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Abstract— We propose a push-pull mechanism to enhance the
performance of random walk-based querying in heterogeneous
sensor networks and analyze its performance. Using connections
between random walks and electrical resistance, we obtain
closed-form expressions and bounds of the querying cost fora
linear topology, along with numerical solutions for more realistic
topologies via Markov chain analysis of the time to absorption.
We show that having even a small degree of heterogeneity can
provide very significant improvements in query performance.
Specifically, for linear topologies we prove that using a fraction
4/5k of uniformly-placed high-degree cluster-heads (where2k
is the degree of each such node), a query cost reduction of
Θ(1−1/k2) can be obtained. Realistic two-dimensional topologies
also show a similar trend — using about 10% of the nodes as
cluster-heads provides a query cost improvement between 30%
and 70% depending on the coverage of the high-degree nodes.

I. I NTRODUCTION

An important approach for querying in unstructured systems
is the use of random walks. This approach is gaining popu-
larity in the networking community since random walks are
intuitively simple — nodes are visited sequentially in a random
order with successive nodes being neighbors in the graph [21],
[22], [23], [24]. There is also a significant body of theoretical
literature on random walks as querying mechanisms [9], [10],
[11]. However, while this literature provides much insightinto
the scaling behavior of random walks on simple classes of
deterministic graphs (such as 2D Torii), a major property of
real-life networks, heterogeneity, was left out of discussion.

Heterogeneity on the degree distribution is a highly likely
characteristic in real large-scale wireless systems, suchas
sensor networks, for a number of reasons. First, random
deployments are inherently non-regular graphs. Second, empir-
ical studies [2], [31] have revealed that hardware varianceon
the sensitivity and output power of radios lead to nodes with
significantly higher degree than the average (cluster-heads).
Third, some works [3] have recently proposed that for wireless
sensor networks to scale, heterogenous networks consisting of
highly capable and low capable devices are required.

In this work we propose the use of a push-pull mechanism
to exploit the heterogeneity of the underlying communication
graph to enhance the performance of random-walk-based
queries. We take advantage of a well known property of
the simple random walks: its stationary distributionπ(v) =
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d(v)/2m, whered(v) denotes the degree of nodev and m
the number of edges in the graph. This means that nodes with
higher degree are visited more frequently by the random walk.

The idea we use is intuitively simple, events are pushed
towards high-degree nodes (cluster-heads) and pulled from
the cluster-heads by performing a random-walk-based query.
In this scenario some important questions arise:What is the
impact of heterogeneity on performance? and How much
heterogeneity is needed?

We use two theoretical tools to explore these questions. Our
analytical results are based on the direct connection between
a random walk on a graph and theresistance of the electrical
network obtained from the graph by viewing each edge as a
unit resistor [29], [30]. We bound the influence of cluster-heads
on the resistance which in turn bound on the query cost. Our
second tool is the use of absorption states in the transitional
probability matrix of a graphG to obtain the expected number
of steps in a query.

The main contribution of this work is to show that hetero-
geneity allows random-walk-based queries to enhance their
performance. In particular, the striking result we obtain is
that for a line topology where cluster-heads have a coverage
k (cover k nodes to the right andk nodes to the left) and
are uniformly distributed (evenly spaced), a fraction of4

5k

nodes being cluster-heads can offer a reduction in query cost
of O(1 − 1

k2 ) by using a simple distributed algorithm. In
intuitive terms this translates to requiring less than 10% of the
nodes being cluster-heads to obtain two orders of magnitude
improvement in query cost. Through numerical analysis, we
present results showing that in 2D networks also a small
percentage of nodes being cluster-heads (∼ 10%) can lead to
significant improvements in performance (between 30% and
70% depending on the coverage of the high-degree nodes).

