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Abstract— We propose a push-pull mechanism to enhance the d(v)/2m, whered(v) denotes the degree of nodeand m
performance of random walk-based querying in heterogeneasi the number of edges in the graph. This means that nodes with
sensor networks and analyze its performance. Using connécohs higher degree are visited more frequently by the random walk

between random walks and electrical resistance, we obtain The id is intuitivelv simol i hed
closed-form expressions and bounds of the querying cost foa € ldea we use Is Intuitively simple, events are pushe

linear topology, along with numerical solutions for more realistic ~ towards high-degree nodes (cluster-heads) and pulled from
topologies via Markov chain analysis of the time to absorptin. the cluster-heads by performing a random-walk-based query

We show that having even a small degree of heterogeneity can|n this scenario some important questions arigat is the

provide very significant improvements in query performance ;i nant of heterogeneity on performance? and How much
Specifically, for linear topologies we prove that using a fration .
heterogeneity is needed?

4/5k of uniformly-placed high-degree cluster-heads (where2k ) )
is the degree of each such node), a query cost reduction of We use two theoretical tools to explore these questions. Our

©(1-1/k%) can be obtained. Realistic two-dimensional topologies analytical results are based on the direct connection keetwe
cluster heads provides a query cost mprovement between 8o /2o Walk on a graph and thesistance of the elecrical
cluster- . . .
and 70% depepnding on thqe coX/erage o?the high-degree nodes. neftworlf obtained from the graph by viewing each edge as a
unit resistor [29], [30]. We bound the influence of clusteats
on the resistance which in turn bound on the query cost. Our
|. INTRODUCTION second tool is the use of absorption states in the tranaition
obability matrix of a grapld: to obtain the expected number
steps in a query.
The main contribution of this work is to show that hetero-
eneity allows random-walk-based queries to enhance their
erformance. In particular, the striking result we obtasn i
that for a line topology where cluster-heads have a coverage
(cover k nodes to the right an& nodes to the left) and
re uniformly distributed (evenly spaced), a fraction -ﬁf
oy des being cluster-heads can offer a reduction in queny cos
o1 - k%) by using a simple distributed algorithm. In
intuitive terms this translates to requiring less than 1G%he
odes being cluster-heads to obtain two orders of magnitude
mprovement in query cost. Through numerical analysis, we
cprhesent results showing that in 2D networks also a small
percentage of nodes being cluster-headsl0%) can lead to
significant improvements in performance (between 30% and
ghO% depending on the coverage of the high-degree nodes).

An important approach for querying in unstructured systen?:%
is the use of random walks. This approach is gaining pOp(l)J-
larity in the networking community since random walks are
intuitively simple — nodes are visited sequentially in adam 9
order with successive nodes being neighbors in the gragh [
[22], [23], [24]. There is also a significant body of theocati
literature on random walks as querying mechanisms [9],,[1
[11]. However, while this literature provides much insigb
the scaling behavior of random walks on simple classes
deterministic graphs (such as 2D Torii), a major property
real-life networks, heterogeneity, was left out of diséoiss

Heterogeneity on the degree distribution is a highly likely
characteristic in real large-scale wireless systems, @agh
sensor networks, for a number of reasons. First, rand
deployments are inherently non-regular graphs. Secongirem
ical studies [2], [31] have revealed that hardware variamte
the sensitivity and output power of radios lead to nodes wi
significantly higher degree than the average (cluster$jead
Third, some works [3] have recently proposed that for wssle 1. ENHANCING RANDOM WALKS FOR HETEROGENEITY
sensor networks to scale, heterogenous networks cormgsitin
highly capable and low capable devices are required.

In this work we propose the use of a push-pull mechani
to exploit the heterogeneity of the underlying communaati
graph to enhance the performance of random-walk-ba
gueries. We take advantage of a well known property
the simple random walks: its stationary distribution(v) =

In this section we present the event-push query-pull algo-
rithm used in our work. We consider a network where two type
3 nodes are available: i) nodes with limited communication
c%pability (low degree) and ii) nodes with higher communica
ish capabilities (high degree, cluster-heads). Our fasumn

frastructure-less networks (no location nor GPS cajisgs),
nodes are able to communicate only with their neighbors, and

This work was supported in part by NSF through grants numbans- they are aware of their neighbors degree (if neighbors are
0325875, CNS-0347621, CNS-0435505, and CCF-0430061. cluster-heads or not).



