of theW states it starts
over from state0. As stated previously, the network will not
attain steady state as the number of contending nodes and the
resultant probabilities of collisions change with time. In order
to capture the dynamic nature of the network, we determine
the rates at the network transitions between different states.

Owing to the uniform random selection of a time slot from
the window of sizeW , the probability with which a node
attempts to transmit in a given time slot, given that it hasn’t
transmitted until that time slot since backing-off, depends on
the statei it is in the above Markov chain at the beginning of

that time slot. If a node is in statei in the present time slot,
the probability with which it will attempt to transmit is given
by

pi =
1

W − i
(5)

Accordingly, a node will attempt to transmit with probability
one, when it reaches stateW − 1. Let ni(t), i ∈ [0,W − 1]
be the number of nodes at timet in statei. All nodes in the
network start from state0 at time slot0, therefore,n0(0) = N .

The average number of nodes in statei(> 0) at time t + 1
is equal to the sum of the average number of nodes in statei
at time t and the average number of nodes in statei− 1 that
do not attempt to transmit at timet, minus, the sum of the
average number of nodes in statei that transmit successfully
and the average number of nodes in statei that back-off at
time t. This arithmetic reduces to,

ni(t + 1) = ni−1(t)(1− pi−1), i > 0 (6)

The average number of nodes in state0 at time t + 1 is
equal to the sum of the average number of nodes in state0 at
time t and the average number of nodes in all states other than
S at time t that attempt to transmit and back-off, minus, the
sum of the average number of nodes in statei that transmit
successfully and the average number of nodes in statei that
back-off at timet. This results in,

n0(t + 1) =
W−1∑
q=0

nq(t)pq[1− πq(t)] (7)

where,

πq(t) = (1− pq)(nq(t)−1)
W−1∏

l=0(l 6=q)

(1− pq)nq(t) (8)

The average number of nodes in stateS at time t + 1 is
equal to the sum of the average number of nodes at timet
and the average number of nodes that successfully transmit
from all statesi, 0 ≤ i ≤ W − 1, at timet. Therefore,

ns(t + 1) = ns(t) + ·
W−1∑
q=0

nq(t)pqπq(t) (9)

The expected delayD(k) is the number of time slots
required such thatns(t) = k, i.e., ns(D(k)) = k. The total
expected number of transmissions in each time slot is equal to
the sum of the expected number of transmissions from each
state i in that time slot. Therefore, the expected number of
transmissions per node (E(k)) is given by

E(k) =
1
N

D(k)∑
t=0

W−1∑
i=0

ni(t)pi (10)

Unlike in the p-persistent slotted Aloha case, the above
equations are not tractable enough to be expressed in closed
form. However, the performance of the protocol can be studied



by numerically evaluating the above expressions for different
values ofW , k andN .

V. SLOTTED ALOHA WITH BINARY EXPONENTIAL

BACK-OFF

In this protocol, each node starts out with a minimum
congestion window of sizeW0 and each time it backs-off, it
doubles the size of its congestion window up to a maximum
value of WMAX , leading to a binary exponential increase
in its window size. At each stage of the increase, the node
chooses a time slot to transmit uniformly at random within the
current window size. The congestion window size of the node
remains constant once the maximum window size is reached.
If the number of stages of increase before the maximum
window size is reached isM , then the window size at stage
i, (0 ≤ i ≤ M − 1) is Wi = 2iW0, andWMAX = WM−1.

Fig. 3. Markov chain of states for a contending node using slotted Aloha
with binary exponential back-off protocol.

Figure 3 shows the Markov chain2 of states a node using
this protocol goes through before it successfully delivers its
packet to the sink through stateS. The state(i, j) implies
that the node has entered the stagei after backing-off from
stage(i− 1), j back-off time counter slots ago. Similar to the
protocol in the previous Section, we assume that the back-off
time counter length for each node in the network is equal to
the time slot length, where both are in turn equal to the packet
length.