II. ENHANCING RANDOM WALKS FOR HETEROGENEITY

In this section we present the event-push query-pull algo-
rithm used in our work. We consider a network where two type
of nodes are available: i) nodes with limited communication
capability (low degree) and ii) nodes with higher communica-
tion capabilities (high degree, cluster-heads). Our focusis on
infrastructure-less networks (no location nor GPS capabilities),
nodes are able to communicate only with their neighbors, and
they are aware of their neighbors degree (if neighbors are
cluster-heads or not).



Our query mechanism is built from two parts: first an event
e is generated randomly at any node in the network, and
second, a random-walk-based query is issued in order to find
the event. The evente can either remain at the node where
it was generated or move to a cluster-head (if one exists). In
a network where all nodes have the same degree, the event
remains at the node where it appears. When cluster-heads
are present, upon detection of an event, the event follows
Algorithm 1:

Algorithm 1 Event forwarding in Heterogeneous Network
Require: evente at nodevi

1: while nodevi is not a cluster-headdo
2: if there is a neighborvj with degree(vj) > degree(vi)

then
3: forward e to the neighbor with the highest degree;

break ties uniformly at random among candidates
4: else
5: forward e to a random neighbor
6: end if
7: end while

In order to find the event, a query is issued through a
predefinedsink nodes. The query follows asimple random
walk where the next node is chosen uniformly from the
neighbors, until it finds the evente.

In the scenario described above there will be two costs: i)
the cost of moving the event to a cluster-head,Cevent and the
cost of the query (i.e random walk) to find the event,Cquery.
The total cost is the sum of both:Ctotal = Cevent + Cquery.

DenotingL as the number of low-degree nodes andH as
the number of high-degree nodes, how doesCtotal vary with
the ratio H

H+L
? Is there a value of H

H+L
that will reduceCtotal

significantly ?

III. A NALYTICAL RESULTS

In this section we focus on line topologies and we are
interested in analyzing the impact of cluster-heads on costof
event discover (Ctotal). The main result is as follows:

Theorem 1: Consider a line topology with (n + 1)
nodes, where cluster-heads have a degree2k and are
uniformly distributed. The first local minima for the
maximum hitting time and for the query cost is obtained
when the fraction of high-degree nodes is4

5k
. And for this

fraction a reduction in query cost of Θ(1− 1
k2 ) is obtained.

As mentioned earlier, this result is obtained using bounds
on the resistance of an electrical circuit related to the network
graph. The remainder of the section is dedicated to the proof
of this theorem, and Table I presents the notation used for the
proof, which explained in detail in the next two subsections.

A. Background on Random Walks and Resistance Methods

For a graphG(V, E) where|V | is the number of nodes and
|E| is the number of edges, the following notation will be

(n + 1) number of nodes
k cluster coverage
d inter cluster-heads distance
α overlaping of cluster-heads coverage (region 2)
(s + 1) number of clusters

TABLE I

NOTATION

used. An element ofV or E is represented by a lowercase,
a subset or array is represented by a bold lowercase and the
complement of a set or element will be denoted with an upper-
bar, for examplee represents an element,e an array (subset)
andē andē represent the complements ofe ande, respectively.

Thehitting time huv is the expected time taken by a simple
random walk starting atu to reachv for the first time [27].

For a sources ∈ V and the subset of cluster-head nodes
e⊆ V , the average hitting time froms to e is:

hse =

∑

e∈e

hse

|e| (1)

Thecommute time Cuv is defined as the expected time taken
by a random walk starting atu to reachv and come back to
u. Note that by definitionCuv = huv + hvu, but in general
huv 6= hvu. In a seminal work, Doyle and Snell [29] explored
the connection between a random walk on a graphG and the
resistance of an electrical network obtained fromG by viewing
each edge as a unit resistor. In [30], Chandraet al. extended
this work and proved the following equality that relates the
commute timeCuv and the effective resistanceRuv of the
electrical network ofG :

Cuv = 2mRuv (2)

Wherem is the number of edges in the graph. Notice that in
case of symmetry1 huv = hvu, which implies that the commute
time is two times the hitting time. We will use this property
in the analysis of the hitting time for line topologies.

