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We examine incentives for cooperative reliable rout-
ing in wireless ad hoc networks where the users may
be inherently selfish. In our game-theoretic formula-
tion, each node on the selected route from a source to
a destination receives a payoff that is proportional to
the product of a source-defined-price and the proba-
bility that a given packet can be delivered to the de-
sired destination, minus the corresponding communi-
cation cost. Although prior work has suggested that
this problem may be NP-hard, we give a polynomial-
time construction for deriving a Nash equilibrium
path in which no route participant has incentive to
cheat. Via simulations using realistic wireless topolo-
gies, we find that there is a critical price threshold
beyond which an equilibrium path exists with high
probability. Further, we show that there exists an
optimal price setting beyond the price threshold at
which the source can maximize its utility. We exam-
ine how these thresholds and price settings vary with
node density for different node reliability models.

1 Introduction

Game theory provides tools for analyzing the behav-
ior of inherently selfish players in a different systems.
Although initially developed to model the behavior of
humans in economic settings, it is now increasingly
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recognized as perhaps an even more appropriate tool
for truly “rational” computer agents serving selfish
users. These techniques are particularly applicable
in the context of mobile ad hoc and mesh networks
in which nodes corresponding to different users need
to be provided incentives for carrying data belonging
to other nodes in the network, as this activity on be-
half of others costs valuable bandwidth and energy
resources.

We consider a reliable routing game for wireless net-
works of selfish users that is essentially similar to the
game-theoretic models proposed and investigated by
Kannan, Sarangi, and Iyengar [1, 2, 3, 4], with mod-
ifications to incorporate an explicit notion of pricing.
In our model, nodes in the network forward packets
with a known probability. Each link uses ACK-based
retransmissions (simple ARQ) to provide guaranteed
delivery and therefore has a distinct transmission cost
that depends upon the link quality. The end-to-end
probability of packet delivery on any path from a
given source to destination is hence the product of
the node forwarding probabilities. The source pro-
vides a virtual “payment” to each node on the path
for each packet that is successful delivered to the des-
tination.

For each packet forwarded, the payoff for each rout-
ing node is therefore the difference between the pay-
ment it receives from the source and its cost of trans-
mitting that packet. Nodes agree to participate in
a routing path only if their payoff is positive. The
source accepts a route only if its expected benefit
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from the delivery of a packet (which depends upon
the value of the information being delivered) exceeds
the payment to participating routers in addition to
the cost of transmitting the packet to the first relay
node. Moreover, it is important for the source to find
a stable route configuration, where no participating
routing node has an incentive to change its next hop
link. Such a stable configuration corresponds to a
Nash equilibrium for the game.

The following are the key contributions and findings
of our work:

• In the work by Kannan et al., it is claimed that
the complexity of determining and computing
a Nash Equilibrium for the closely related reli-
able routing game that they present is NP-hard.
However, we are able to show in this work that
the existence of a Nash Equilibrium path can in
fact be determined in polynomial time, through
an algorithm that is a modification of the Dijk-
stra technique.

• It is intuitive that the likelihood of finding
a Nash equilibrium in which selfish nodes are
happy to participate in routing should increase
with an increase in the price offered to them
as payment. However, through realistic simu-
lations, we find additionally that in fact there
exists a critical threshold price beyond there is
a high probability that such an equilibrium path
exists, when considering random wireless net-
work configurations of fixed density. The exis-
tence of such a critical threshold has practical
significance as it implies that a fixed price can
be used as incentive in the case of mobile net-
works where specific configurations change con-
tinuously.

• We also find that there exists an optimum price
at which the source can maximize its utility.

• We evaluate how the critical price threshold and
the source-utility-maximizing price vary with
network density and the value of the informa-
tion to the source.

The rest of the paper is organized as follows. We
briefly discuss related work in section 2, before giv-
ing details of the reliable routing game in section 3.
We present the polynomial time algorithm for deter-
mining the Nash Equilibrium path in section 4. We
then use realistic simulations to demonstrate the ex-
istence of critical threshold prices and utility-optimal
prices, and to evaluate their dependence on network
and application parameters in section 5. Finally, we
present concluding comments in section 6.