Let ni,j(t), (i ∈ [0,M−1], j ∈ [0,Wi−1]) be the number
of nodes at stagei at timet that have entered this stagej time
slots ago. The probability that a node in state(i, j) attempts
to transmit its packet, given that it is in this state is given by,

pi,j =
1

Wi − j
(11)

2This Markov chain is equivalent to the Markov chain used in [1] for the
performance analysis of 802.11. In the latter, it is assumed that the back-off
counter of nodes decrements with each time slot and the node transmits when
the counter reaches zero. Where as, in our chain, we assume that the back-off
counter increments with each time slot and the node transmits its packet when
the randomly chosen time slot is reached.

All nodes in the network start at time slot0 at state(0, 0),
thus, n0,0(0) = N . However,∀ t > 0, n0,0(t) = 0, as all
nodes move to a different state in the next time slot and do
not return to state(0, 0).

Whenever a node attempts to transmit in a time slot, either
it backs-off due to collisions or packet errors, or successfully
delivers its packet to the sink. Therefore, the number of nodes
that enter state(i, j), j 6= 0, at t + 1 is equal to the average
number of nodes in state(i, j − 1) that do not attempt to
transmit att. And all nodes in state(i, j), j 6= 0, at time t
leave that state either through successful transmission or back-
off or by just moving to state(i, j + 1) at time t + 1. Thus,

ni,j(t + 1) = ni,j−1(t)(1− pi,j−1) (12)

The average number of nodes that enter state(i, 0), 0 <
i < M − 1, at time t + 1 is equal to the sum of the average
number of nodes that back-off from all states(i − 1, j) in
the previous back-off stagei− 1, at timet. And all nodes in
state(i, 0) at timet would leave to other states by timet+1.
Therefore, fori 6= 0,M − 1,

ni,0(t + 1) =
Wi−1−1∑

q=0

ni−1,q(t)pi−1,q[1− πi−1,q(t)] (13)

where,

πi,j(t) = (1−pi,j)ni,j(t)−1
M−1∏
k=0

Wk−1∏
l=0

(k 6=i,l 6=j)

(1−pk,l)nk,l(t) (14)

The number of nodes that enter state(M − 1, 0) at time
t + 1 is equal to the average number of nodes that back from
all states of stagesM − 2 andM − 1 at time t. Therefore,

nM−1,0(t + 1) =
WM−1−1∑

q=0

nM−1,q(t)pM−1,q[1− πM−1,q(t)]

+
WM−2−1∑

q=0

nM−2,q(t)pM−2,q[1− πM−2,q(t)] (15)

Consequently, the average number of nodes that enter state
S at time slott+1 is equal to the sum of the average number
of successful deliveries from all states(i, j) in the Markov
chain of Figure 3 to the sink.

ns(t + 1) = ns(t) + ·
M−1∑
i=0

Wi−1∑
j=0

ni,j(t)pi,jπi,j(t) (16)

The expected delayD(k) is such thatns(D(k)) = k. And
the expected energy consumption per node for the successful
delivery of the firstk packets to the sink is:

E(k) =
1
N

D(k)∑
t=0

M−1∑
i=0

Wi−1∑
j=0

ni,j(t)pi,j (17)



One of the most important aspects of counting the number
of nodes at each state by the above, average expressions is the
handling of fractional values. Ifni,j(t) is a real number less
than one, then that number can be approximately assumed to
be the probability of existence of a node at state(i, j). All real
numbers greater than one are used without change. It should be
noted the number of states with fractional values ofni,j(t)’s,
increases with increase in their number.

VI. SLOTTED CSMA WITH CONSTANT BACK-OFF

In this protocol, each node starts out by choosing a time slot
uniformly at random from a constant window of sizeW , to
transmit its packet. Unlike in the previous protocols, the packet
length here is assumed to beR (> 1) time slots long, while
the back-off time counters of the nodes are equal to a time slot
in length. When a node reaches its randomly chosen time slot
it senses the channel and transmits if the channel is free of
any transmissions. If the channel is busy, the node backs-off
again choosing a future time slot uniformly at random from the
constant window of sizeW . If more than one nodes choose
the same time slot to transmit and the channel is free, we
assume that the nodes will detect the collision and back-off
within the time slot3.