B. Parameters of Line Topology

We consider the undirected graphL(n, k, d) = G(V, E)
with the following parameters. The set of nodes isV =
v0, v1, . . . vn, since the index goes from 0 ton, the number
of nodes is |V | = n + 1, we will also denoten as the
number of edges when no cluster-head has been added (when
nodes communicate only with their immediate right and left
neighbors). In addition to the initialn edges, each cluster-head
has edges to all nodes which are less than or equal tok nodes
away from it on the line.d is the inter cluster-head distance,
hence, a nodevi is a cluster-head iffi mod d = 0. The set
of edgesE for L(n, k, d) is defined as follows:

E = {vivj | (i mod d = 0 and |i − j| ≤ k) or |i − j| = 1}
We will consider the case wheren ≫ k > 1. Since we are

interested in the limitn → ∞ we will consider only the cases

1The graphG′ where we nameu asv and vice versa is isomorphic toG
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Fig. 1. Examples of line topologies. The big circles denote cluster-heads and
the dashed lines their coveragek, all nodes withink hops from the cluster-
head are its neighbors.

wheren = sd, wheres is an integer. Then, the total number
of clusters is given by(s + 1).

For a givenn andk we are interested in studying the impact
of d on Ctotal via the resistance, and the analysis is divided in
different regions according to the inter cluster-heads distance
d:

regions =







region 1, 2k ≤ d ≤ n/2
region 2, k < d < 2k
region 3, 1 ≤ d ≤ k

(3)

Figure 1 presents examples of line topologies for the 3
different regions. The big circles denote cluster-heads and the
dashed lines their coveragek. Notice thatk is constant for all
three topologies.

Later in this section we will show thatCtotal depends mainly
on Cquery, specially ford < 2(k + 1) whereCevent will be
shown to be less than 1. For this reason, the resistance analysis
will be focused onCquery.

For the different regions we will first obtain expressions for
the number of edgesm and the effective resistanceR between
the nodes at the extremes of the line. Then, in subsections III-
C and III-D we use these expressions, together with symmetry,
to obtain the maximum hitting time and average query cost,
Cquery.

1) Analysis of region 1: Recalling that the number of nodes
in L is (n+1), and that when no clusters are present the initial
number of edges isn. Besidesn, each cluster-head contributes
with 2(k − 1) new edges. Then the total number of edges is
given by:

m1 = n + 2(k − 1)s
= n + 2(k − 1)n/d
= n

d
(d + 2(k − 1))

(4)

The coverage on each side of a cluster-head can be
represented by an effective resistancer(k) (Figure 1). r(k)
can be derived based onk using techniques to reduce resistors
in parallel and series:

x r ( x )1 / 2 1 / 2 < <≡
l o w e r B o u n d u p p e r B o u n d

α R e g i o n 2
R e g i o n 3≡

x r ( x )r ( x ) r ( x )
Fig. 2. Resistance calculation for regions 2 and 3.

k = 2 ⇒ r(2) = 2/3
k = 3 ⇒ r(3) = 5/8
k = 4 ⇒ r(4) = 13/21

It can be derived that the numerator and denominator
follows the fibonacci seriesfib(.), hence:

r(k) =
fib(2k − 1)

fib(2k)
(5)

Since every cluster-head covers its right and leftk-neighbors
and the extreme vertices cover only one side, the effective
resistanceR1 between the extremes ofL is given by:

R1 = (2r(k) + d − 2k)s
= (2r(k) + d − 2k)n/d

(6)

Finally, using equation 2 and symmetry, the hitting time for
nodes at the extreme of the line is given by:

h1 = (n
d
)2 (d + 2(k − 1)) (d + 2(r(k) − k)) (7)

2) Analysis of region 2: The number of edges is the same
as equation 4 since every cluster-head that is added brings
2(k−1) new edges. However, the effective resistance between
2 cluster-heads is different. In this subsection we provideupper
and lower bounds for this resistance.