2 Related Work

The problem of obtaining cooperative routing behav-
ior in wireless ad hoc networks consisting of inher-
ently selfish nodes has received considerable atten-
tion in recent years. Two main avenues of research in
this regard are (a) reputation and punishment-based
techniques and (b) pricing and payment-based tech-
niques.

Reputation-based techniques provide mechanisms to
track the behavior of nodes and punish those that
behave in a selfish manner. Along these lines, Marti
et al. [6] present the watchdog and path-rater mech-
anisms that punish nodes which don’t relay packets
correctly; the CONFIDANT protocol [7, 8] and the
CORE mechanism [22] are also distributed reputa-
tion systems that seek to identify and deal with mis-
behaving nodes. The OCEAN mechanism [9] seeks
to obviate some of the complexity associated with
second-hand reputation exchange-based schemes by
relying on first-hand observations alone. Srinivasan
et al. [18], provide a formal game-theoretic frame-
work for reputation/punishment and show that the
generous tit-for-tat mechanism can be used to obtain
Nash equilibria that converge to Pareto optimal, ra-
tional solutions. Equilibrium conditions obtained us-
ing similar generous tit for tat strategies taking into
account the multihop network topology for static and
dynamic scenarios are investigated in [12, 13]. Alt-
man et al. advocate a less aggressive punishment pol-
icy to improve performance [14]. Urpi et al. [10] and
Nurmi [17] model the situation as dynamic Bayesian
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games, which allow effective use of prior history in
enforcing cooperation.

The alternative to enforcing cooperation is providing
nodes with an incentive to cooperate through pay-
ment and pricing mechanisms. Buttyan and Hubaux
introduce the notion of NUGLETS, a form of vir-
tual currency that provide an incentive for nodes to
cooperate [16]. The use of pricing to obtain incen-
tives for cooperation is also advocated in the works
by Crowcroft et al. [21] and Ileri et al. [15]. In all
these schemes, nodes which forward data for others
receive credits that can be used to pay others to carry
their own data. DaSilva and Srivastava [11] study the
tradeoffs between cost and benefit in a game theoretic
context to determine how they impact cooperation.
Our work can be viewed as closely related to these
approaches, as we too provide incentive to the inter-
mediate nodes to cooperate in the routing through
the payment offered by the source node, and evalu-
ate the impact of pricing upon cooperation and the
utility provided to the source.

With payment-based schemes, however, there is an
associated risk of cheating due to false claims by
nodes trying to obtain payments they do not deserve.
While we do not explicitly tackle this issue in our
work, researchers have proposed solutions for han-
dle this potential abuse. The micropayment scheme
presented in [20] incorporates an audit mechanism to
prevent false claims. SPRITE is another cheat-proof
mechanism that uses a credit clearance server to pro-
vide payments to nodes for cooperation. Anderegg
and Eidenbenz [19] propose the use of the Vickrey-
Clark-Groves mechanism to obtain truthful claims for
payments.

Our investigations are motivated by the works of
Kannan, Sarangi and Iyengar on reliable query rout-
ing [1, 2, 3, 4]. They are the first to formulate a game
where the node utilities show a tension between path
reliability and link costs, and they have considered
different interesting variants of this problem. One
difference in our work is that we modified the no-
tion of value of information in their work to an ad-
justable price offered by the source, and modified the
source payoff to include this payment. This allows