Fig. 4. Markov Chain for slotted CSMA with constant back-off.

Figure 4 shows the Markov chain for slotted CSMA with
constant back-off window. This is an extension of the Markov
chain for slotted Aloha with constant back-off window of
Figure 2 with R − 1 additional states for each statej. The
state(j, r), 0 ≤ j ≤ W −1, 1 ≤ r ≤ R,denotes that the nodes
in this state have backed-offj time slots ago and there was
successful transmissionr slots ago. The medium is free of all
transmissions whenr > R − 1. Thus, all states(j, r), r > R
can be collapsed into a single state of(j, R), indicating a free
channel. It should be noted that the state (0, 1) does not exist.
This is because, this state means that there was simultaneous
collision and success transmission in the same time slot, which
is not possible. As a result of this, all diagonal states in which
r = j +1, do not exist, except for the diagonal element in the
channel free states(j, R).

Equations similar to that of the previous two sections can be
written for the above Markov Chain also. However, numerical
evaluations of such equations and comparison with simulations

3This can be achieved by reserving a tiny portion of time at the end of the
time slot for an acknowledgement from the sink indicating a collision.

results reveal that the averages do not work in this case, as
they have worked for the previous two protocols. One possible
reason is that with increased number of states, the number
of states with fractional numbers is much higher and in such
cases the averages are not good approximations of the network
dynamics. Thus, the true probability mass functions (PMFs)
of existence of nodes instead of their averages for each state
in the Markov chain need to be determined. But, for large
values ofN , R andW , determining the PMFs for each state is
intractable. However, we present an example for small values
of N , R and W , through which we show that the Markov
chain is accurate.

Fig. 5. Markov chain for the example withR = 2, W = 2.

Figure 5 shows the Markov chain forR = 2 and W = 2.
We perform Monte Carlo evaluation of the Markov chain and
compare it with simulation results. In Monte Carlo evaluation
we start withN nodes in state(0, 2) and at each time slot a
node chooses to transmit from state(0, 2) with probability0.5,
and from states(1, 2) and(1, 1) with probability 1. The three
possible events in a time slot areno-transmission, successful
transmissionandcollision. In the event of no-transmission, all
nodes from state(0, 2) move to state(1, 2) and all nodes from
state(1, 2) move to state(0, 2). In the event of a successful
transmission, the successfully transmitted node moves to state
S from state(0, 2) or (1, 2), the remaining nodes in(0, 2)
move to(1, 1) and those remaining in(1, 2) move to(0, 2). In
the event of a collision, all colliding nodes from(0, 2) remain
in (0, 2) and remaining nodes move to(1, 2), however, all
colliding and non-colliding nodes in(1, 2) move to(0, 2). All
nodes in(1, 1) move to(0, 2) in every time slot.

The delay in a trial is the number of time slots required for
all the nodes to reach stateS. The expected delay is calculated
as the average of many (1000) trials. Figure 6 compares the
Monte Carlo evaluation results to that of simulations and
shows that they match very well. Finding a tractable analytical
model for slotted CSMA remains a part of our ongoing work.

VII. PERFORMANCEEVALUATION

In this section, we present evaluation results of the four pro-
tocols, discussed in the previous sections, for the single-packet
medium access problem. We first verify the accuracy of the
analyses by comparing them with simulation results. Figures 9
- 10 plot the analyses and simulation results for p-persistent
slotted Aloha, slotted Aloha with constant back-off and slotted
Aloha with binary exponential back-off. Figure 11 plots the
simulation results for slotted CSMA with constant back-off



Fig. 6. Comparison of Monte Carlo Evaluation of slotted CSMA using the
Markov Chain of Figure 4 and that of simulations for the example in which
R = 2, W = 2.

window and Figure 12 compares all the four protocols. The
main observations from the Figures are as follows:

• The analysis matches very well with simulations, in
almost all cases one curve is exactly above the other.
Any differences between the curves can be attributed to
the approximation of fractional node values described in
Section V.