Letting αk be the overlap between the coverage of two
neighboring cluster-heads, where0 < α < 1, then d =
k(2−α). The resistance circuit is equivalent to the one shown
in Figure 2, wherer(x) = r(k(1−α)) (the effective resistance
for the non-overlapping part). Given thatr() converges to
the inverse of the golden ratio,1/2 < r(x) < 1, further,
considering Rayleigh’s monotonicity law we can provide upper
and lower bounds for the resistance as shown in Figure 2:

2
αk+2 < r2 < 2

αk+1
2

αk+2s < R2 < 2
αk+1s

2
αk+2

n
d

< R2 < 2
αk+1

n
d

(8)

Finally, the hitting time is bounded by:

2(n
d
)2(4k−kα−2

αk+2 ) <

h2

< 2(n
d
)2(4k−kα−2

αk+1 )
(9)



Maximum Average
Hitting Time ( h) Hitting Time ( Cquery)

[ subsection III-C ] [ subsection III-D ]

region 1 (lower bound) (n

k
)2(k −

1
2
)

(2k−1)n(n+k)
6k2

region 2 (upper bound) 2( 4n

5k
)2( 13k−8

3k+4
)

4n(13k−8)(8n+5k)

3(3k+4)(5k)2

region 3 6(n

k
)2(k−1

k+1
) (k−1)(2n+k)n

(k+1)k2

TABLE II

M INIMUM MAXIMUM AND M INIMUM AVERAGE HITTING T IMES PER

REGION

3) Analysis of region 3: For this region, we will analyze
only the point whered = k.

Contrary to the case ofregions 1 and2, neighboring cluster-
heads have an edge connecting each other, hence each cluster-
head brings (2(k − 1) − 1) new edges. And the total number
of edges is given by:

m3 = n + (2k − 3)s
= n + (2k − 3)n/d
= 3n

k
(k − 1)

(10)

The resistance between two cluster-heads can be trans-
formed to an equivalent circuit as shown in Figure 2, which
leads to an equivalent resistance of2

k+1 between two neigh-
boring cluster-heads. Hence, the effective resistance between
the extremes of the line is given by:

R3 = 2
k+1s

= 2
k+1

n
k

(11)

Finally, the hitting time ford = k is given by:

h3(d = k) = 6(n
k
)2 k−1

k+1 (12)

Tight analytical results for the cased < k are harder to
obtain, but we can show the following lower bound2:

h3 ≥ 2n2

k2 + 3k
(13)

C. Local Minimum for Maximum Hitting Time

In this section we analyze the hitting time between the sink
(v0) and the last cluster-head on the line (vn). Table II shows
the minimum value ofh1, h2 andh3. In region 3, we analyzed
only one point (d = k) , hence, for region 3 the value in
Table II is the one obtained in equation 12. For region 1, the
minimum value is obtained ford = 2k, we further assume a
lower bound onh1 by settingr(k) = 0.5.

In the case of region 2, the hitting time depends on the
overlapping α. Even thoughαk should take only integer
values, we assumeα to be real in order to differentiateh2

(equation 9) and obtain the value ofα that minimizesh2. The
values ofα for the upper and lower bounds are given by (αU

andαL):

2The proof of this result is not shown due to lack of space. However, it
does not affect in anyway the result in Theorem 1. It is presented only on the
interest of completeness

αU = 12nk−7n+4k−16k2

2(2n−4k+1)k −
√

80n2k2−88n2k+96nk2−128nk3+17n2+48nk−16n
2(2n−4k+1)k

(14)

αL = −8k2+6nk−4n−2
√
−8k3n+5n2k2−4n2k+8nk

2k(n−2k)
(15)

For largen and k, αU = αL = 0.7639, henceαopt ≈ 3
4 ,

Table II shows the upper bound ofh2 for αopt.
From Table II we observe thath1 = Θ(n2/k), andh2 and

h3 areΘ(n2/k2), hence for largek the minimum is either on
h2 or h3. Sincen and k are given, we can compare directly
upper bound ofh2 andh3 given in Table II, which leads to:

lim
k→∞

h3

h2
= 1.0817 (16)

Hence, the first local minima is in region 2 and the inter
cluster-head distance that attains this minimum isd = 5

4k,
which corresponds to a ratioΨ between high-degree nodes
and the total number of nodes:

Ψ = (
4n

5k
)(

1

n + 1
) ≈ 4

5k
(17)

It is important to notice that the global minima might be in
region 3, however, the reduction obtained by moving from the
first local minima to the global minima is not significant, as
it will be shown numerically in the next section. Furthermore,
as presented in equation 13 the cost in region 3 is the same
order as in region 2.