Our query mechanism is built from two parts: first an event lg” +1) Ql‘;?f;frcgfv;';‘;is
e is generated randomly at any node in the network, and d inter cluster-heads distance
second, a random-walk-based query is issued in order to find | « overlaping of cluster-heads coverage (region|2)
the event. The event can either remain at the node where (s+1) | number of clusters
it was generated or move to a cluster-head (if one exists). In TABLE |
a network where all nodes have the same degree, the event NOTATION

remains at the node where it appears. When cluster-heads
are present, upon detection of an event, the event follows

Algorithm 1. used. An element of or E is represented by a lowercase,

a subset or array is represented by a bold lowercase and the
complement of a set or element will be denoted with an upper-
bar, for example: represents an elemer,an array (subset)
ande anderepresent the complementscoénde, respectively.
The hitting time h,,,, is the expected time taken by a simple
random walk starting at to reachv for the first time [27].

Algorithm 1 Event forwarding in Heterogeneous Network
Require: evente at nodev;
1: while nodew; is not a cluster-heado
2:  if there is a neighbov; with degree(;) > degreeg;)
then

3 Lorw:;r?e to ”.}e ne||ght:)or V(\;'th the highest c:jggr(:\e; For a sources € V and the subset of cluster-head nodes
. elserea Ies uniformly at random among candidates o C V, the average hitting time from to e is:

5: forward e to a random neighbor Z Bse

6: endif o — €€ 1)

7. end while 5 le]

Thecommutetime C,,, is defined as the expected time taken

In order to find the event, a query is issued through & a random walk starting at to reachv and come back to
predefinedsink node s. The query follows asimple random 4. Note that by definitionC\,, = hu., + hva, but in general
walk where the next node is chosen uniformly from the, £ h,,. In a seminal work, Doyle and Snell [29] explored
neighbors, until it finds the event the connection between a random walk on a grépand the

In the scenario described above there will be two costs:rgsistance of an electrical network obtained frérby viewing
the cost of moving the event to a cluster-he@d... and the each edge as a unit resistor. In [30], Chanetral. extended
cost of the query (i.e random walk) to find the evefif,.;y. this work and proved the following equality that relates the
The total cost is the sum of botti;ota1 = Cevent + Cquery- commute timeC,, and the effective resistancg,, of the

Denoting L as the number of low-degree nodes afidas electrical network of3 :
the number of high-degree nodes, how d6eg.; vary with
the ratioHLJrL? Is there a value ofﬁr—L that will reduceCiota) Ciyo = 2mRys 2)

significantly ? _ . . .
Wherem is the number of edges in the graph. Notice that in

case of symmetfyh,,,, = h,., Which implies that the commute

time is two times the hitting time. We will use this property

~ In this section we focus on line topologies and we arg e analysis of the hitting time for line topologies.
interested in analyzing the impact of cluster-heads on gbst

event discover(;,i.1)- The main result is as follows:

IIl. ANALYTICAL RESULTS

B. Parameters of Line Topology
We consider the undirected grapt(n, k,d) = G(V, E)
Theorem 1: Consider a line topology with (n + 1) With the following parameters. The set of nodeslis =
nodes, where cluster-heads have a degre®: and are vo;v1,---vn, Since the index goes from O to, the number
uniformly distributed. The first local minima for the Of nodes is[V| = n + 1, we will also denoten as the
maximum hitting time and for the query cost is obtained number of edges when no cluster-head has been added (when

when the fraction of high-degree nodes i%i. And for this nhodes communicate only with their immediate right and left

i

fraction a reduction in query cost of ©(1 — ) is obtained. neighbors). In addition to the initial edges, each cluster-head
has edges to all nodes which are less than or equahtodes
As mentioned earlier, this result is obtained using boun@¥ay from it on the lined is the inter cluster-head distance,
on the resistance of an electrical circuit related to thevagt hence, a node; is a cluster-head iffi mod d = 0. The set
graph. The remainder of the section is dedicated to the prédfedgesk for L(n, k., d) is defined as follows:
of this theorem, and Table | presents the notation used éor th
proof, which explained in detail in the next two subsectionsy, _ {viv; | (i modd=0and|i—j| <k)orli—j| =1}