• In p-persistent Slotted Aloha, in the absence of optimal
probability of transmission, the probability that gives the
best delay depends on the value ofN (Figure 7(a)),
as expected. A trade-off between delay and energy can
be observed in Figures 7(a) and (b) – while energy
consumption is the least forp = 0.01, the delay due to it
is maximum for lower values ofN . This is expected, as
lower probability results in nodes attempting to transmit
fewer times with larger time intervals between tries, thus
increasing the delay and reducing the number of transmis-
sions, as consequently reducing the energy consumption.

• In p-persistent slotted Aloha, optimal delay does not
lead to optimal energy consumption. However, the energy
consumption associated with optimal delay is not too
high, in fact, it is close to the lowest values in Figure 7(b).
This phenomenon can be observed for values ofk < N
also, in Figures 7(c) and (d).

• From Equation 3 in Section III it can be deduced that
E(N) is a super-linear function ofN and a sub-linear4

function ofk. The exact phenomenon can be observed in
Figures 7(b) and (d).

• For slotted Aloha with constant back-off window, the
delay for large number of nodes can be reduced by
increasing the window size, however for small numbers of
nodes, the delay is reduced by reducing the window size
(Figure 8(a)). This is expected, because, when the value
of N is low, the delay is limited byN , thus increasing
the window size would introduce unnecessary delay in
transmissions of packets. For high values ofN , the delay
is limited by the transmission probability of nodes, which
depends on the window size, thus increasing the window

4A function is super-linear with respect to a variable if the second derivative
is positive with respect to that variable and it is sub-linear if the second
derivative is negative.

size would help in reducing the delay by reducing the
transmission probabilities. The energy consumption, how-
ever, reduces with increasing window size for all numbers
of nodes (Figure 8(b)), which can be explained by the
same reasoning as above.

• The same behavior as above can be observed fork < N
in slotted Aloha with constant back-off (Figures 8(c) and
(d)). For a fixed value ofN , the delay for successful
transmission of the firstk packets reduces with increasing
window size initially, but the delay for higher values
of k is lower for W = 64 and W = 128 than for
W = 256. The energy consumption per node reduces
with increasing window size.

• The super-linear and sub-linear natures ofE(N) and
E(k), (k < N), respectively, can be observed in the
case of slotted Aloha with constant back-off also.

• The slotted Aloha protocol with binary exponential back-
off has an additional parameter ofM , the number of
stages, compared to slotted Aloha with constant back-
off. In order to understand the effect of this parameter
on the delay and energy consumption it is required to
determine the dynamics of each stage as a function of
time. The number of nodesni(t) in stagei Figure 3 is
calculated as follows using equations from Section V:

ni(t) =
Wi−1∑
j=0

ni,j(t), 0 ≤ i ≤ M − 1 (18)

Figure 9 plots the number of nodes in each of the five
stages in slotted Aloha with binary exponential back-off
as a function of time forM = 5 andW0 = 32.

Fig. 9. Comparison of Analysis and Simulations for slotted Aloha with
Binary Exponential Back-off.

It can be seen from this Figure that, the final stage
contributes the maximum to the delay. For example, the
first four stages contribute close to half of the delay and
the final stage (stage5) contributes the other half of the
delay in the above Figure. This is expected, as nodes in
the lower stages, with higher probability of transmissions
and resultant higher probabilities of collisions, have to
move throughM − 1 stages before they reach the final
stage with lower probability of transmissions. Thus, the



(a) (b)

(c) (d)

Fig. 7. Comparison of Analysis and Simulations for p-persistent Slotted Aloha.

(a) (b)

(c) (d)

Fig. 8. Comparison of Analysis and Simulations for Slotted Aloha with constant back-off window.

delay can be expected to reduce if the number of stages
is reduced to such an extent that the probabilities of
transmissions in the final stages do not lead to excessive
collisions. Figure 10(a) shows that the delay reduction can
be achieved by reducingM from 5 to 3. Similar reasoning
as above would suggest that increasing the value ofM
would increase the delay, which can also be observed in
this Figure. However, the energy consumption per node
reduces increasing number of stages (Figure 10(b)), even
though the increase is negligible for lower number of
nodes.