to evaluate how pricing impacts the cooperation of
nodes. However, our work directly contradicts the
claim in [1, 2, 3, 4] that the problem of determining
the Nash equilibrium path under such a formulation
is NP-hard. We find flaws in the proofs presented
in [3, 4]. For one, the authors claim the problem is
not even in NP. Given a particular path as a cer-
tificate, it can be verified first in O(n2) time that it
has positive payoff for all nodes. Then, to consider
the possible choices for defection for any given node
(keeping the strategy of all other nodes in the net-
work the same, as per the definition of Nash equilib-
rium), it suffices to consider having it connect to each
of the other nodes ahead of it on the path, and see
whether those shortcuts can improve its payoff and
give it an incentive to defect. Doing this O(n) ver-
ification procedure for each node on the path takes
a total of O(n2) time. Hence the problem is in NP.
Further, the proof in [3, 4] attempts to prove NP
hardness by reducing the problem from Hamiltonian
path. However, there is a confusion in the proof in-
troduced by the fact that in their particular graph
construction the shortest positive payoff paths hap-
pen to be Hamiltonian (visits all nodes). Even with
the traditional simple minimum cost path problem
solved using the Dijkstra’s algorithm, it can happen
for certain graphs that the minimum length path be-
tween a pair of nodes happens to visit all other nodes
in the network. This does not make the shortest path
problem (which is in P) equivalent or harder in com-
plexity than finding a Hamiltonian path in any arbi-
trary graph (which is NP-complete).

3 Payoff and Utility Functions

Energy saving is fundamental important to routing
in wireless ad hoc networks. The problem considered
in this work also considers the challenge of node re-
liability. For each packet being forwarded by a given
node i, there is assumed to be a known probabil-
ity Ri that that node is able to reliably forward this
packet. The original works on sensor-centric reliable
query routing [1, 2, 3, 4] consider probabilistic node
failure. Another interpretation is, in the context of
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real-time traffic, to think of the packet as having a
strict deadline and being dropped forcibly when fac-
ing delay, such as when the node is busy with other
activity (processing, communication) or if it is sleep-
ing. The quantity 1−Ri then represents a per-node
drop probability for packets with strict deadlines in
a real-time stream.

We assume in the following that all nodes in the net-
work are driven by their own self-interests as defined
by their corresponding payoffs. The payoff models we
use involve a tradeoff between path reliability and en-
ergy consumption for each node.

In each game, a source node (src) holds a piece of
information with value D and wants to send it to
a particular destination node (dst). The source node
will offer a price p, indicating the payment to be made
to each routing node vi for i = 1, 2, ...n on a given
path P = (src, v1, v2, ..., vn, dst). A node on the path
will participate in the routing only if its payoff is
positive. Among all the feasible paths, the source
will choose the one that maximizes its own expected
payoff after it pays all the routing nodes.

Let Ri denotes the reliability for each routing node
vi, and Ci,j denotes the link set up cost between node
vi and vj . The payoff function of the routing node vi

in path P is defined as the production of the onward
path reliability and the price paid by the source node
minus the link set up cost between vi and its next
hop vi+1.

U(vi, p) = p×
n∏

k=i

Rk − Ci,i+1

The strategy for each intermediate node is to chose
whether to forward this information or not, and who
to forward to, based on the price provided by the
source. Only if it can profit from forwarding the in-
formation, will it participate in the routing, and it
will try to maximize its payoff by choosing the ap-
propriate next hop.

The gain or utility for the source node in this routing

game is defined as following:

U(src, D, p) = (D − n× p)×
n∏

k=1

Rk − Csrc,1

The source utility/gain relies on the value of expected
profit for complete routing the information to the des-
tination minus the cost for source set up link with the
first hop. The source’s goal is to maximize its gain
based on all the bids provided by the intermediate
nodes. The destination node does not participate in
the routing game, and simply receives whatever in-
formation is sent to it.

4 Computing the Nash equilib-
rium

In Game theory, the Nash equilibrium is an impor-
tant solution concept that represents a stable out-
come for a game involving selfish users. A Nash equi-
librium is a set of strategies, one for each player, such
that no player has incentive to unilaterally change
his/her action. Players are in equilibrium if a change
in strategies by any one of them would lead that
player to earn less than if she remained with her cur-
rent strategy.

In this section, we first introduce the formal defini-
tion of positive payoff path. After that, a polyno-
mial construction for finding a positive payoff path
is presented. Furthermore, we prove that using this
algorithm, the outcome path is a Nash equilibrium
path.

Definition 1 A path P = (src, v1, v2, ..., vn, dst) is
a Positive Payoff Path (PPP) with respect to a pay-
off function U(vi, p) if and only if for all the inter-
mediate nodes vi(i = 1, 2, ...n), the payoff function
U(vi, p) > 0. P is a Negative Payoff Path (NPP) if
∀vi,U(vi, p) < 0.