A. Background on Random Walks and Resistance Methods _ we wil (_:onside_r t_he case Whe'_ie>> k > 1. Since we are
_ interested in the limit. — oo we will consider only the cases
For a graphG(V, E) where|V| is the number of nodes and

|E| is the number of edges, the following notation will be The graphG’ where we name: asv and vice versa is isomorphic &



If

—E 4 5 ™)
Region 1 | & |
‘ ‘ r(x)
112
K K lower Bound upper Bound
Region 2 *—’

If

Region 3

Fig. 2. Resistance calculation for regions 2 and 3.

Fig. 1. Examples of line topologies. The big circles dendister-heads and F—=92 = 7“(2) . 2/3
the dashed lines their coverage all nodes withink hops from the cluster- - -
head are its neighbors. k=3 = 7“(3) = 5/8

k=4 = r(4)=13/21
It can be derived that the numerator and denominator
wheren = sd, wheres is an integer. Then, the total numbefollows the fibonacci seriegib(.), hence:
of clusters is given bys + 1). .
For a givemm andk we are interested in studying the impact (k) = M (5)
of d on Cyota Via the resistance, and the analysis is divided in fib(2k)
different regions according to the inter cluster-headsadise Since every cluster-head covers its right andAefiteighbors

d: and the extreme vertices cover only one side, the effective
region 1, 2k <d <n/2 resistanceR; between the extremes df is given by:
regions = ¢ region 2, k <d <2k 3)
region 3, 1<d<k Ry = (2r(k)+d—2k)s ©)
= (2r(k)+d—2k)n/d

Figure 1 presents examples of line topologies for the 3
different regions. The big circles denote cluster-headstaa  Finally, using equation 2 and symmetry, the hitting time for
dashed lines their coverage Notice thatk is constant for all nodes at the extreme of the line is given by:
three topologies.

Later in this sgction we will show th&};.; depends mainly h, = (%)2 (d+2(k — 1)) (d + 2(r(k) — k)) @)
0N Cquery, Specially ford < 2(k + 1) where Ceyeny Will be . .
shown to be less than 1. For this reason, the resistancesialy 2) Analysis of region 2: The number of edges is the same
will be focused orCqyery- as equation 4 since every cluster-hea_d that_ls added brings

For the different regions we will first obtain expressions fo?(k — 1) new edges. However, the effective resistance between
the number of edges and the effective resistandebetween 2 cluster-headsis dlffere_nt. In 'FhIS subsection we proujolger
the nodes at the extremes of the line. Then, in subsectibns fnd lower bounds for this resistance.

C and 11I-D we use these expressions, together with symmetryL€tting ok be the overlap between the coverage of two
to obtain the maximum hitting time and average query cotéighboring cluster-heads, whefe < o < 1, thend =
Couery- _k(2_—a). The resistance circuit is equivalent tq the one shown

1) Analysisof region 1: Recalling that the number of nodedn Figure 2, where (z) = r(k(1—a)) (the effective resistance
in £ is (n+1), and that when no clusters are present the initif" the non-overlapping part). Given thaf) converges to
number of edges is. Besides:, each cluster-head contributeghe inverse of the golden ratid,/2 < r(z) < 1, further,
with 2(k — 1) new edges. Then the total number of edges gonsidering Rayleigh’s monotonicity law we can provide eipp

given by: and lower bounds for the resistance as shown in Figure 2:
m; =n-+ 2(]{3 — 1)5 aszrQ < T2 < aszrl
=n+2(k—-1)n/d @) azs < H <o (8)
=2(d+2(k-1)) aired < <gma

The coverage on each side of a cluster-head can bd-inally, the hitting time is bounded by:
represented by an effective resistandé) (Figure 1).r(k) D(m)2(dkka2)
can be derived based @nusing technigues to reduce resistors d ak+2
in parallel and series: ha L ©)
<2 (k)