• Alternatively, if the number of stages is held constant,
and if the initial window size is increased, the delay is ex-
pected to increase because the transmission probabilities
of nodes increases for all stages, thus keeping the medium
idle for longer periods between packet transmissions. This
phenomenon can be observed in Figure 10(c). Again,
for the same reason, the energy consumption per node
reduces with increasing window size, and can be observed
in Figure 10(d). It should be noted that the reduction in
energy consumption is more sensitive to change in initial
window sizeW0 than to change in the number of stages.



(a) (b) (c)

(d) (e) (f)

Fig. 10. Comparison of Analysis and Simulations for slotted Aloha with Binary Exponential Back-off.

• For k < N , for slotted Aloha protocol with binary
exponential back-off, while the delay increases with in-
creasing number of stages, the energy consumption per
node reduces (Figures 10(e) and (f)).

• It is noteworthy that bothE(N) andE(k), (k < N) are
sub-linear for slotted Aloha with binary exponential back-
off. Further, maintaining the shift in pattern from slotted
Aloha with constant back-off window, the concavity
increases with increasing number of stages (Figure 10(b)).

• Figure 11 shows the simulation results for constant back-
off slotted CSMA. We plot the delay normalized by the
length of the packet. For packets sizesR < W , the
normalized delay increases with decreasing packet sizes.
For R > W , the normalized delay is independent ofR
(Figures 11(a) and (c)). However the energy consumption
is independent of the packet size (Figures 11(b) and
(d)). The above trends in normalized delay and energy
consumption per node can be observed for a fixed value
of N andk < N (Figure 11(e) and (f)).
It should be noted that, we have assumed, in the case of a
collision, nodes involved in the collision would detect it
within the same time slot. This increases the performance
of slotted CSMA protocol forR > W . In this case, the
normalized delay in time slots is equal to the number of
nodes, implying that on average one node transmits per
time slot, every time slot.

• Figure 12 compares the analytical results of the four
slotted Aloha protocols. The comparison between slotted
CSMA and other protocols is possible either through
normalization of slotted CSMA results or scaling of the
other protocol results by the packet length to back-off
timer ratio. We use the former approach. However, it is
not required to normalize the energy consumption per

node. In Figures 12(a) and (b), the parameters for each
protocol were chosen such that the delay is the minimum
among the considered values. Figures 12(c) and (d) show
the energy vs delay scatter plot for the protocols. In these
plots, a point represents the corresponding protocol’s
delay and energy values for certain value ofN and the
protocol parameters. These plots suggest that a single
protocol does not perform the best over all ranges of
network parameters. They show the existence of delay-
energy trade-offs for choosing the appropriate protocol
based on its parameters.

VIII. C ONCLUSION & FUTURE WORK

In this paper, we investigated the performance of four
different slotted multi-access protocols for the single-packet
medium access problem. We presented transient Markov chain
analysis for p-persistent slotted Aloha, slotted Aloha with
constant back-off window, slotted Aloha with binary expo-
nential back-off window and slotted CSMA with constant
back-off through the use of flow equations that captured
the network dynamics as a function of time. Comparison of
analytical results with that of the simulations shows that the
analysis is very accurate. We also presented the performance
of each of the above protocols in terms of expected delay and
energy consumption per node as a function of various protocol
parameters and suggested the most appropriate protocol that
is dependent on these parameters.

In this paper, was have assumed that the nodes are syn-
chronized in time. This might not be true in some application
scenarios. In the future we wish to analyze the performance
of asynchronous CSMA for the single-packet medium access
problem. In addition, as stated previously, we wish to find a
tractable analytical model for slotted CSMA. In the future,
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Fig. 11. Simulations results for slotted CSMA with Constant Back-off window.
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Fig. 12. Comparison of p-persistent slotted Aloha, slotted Aloha with constant back-off (CB), slotted Aloha with Binary exponential back-off (BEB) and
slotted CSMA with constant window size.

we would also like to analyze the performance of splitting
algorithms for the single-packet medium access problem.
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