To find a positive payoff path, we first simplify the
problem to a more concise representation. Accord-
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ing to the definition, we need for each intermediate
routing node vi, U(vi, p) > 0. It equals to

n∏
k=i

Rk >
Ci,i+1

p

To convert the production to summation, we take
logarithm for both side and get

n∑
k=i

logRk > log
Ci,i+1

p

. Notice that 0 ≤ Rk ≤ 1, we take the inverse of each
Rk to make each term in the summation positive.
The original formula now transform to

n∑
k=i

log
1

Rk
<

p

Ci,i+1

for each vi. Replacing log 1
Rk

by rk (rk ≥ 0) and
replacing p

Ci,i+1
by ci,i+1, we formulate the problem

of finding a PPP in the original graph to an equal
problem of finding an NPP in a transformed network
graph, where each node has a positive value ri and
each edge is assigned a value ci,j , according to utility
function

U−1(vi, p) =
n∑

k=i

rk − ci,i+1

A polynomial time algorithm modified from Dijk-
stra’s algorithm can be applied to find the NPP in the
given graph. Figure 1 depicts the algorithm to find
the NPP for a node vi to destination (denotes this vi

as src in the algorithm). In brief, the algorithm starts
labeling nodes from the destination, applying Dijis-
tra’s algorithm, with adding negative utility checking
step. In the algorithm, each node has a label which
is a tuple (from, l(vi), U−1). The first item in the
tuple indicates from which node the label comes, i.e.,
the next hop of current node starting from source.
The second term in the tuple records the summation
of rk, which is analogous to the length in Dijistra’s
algorithm. The third term tracks the current U−1

value. Since the r value is related to nodes instead

of the links, we need a definition of neighborhood set
for a given graph G(V,E).

Definition 2 Given a graph G(V,E), I ⊂ V ,S ⊂ V ,
S is the neighborhood set of I (denote as N(I)) if and
only if ∀j ∈ S, j /∈ I

∧
∃i ∈ I such that (i, j) ∈ E

Finding An NPP in Transformed Network
Graph

1. Initialize: Feasible set FS = {dst}, all other
nodes labeled as (−, inf,−)

2. Label: if starting node src ∈ FS or N(FS) =
∅ ∧ src /∈ FS, program terminates. Other-
wise, for every node vi ∈ N(FS)

• try step: try to change the node’s
second term in the label to l(vi) =
minvj∈FS∧(i,j)∈E (l(vi), l(vj) + ri)

• check step: if U−1(vi, p) = l(vi)− ci,j <
0, label change is successful and node vi

gets new label; otherwise delete the cor-
responding edge (i, j), go to re-try step

• re-try step: if (∃k ∈ FS such that
(i, k) ∈ E, go to try step; otherwise, keep
vi’s label unchanged, continue;

3. Expand: choose minv/∈FS l(v), record its cor-
responding next hop and U−1. We say this
node has completed labeling. Add this node
into set FS, go to Step 2 (Label).

Figure 1: Polynomial time algorithm to find a Nega-
tive Payoff Path in transformed network graph

Lemma 1 Given graph G(V,E), if (i, j) ∈ E is
deleted in some step in the Algorithm, (i, j) does not
lie in any NPP from src to dst in the original graph
G(V,E).

Proof: (by contradiction) Assume that there is a
link (i, j) between nodes vi /∈ FS and vj ∈ FS
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deleted in some iteration lies in an NPP path P =
(v1, ..., vi, vj , ..., vn). To clarify our claim, we now as-
sume that edge (i, j) is the first link we delete during
the algorithm (It can be easily extended to the case
where (i, j) is not the first link to be deleted since the
graphs before and after deleting an edge are exactly
same when considering NPP problem.) Since P is an
NPP, we have

∑n
k=i rk < ci,j , i.e.

∑n
k=j rk+ri < ci,j .