Maximum Average
Hitting Time (k) Hitting Time (Cquery)
[ subsection IlI-C ] [ subsection 11I-D ] ay = 12nk—Tn+4k—16k>
region 1 (lower bound)]  (%)%(k — 1) Ch=Din{ntk) 2(2n—dk+1)k

T e 65)(8 =5 80n2k2—88n2k+96nk2—128nk3+17n2+48nk—16n
A n 3k— n(13k— n+5 —
region 2 (upper bound)  2(3%)* (G551 @ ETEDE 2(2n—4k+1)k (14)
i sny2 k=1 (k=1 (2n+k)n
region 3 6(%) (m) BN
TABLE Il ar = —8k?+6nk—4n—2vV—8k3n+bn2k2 —4n2k+8nk (15)
MINIMUM MAXIMUM AND MINIMUM AVERAGEHITTING TIMES PER L 2k(n—2k)
REGION

For largen and k, ay = ar = 0.7639, hencea,y, ~ 2,
Table Il shows the upper bound &% for a,p:.

From Table Il we observe thdt; = ©(n?/k), andhs and
hs are©(n?/k?), hence for large: the minimum is either on
ho oOr hz. Sincen and k are given, we can compare directly
upper bound of, and h3 given in Table II, which leads to:

3) Analysis of region 3: For this region, we will analyze
only the point wherel = k.

Contrary to the case otgions 1 and2, neighboring cluster-
heads have an edge connecting each other, hence each-cluster
head bringsZ(k — 1) — 1) new edges. And the total number
of edges is given by:

lim 3~ 10817 (16)

k—oo No

Hence, the first local minima is in region 2 and the inter

ms =n+ (2k—3)s clu§ter—head distance that gttains this mi_nimumii& 5k,
—n+ (2k—3)n/d (10) which corresponds to a rati# between high-degree nodes
=32(k—1) and the total number of nodes:

The resistance between two cluster-heads can be trans- U= (‘L”)(L) ~ 4

formed to an equivalent circuit as shown in Figure 2, which 5k n+1 5k

leads to an equivalent resistance7§T between two neigh- It is important to notice that the global minima might be in

boring cluster-heads. Hence, the effective resistancsdmet region 3, however, the reduction obtained by moving from the

the extremes of the line is given by: first local minima to the global minima is not significant, as
it will be shown numerically in the next section. Furthermor

(17)

R %518 (11) as presented in equation 13 the cost in region 3 is the same
= m1R order as in region 2.

Finally, the hitting time ford = k is given by: . o
D. Local Minimum for Expected Hitting Time
h3(d=k) = 6(%)22—;% (12) For regions 1, 2 and region 3 (when= k), cluster-head
. . is visited only after cluster-head— 1 has been visited. This
Tight analytical results for the casé < k are harder to property allows us to discard all nodes beyond a given atuste

obtain, but we can show the following lower bodnd headi when we are interested in obtaining the hitting time.to
o2 Hence, for cluster-headwe can consider a new line topology,
hs = ok (13)  which is a shorter version of the original one, where the sink

is at one extreme and cluster-heai$ at the end of the new
line. This behavior allows us to use directly the expression
C. Local Minimum for Maximum Hitting Time derived in the previous subsections with the only change to

In this section we analyze the hitting time between the sinq<e made in the initial number of edges
Y 9 Recalling that the distance set between the sink and cluster

(vo) and the last cluster-head on the ling ). Table Il shows heads is given by(0, d, 2d, 3d...(s — 1)d, sd}. Conery i the

the minimum value ofi, h, andhs. In region 3, we analyzed average hitting time K{[h;]) to all clusters and for region 1 is
only one point { = k) , hence, for region 3 the value in . en by:

Table Il is the one obtained in equation 12. For region 1, ti'(f]el
minimum value is obtained fod = 2k, we further assume a

lower bound onh, by settingr(k) = 0.5. Zhl (n = id)
In the case of region 2, the hitting time depends on the =

overlapping o. Even thoughak should take only integer E[m] = G

values, we assume to be real in order to differentiaté, L)

; ) o =) (d+2(k-1)) (d+2(r(k) — k
(equation 9) and obtain the value @fthat minimizesh,. The ;(d) (d+2 ) (d+2(r(k) )
values ofa for the upper and lower bounds are given by, ( = s+1
andayp): dr2(k—1)) (2r(k)+d—2k) N -

L) = (420e1)) Grik)rd—2) §7 ;2

2The proof of this result is not shown due to lack of space. Heaweit =1 s(2541)
does not affect in anyway the result in Theorem 1. It is preskonly on the (d+2(k—1)) (2r(k) +d —2k) ==5—
interest of completeness (18)
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Fig. 3. Cquery: Cevent @andCiota1 Vs the number of clusters for a line topology with 121 noded different values ofc (6, 8 and 10). The solid lines
represent the cost obtained using Markov numerical arsabysdl the dotted lines represent simulation results.

For Region 2, using the upper bound of equation 9 ammtoved that the first local minima occurs in region 2 for both
recalling thatd = k(2 — «), the expected hitting time is giventhe maximum and average hitting times, and that their cost

by: are©(n?/k?). It is known that random walks on regular line
. topologies have a cost @d(n?) [9], hence, a line topology
Z ha(n = id) L(n, k,d) with d = 2k leads to a cost reduction 6f(1 — ;%)
g for both the maximum and average hitting times.
E[I’LQ] = = s
Z 2(2)2(4]{_1“70‘_2) IV. NUMERICAL AND EXPERIMENTAL RESULTS
d E+1 . . . .
==l la i (19) In this section we use Markov numerical methods and simu-
S lations to study the impact of heterogeneity on the perforrea
= % Zz‘2 of random walk-based queries. First, we briefly introduce th
n(2n+1)(4k—1§§12) method of using absorption states to obtain hitting times.
= B RE=a))? Then, we present numerical results on a line topology that

The derivative of this equation with respect to leads validates the analytical contributions of Section Ill. &y,
we present numerical results on regular grids and random

to an expression that is considerably more complicated th ) . . -
equation 14 and it is not presented. However, the resultthare geometric graphs, and simulation results on realistic lygsap
’ for wireless sensor networks.

same as the obtained for the maximum hitting time,dg.=
ar = 0.7639 and ooy ~ %. The closed-form expressions and
values can be easily obtained by using mathematical saftway. Background on Hitting Times in Markov Chains

such as Matlab or Mathematica. ... Given a graphG(V, E), a random walk on the graph can
_For Region 3, wheni = F, the expected hitting time is he gefined by a Markov chait, where M represents the
given by: transition probability matrix. The notation used for elerrse
S ko1 and subsets oV and E is the same as the one presented in
> 6(2) 1 subsection I11-B.
Elhs(d = k)] = =0 + Let us consider that the event is in node= V' and the
st (20) sink is in nodes € V. As presented in [28], absorption states
- ﬁ%zz? can be used to obtain hitting times. Léd,. be the matrix
i=0 resulting from deleting the row and column corresponding to
= %5(25 +1) e in M, and letQ, be:

Table Il also presents the minimum value®@f;e.y for the .
3 regions:d = 2k, r(k) = 0.5 for region 1 (lower bound), Qe=(I—-M.)"1 (21)
d= 3k for region 2 (upper bound) and = & for region 3 \yhere J is the identity matrix andl is a column vector
(only point analyzed). The comparisons lead to the samétresyt gnes., is an array representing the expected hitting time
as the ones obtained for the maximum hitting time: the ordggm each node ta: (excepte). Hence, in our casé,, —
of 1, is greater than the order & andh3, and asn andk () (5), whereQ. (s) represents the'th element of the array.
goes to infinity the ratio of.3 over hy, goes to 1.0817.

Now we have all the elements to prove Theorem 1

Proof of Theorem 1:

The optimization of the maximum and average hitting times For a given line topology (n, k, d) with transition proba-
(equations 9 and 19) leads tb = %k, using Table Il we bility matrix M, where the sink is the extreme left vertices

B. Line Topologies
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Fig. 5. Cquery (expected hitting time) for a line topology with 121 nodes
and values: ranging from 5 to 10. The full lines represent Markov numaric
values and the dotted lines the analytical results throegistance methods.
The line with the circle markers represent the analyticilles of the number
of cluster heads for the first local minima.