Recall that in the algorithm, we check U−1 for try-
ing to label vi as minvj∈FS∧(i,j)∈E (l(vi), l(vj) + ri).
And for node vj , l(vj) is the minimum summation
of r values from node vj onwards since vj is in the
feasible set. Hence, we have

n∑
k=j

rk + ri ≥ l(vj) + ri ≥ min(l(vi), l(vj) + ri)

It follows min(l(vi), l(vj) + ri) < ci,j . Then, accord-
ing to the algorithm, edge (i, j) should not be deleted.
This contradicts the assumption. Thus edge (i, j)
does not lie in any NPP from src to dst in G(V,E).
�

Theorem 1 The algorithm to find an NPP path in
the transformed network graph is correct.

Proof: (Soundness): the path found by the algo-
rithm in the transformed graph is guaranteed to be
an NPP path since it has a check step to make sure
each node in the feasible set has a negative payoff.

(Completeness): We need to prove that if there ex-
ists an NPP in the graph, the algorithm will return
one. According to Lemma 1, since the edge deleted in
the algorithm doesn’t lie in any NPP, the algorithm
doesn’t destroy any NPP path in the graph. The al-
gorithm terminates only under two conditions: either
it finds the NPP or N(FS) = ∅ ∧ src /∈ FS. The
latter case indicates that the source and destination
are separated into two isolated parts of the graph,
which implies that there is no NPP in the original
given graph. �

The computational complexity of the algorithm is
polynomial. The Dijkstra’s algorithm can be run in
time O(n2). For each edge deletion in our algorithm,
we need to retry the labeling, which will cost at most

extra O(n) time for each node. So the running time
of our algorithm is bounded by O(n3).

Notice that when mapping the algorithm back to the
PPP problem, we always choose the most reliable
path among all the feasible paths. In the algorithm
we keep adding the nodes with minimum summation
of r that still satisfies the negative utility constraints.
This observation can be used to prove that path re-
turned by this algorithm is a Nash equilibrium path.

Theorem 2 The path found by the algorithm is a
Nash equilibrium path in the PPP finding problem.

Proof (by contradiction): Assume that the algorithm
returns a path P = (v1, v2, ..., vi, vi+1, ..., vj , ...vn)
which is not a Nash equilibrium. Without loss of
generality, suppose only one node vi wants to switch
his next hop from vi+1 to vj , where j > i + 1 (there
is no motivation to switch the next hop to a node
that not on the forward path as this would discon-
nect that node from the source giving 0 payoff). Path
P̂ = (v0, v1, ...., vi, vj , ..., vn) is also a PPP, since the
payoff of the nodes before vj increases by the increase
of path reliability (remember 0 ≤ Rk ≤ 1) and the
payoff after vj (including vj) keep unchanged. Thus
path P̂ is one of the feasible paths. Since the path
abandoned some intermediate nodes, the path relia-
bility of P̂ is larger than P. This would imply that the
algorithm should return path P̂ instead of P, which
contradicts the assumption. �

As we mentioned before, the algorithm is run to ob-
tain a positive payoff path to destination from each
neighbor of the source node. Among all the feasible
paths reported from its set of neighbors, the source
node picks the one that gives its maximum profit ac-
cording to the source’s utility function (which incor-
porates the value to the source and the payment made
to all nodes on the path in addition to the path reli-
ability and the cost of transmission).
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(a) (b)

Figure 2: The probability that a positive payoff equilibrium path exists as a function of the price offered by
the source and the 90% critical price threshold as a function of density (for correlated reliability model)

(a) (b)

Figure 3: Source utility as a function of offered price, and Peak source utility as a function of density (for
correlated reliability model)
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5 Evaluation of Price Selection

We now turn to a set of realistic simulations, to eval-
uate how pricing impacts the existence of Nash equi-
librium paths and the source utility.