Fig. 4. Maximum hitting time for a line topology with 121 naland values
k ranging from 5 to 10. The full lines represent Markov numericalues

and the dotted lines the analytical results through resistanethods. The
line with the circle markers represent the analytical valoéthe number of
cluster heads for the first local minima.

vo. Clusters-heads are positioned @t where i=0,1, ..., s. expected number of steps of each orphan node to reach the
The hitting time fromu, to a specific cluster-head @ (vo), closest node directly connected to a cluster-head. Hehee, t
whereQ,, is given by: cost of moving orphan nodes betweeandb to a cluster-head
! is given by:
Qia= (I - M) 1 (22) _
Corphan - Z(Qa:b(l) + 1) (25)

Based on equation Ty..ry is the average hitting time over i€
all cluster-heads and is given by: i
Where the constant 1 represents the cost of moving the event
o from a node connected to a cluster-head to the cluster-head.
Finally, recalling that ¢ + 1) is the total number of nodes
C =4 vg) + v)) + 4 ia(v , v
query o°n (QO( 0) Qsd( 0)) n ;Qld( 0) in £, Cevem is given by

a1 (23)
_d d ,
= 5-(Qsalvo)) + % ; Qia(vo) 2k(s+1r);slcorphan’ Gk +1)<d<n2
) _ n—s 2k <d<2(k+1
In the previous equation all cluster-heads have the saméevent = ntl” ‘e i:)n2< (k+1) (26)
weight except for the extreme ones, (and vsy), this is due ntl & 3
to the fact that at the extremes, the expected number ofdstore nt1 resion

events is half of those stored at the intermediate clustads. Figure 3 show<yery, Cevent @aNdCiotal VS the number of
However, for large number of cluster-heads the weight can bisters for a line topology with 121 nodes and differentieal

considered similar and: of k. The solid lines represent the cost obtained using Markov
s numerical analysis (equations 24 and 26), and the dotted lin
Z Qia(vo) (24) represent simulation results, it can be observed that thr&dwa
= method provides an accurate representation of the cosb. Als

Caquery = ——37 it must be noted that the query cost accounts for most of the

Cevent Will be derived according to the regions defined in 3otal cost, which validates the focus of the analytical isect
and algorithm 1. There are+ 1 cluster-heads for which thereon Cyyery-
is no need to move the event, hence the cost is zero. Figures 4 and 5 compare the maximum and expected hitting

Whend < 2(k+ 1), all nodes will be directly connected totime between the Markov analysis (full lines) and the expres
a cluster-head an@.yent = Z;f. However, whend > 2(k + sions obtained through the resistance method (dotted) lioes
1) (most of region 1), there will be orphan nodes betweera line topology with 121 nodes and valueskofanging from
any pair of consecutive cluster-heads. Due to symmetry, theto 10. The dotted lines show that the bounds get tighter
cost will be the same for any subset of nodes between diay higher values of in both figures. The figures also shows
two neighboring cluster-heads and for simplicity we coasida line with circle markers depicting the number of clusters
cluster-heads)y and vy4. For these clusters, nodes betweerequired to reach the first local minima according to our
(k+1) and(d—k —1) are orphan. Let us define= (k+1), analysis (equation 14), which supports the results presgent
b= (d—k—1)and M., as theM'’s sub-matrix which in Theorem 1. It is important to notice that the analytical
includes only the rows and columns betweerand b. For values for the number of clusters are not necessarily insege
M, Qar = (I — Mgyyp)~t1 is the array containing the and hence they may not match exactly the numerical ones,
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Fig. 6. (A) Cevent, (B) Cquery and (C)Cyota1 for a grid topology with 169 nodes and valuesfofanging from 2 to 6.

specially for low values of. However, for large values of time from the sink to the set of cluster-heads and it is given
andn the floor or ceiling of the analytical value will not incurby combining equations 1 and 21.

in significant differences. It is also important to noticattthe Figure 6 presents results fGtvent, Cquery @aNdCeotal ((A),

first cluster-heads added leads to a significant cost remtuct(B) and (C) respectively) for 169 nodes deployed on a 2D
(region 1 and part of region 2), adding even more high-degrged. The y axis represent the cost and the x axis the number
nodes beyond this point provides diminishing returns or of clusters. There are two important observations: i) amytr

some cases even degrades the performance. to the line topology, the case when all nodes are high-degree
perform significantly worse, ii) similar to the line topolg
C. Regular Grids and Random Geometric Graphs the first cluster-heads account for most of the savings {grea

than 30%) and the highér the higher the savings. Also note

Grids and Random Geometric Graphs (RGG) are commgqy; g1 increases, the case where all nodes are high-degree
models to study various properties and protocols for m"eapproaches a complete graph.

system;. In the previous section, we showed that in IIneAnother important difference with respect to the line tepol

topologies the addition of cIusterTheads can greatly redbe ogy is that the event cost plays a significant role in the total

cost of _ran_o!om-walk-based queries, do cluster-hgads /e éost, while the query cost does not a have the same significant

same S|gn|f|cant effect on 2-dimensional topologies? . impact. This may be due to several reasons one of them is that
1) Grids: We assume that thg numbe_r of cluster-heads IS8 the same number of nodes the diameter of a liBen))

perfect square e_m_d ‘h‘?y are uniformly distributed on thd'g“topology is significantly larger than a gri®(./n)) topology.

l.e. the grid is divided in the same nu_r_nber OT cells as clust rom the resistance method perspective, in grids we can not

heads and each cluster-head is positioned in the node at {fjginate the edges beyond a given cluster, all edges should

center of_each cell. . . .be considered and hence according to equation 2 this would
According to the algorithm presented in 1, events appeanggake the query cost for different clusters more similar.

in a cluster-head has a cost of 0, events appearing in no ea) Random Geometric Graphs: The procedure for getting

directly connected to a cluster-head have a cost of 1 and®ven ; : .
T . vent and query costs in random geometric graphs is the same
appearing in orphan nodes perform a simple random waqk

o o as for grids (equation 28, and a combination of equations 1
until it hits a node that is directly connected to a clusteadh 9 (eq . . . q ;
. " . . and 21). However, the interesting case in random geometric
Denoting M as the transitional probability matrixy C V .
: o raphs is that even when only low-degree nodes are deployed
as the subset of vertices containing all cluster-heads 4nd .
. - .. there are some inherent cluster-heads due to some favorable
the nodes directly connected to them amdC V as its . e .
) ; : geographical position. We further enhance the inhereistetu
complement; we defing1,, as the sub-matrix where all the . . . N
. . heads formed by increasing their transmission range. Alecor
rows and columns of the vertices in have been removed.. : . . :
N S } ing to the algorithm presented in 1, in these scenarios taetev
Hence, the hitting time for orphan nodes is given by: .
moves in a greedy way towards the local cluster-head.
Table Il presents results for 169 nodes deployed randomly
on a 1x1 square area. The results are the average over 50

|@|

haw = Z(Qw(i) +1) (27)  tuns. The initial radius is 0.12 which for this density gives
=0 connectivity probability of~ 0.5. The table has two columns
ANnd Cevent cOst for the grid topology is given by: named “clustering” and “no clustering”. Due to the random

deployment some nodes will end up being local-clustersr(the
(lw] = (s + 1) + hsw (28) degree is higher or equal than their neighbors). For thes“clu
n tering” column, we enhance these local clusters by incngasi
In our analysis the sink is located at the bottom-left cornéhneir transmission range to the value given in the “transiors
of the grid (o). The query cosCquery is the average hitting range” column, while the nodes that are not local cluster-

Ccvcnt =



transmission rangg clustering | no clustering | savings (%) output power (dBm)| clustering [ no clustering| savings (%) |
0.12 679.7 833.0 18.4 -14 263.1 4287 38.6
0.18 414.2 296.2 -39.8 -13 211.7 370.4 42.8
0.24 171.4 225.0 23.8 -12 174.6 333.4 47.6
0.30 88.0 202.7 56.6 -11 152.6 311.4 51.0
0.36 52.9 193.5 72.7 -10 132.5 278.1 52.3
TABLE Il TABLE IV
RANDOM GEOMETRIC GRAPHS GRID DEPLOYMENTS INREALISTIC ENVIRONMENTS
« - output power (dBm)| clustering | no clustering| savings (%)
heads have a range of 0.12. For the “no clustering” column 14 3672 E57 .7 340 |
all nodes have the transmission range given the "transomssi -13 250.4 432.9 42.2
range” column, but events stay in the nodes where they appear ﬁ gg?g ggg-g gs-g
We observe that in random geometric graphs clustering also, -10 169.9 294.4 423
have a significant impact on the performance of random-walk- TABLE V

based queries (except for r=0.18 where "no clustering” is
better) . It is important to mention that for the initiaf0.12
approximately~11% of the nodes end up being local clusters.