5.1 Simulation Experimental Setup

By using a realistic lossy wireless topology genera-
tor [24], we simulate 1000 graphs for each case, keep-
ing all radio and environment parameters to the de-
fault values corresponding to a Mica2 mote in a typ-
ical environment (namely, path loss exponent = 4.7;
shadowing standard deviation = 3.2; non coherent
frequency shift keying; Manchester encoding; output
power = -7.0dBm; noise floor = -105.0dBm; preamble
length = 2; frame length = 50). The number of nodes
is varied from 15 to 40 in steps of 5. All the nodes are
deployed within a 12× 12m2(square meters) terrain.
The source and destination nodes are fixed at location
(0, 0) and (12, 12) respectively. We use the inverse of
link PRR (Packet Reception Rate) as the link cost as
this represents the expected number of transmission
on the link if ARQ is used with constant transmit
power setting. We use two models to simulate the
node reliability, called the correlated model and un-
correlated model. In the correlated model, we set up
the relationship between the cost and the reliability.
Only links with PRR ≥ 0.5 are considered for count-
ing the degree, and with this constraint, the degree of
each node is calculated and normalized to [0.1, 1] with
a linear mapping to ensure that max degree maps to
1 and degree = 1 to 0.1. In the uncorrelated model,
node reliability is generated independently uniformly
and randomly in [0, 1].

5.2 Results

Figure 2(a) shows the probability that a positive pay-
off Nash equilibrium path exists as a function of the
price offered by the source. For each curve, corre-
sponding to a fixed number of nodes (fixed density),
we see that the curve increases to a point where it is

close to 1. This shows the existence of critical thresh-
old prices (independent of the exact configuration)
that ensure the existence of a Nash Equilibrium path
with high probability. We also see that this price
threshold decreases with the density, a trend that is
concrete visualized in figure 2(b) which plots 90%
price thresholds as a function of the node density.
This trend is because with growing density there are
more choices to pick the path from, and there are a
greater number of high quality links which incur low
transmission cost.

Figure 3(a) shows how the source utility (gain) varies
as a function of the offered price. Initially there is an
increase as there is a significant increase in the re-
liability of the paths that can be obtained with an
increase in the price. However, beyond a point, of-
fering higher prices is merely wasteful as it does not
provide additional incentive for cooperation and the
most reliable paths is already attained. Although the
peak source utility varies with the node density, this
figure suggests that the optimal price setting remains
almost the same regardless of node density (there ap-
pears to be only a slow decrease within the range con-
sidered) — this bears further study. The peak source
utility is plotted with respect to the node density
also in figure 3(b). This shows that the peak utility
improves with the number of nodes, which is also be-
cause of the diversity gains obtained with increasing
density.

Figures 4 (a) and (b), and 5 (a) and (b) are the cor-
responding four sets of plots for the model where the
node reliability values and link costs are uncorrelated.
The only difference is that here the utility values are
higher as the high degree nodes are no longer doomed
to have poor reliability.

6 Conclusions

We have examined the problem of pricing coopera-
tion in a network of unreliable nodes. Our problem
formulation is similar to that presented by Kannan
et al. [1, 3, 4]. Compared to much of the literature on
inducing cooperation for routing, the key difference
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(a) (b)

Figure 4: The probability that a positive payoff equilibrium path exists as a function of the price offered by
the source and the 90% critical price threshold as a function of density (for uncorrelated reliability model)

(a) (b)

Figure 5: Source utility as a function of offered price, and Peak source utility as a function of density (for
uncorrelated reliability model)
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in this formulation is that for each node on the path
there can be a tension between picking more reliable
paths (which offers a greater expected payoff) and
the transmission cost (which is different for different
next-hop links, and hence for different path choices).
However, contrary to the claims in [1, 3, 4], we are
able to demonstrate a polynomial-time algorithm to
compute the Nash Equilibrium for this problem.

In evaluating the impact of pricing, we find the exis-
tence of fixed critical price thresholds beyond which
nearly all random configurations of a given density
contain a positive payoff path that is in Nash equi-
librium. Further, we find that there exists a density-
dependent optimal price setting greater than this
threshold value that maximizes the source utility. We
find that increasing the density improves performance
from the source’s perspective as it reduces the critical
price threshold and improves the peak source utility.

In future work, we are planning to provide analyti-
cal expressions to model the impact of pricing on the
existence of the Nash equilibrium and on the source
utility. This would allow us to make more concrete
statements about how the critical price threshold and
the optimal price settings vary with respect to dif-
ferent network parameters. We also plan to consider
generalizing this work with respect to the payoff func-
tion.
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