RANDOM DEPLOYMENTS INREALISTIC ENVIRONMENT

D. Low-Power Wreless Graphs Random walks on graphs have been studied mathematically,
Using the link layer model proposed in [31], we evaland there is a substantial-yet-growing body of theoretical

uate through simulations the effectiveness of clustedsediterature on the subject [9], [10], [11]. They are also fingli

in realistic graphs, which are characterized by the preseriacreasing use in a wide range of protocols in the context of

of unreliable and asymmetric links. In order to guarantegveral networked distributed systems. For instance, liaeg

the survival of the random walk we implemented a 3-wayeen used in Grid-aware operating systems [12], in unstruc-

handshake protocol. A node with the random walk issuésred P2P Networks [13], [14], [15], for hybrid application

a request to the next neighbor to receive the random wadiuerlays [16], for group membership services in mobile ad ho

upon reception of the packet the neighbor acknowledges thé&works [17], [18], for distributed model checking [19hd

reception of the random walk, finally upon reception of thgyr index quality determination for the world-wide web [20]

acknowledgment, the original node sends a release packegpecifically in the context of unstructured wireless sensor
which ends the transfer of the random walk. networks, different variants of random-walk-based protec
Tables IV and V present the results for grid and randoflye peen proposed and analyzed by several research groups.
deployments. The presentation is similar to Table Ill, theS-  genetto and Barrenechea [21] proposed and analyzed the
tering” column represents networks were only the inherefte of constrained random walks on a grid for performing
local cluster-heads are enhanced by increasing their butpyy_palanced routing between two known nodes. Avin and
power, while in the “no clustering” column all nodes increasgyiig [22] have argued that even simple random walks can
their output power but events remain in the nodes where thg¥ \;sed for efficient and robust querying because they are
appear. We can observe that clustering plays a signific#®t yherently load-balanced and their partial cover timeswsho
in reducing the cost of random walk-based queries (betweggoq scaling behavior. The ACQUIRE protocol [23] provides
30% and 50%). On grid deployments approximately 12% ynaple look-ahead parameter to combine random walks

of the nodes are inherent cluster-heads, while on randQfj controlled floods and show that such random-walk-based

deployments about 8% of nodes are cluster-heads. hybrids can outperform flooding and even expanding-ring-
based approaches in the presence of replicated data. The
V. RELATED WORK rumor routing algorithm [24] is a hybrid push-pull mechanis

The simplest implementation of a query dissemination prthat advocates the use of multiple random walks from the
tocol for a sensor network is the basic flooding mechanisavents as well as the sinks, so that their intersection point
where a query message is forwarded by all nodes in than be used to provide a rendezvous point. Shakkottai [25]
network. Flood-based queries (used, for instance, in Btec has analyzed different variants of random-walk-basedyquer
Diffusion [4] to set up routes from the sources to the quagyirmechanisms and concludes that source and sink-driverystick
node) have the advantage of simplicity, and, when used in thearches (similar to rumor routing) provide a rapid inceeas
context of continuous data stream responses, can be jdstifié query success probability with the number of steps. Most
because their costs can be amortized over the period of tieeently, Alanyaliet al. [26] have proposed the use of random
response. However, for one-shot queries, other technigigeswalks in energy-constrained networks to perform efficient
desired. Several researchers have studied the use of siadjuedistributed computation of a class of decomposable funstio
TTL-based controlled floods (expanding rings) as unstrectu (useful in computing certain kinds of aggregates). To our
guery mechanisms [1], [5], [6], [7], [8]- An important apich knowledge, these prior studies have not investigated tpadmn
for pull-based one-shot queries in unstructured systerttzeis of heterogeneous deployments on the performance of random-
use of random walks. walk-based querying protocols.
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