D. Local Minimum for Expected Hitting Time

For regions 1, 2 and region 3 (whend = k), cluster-headi
is visited only after cluster-headi − 1 has been visited. This
property allows us to discard all nodes beyond a given cluster-
headi when we are interested in obtaining the hitting time toi.
Hence, for cluster-headi we can consider a new line topology,
which is a shorter version of the original one, where the sink
is at one extreme and cluster-headi is at the end of the new
line. This behavior allows us to use directly the expressions
derived in the previous subsections with the only change to
be made in the initial number of edgesn.

Recalling that the distance set between the sink and cluster-
heads is given by{0, d, 2d, 3d...(s − 1)d, sd}. Cquery is the
average hitting time (E[hi]) to all clusters and for region 1 is
given by:

E[h1] =

s
∑

i=0

h1(n = id)

s+1

=

s
∑

i=1

(
n

d
)2 (d + 2(k − 1)) (d + 2(r(k) − k))

s+1

= (d+2(k−1)) (2r(k)+d−2k)
s+1

s
∑

i=1

i2

= (d + 2(k − 1)) (2r(k) + d − 2k) s(2s+1)
6

(18)
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Fig. 3. Cquery , Cevent and Ctotal vs the number of clusters for a line topology with 121 nodes and different values ofk (6, 8 and 10). The solid lines
represent the cost obtained using Markov numerical analysis and the dotted lines represent simulation results.

For Region 2, using the upper bound of equation 9 and
recalling thatd = k(2−α), the expected hitting time is given
by:

E[h2] =

s
∑

i=0

h2(n = id)

s+1

=

s
∑

i=1

2(
n

d
)2(

4k − kα − 2

αk + 1
)

s+1

= 2(4k−kα−2)
(αk+1)(s+1)

s
∑

i=1

i2

= n(2n+1)(4k−kα−2)
3(αk+1)(k(2−α))2

(19)

The derivative of this equation with respect toα leads
to an expression that is considerably more complicated than
equation 14 and it is not presented. However, the results arethe
same as the obtained for the maximum hitting time, i.e.αU =
αL = 0.7639 andαopt ≈ 3

4 . The closed-form expressions and
values can be easily obtained by using mathematical software
such as Matlab or Mathematica.

For Region 3, whend = k, the expected hitting time is
given by:

E[h3(d = k)] =

s
∑

i=0

6(
n

k
)2

k − 1

k + 1

s+1

= 6(k−1)
(s+1)(k+1)

s
∑

i=0

i2

= k−1
k+1 s(2s + 1)

(20)

Table II also presents the minimum value ofCquery for the
3 regions:d = 2k, r(k) = 0.5 for region 1 (lower bound),
d = 5

4k for region 2 (upper bound) andd = k for region 3
(only point analyzed). The comparisons lead to the same result
as the ones obtained for the maximum hitting time: the order
of h1 is greater than the order ofh2 andh3, and asn andk
goes to infinity the ratio ofh3 over h2 goes to 1.0817.

Now we have all the elements to prove Theorem 1
Proof of Theorem 1:
The optimization of the maximum and average hitting times

(equations 9 and 19) leads tod = 5
4k, using Table II we

proved that the first local minima occurs in region 2 for both
the maximum and average hitting times, and that their cost
areΘ(n2/k2). It is known that random walks on regular line
topologies have a cost ofΘ(n2) [9], hence, a line topology
L(n, k, d) with d = 5

4k leads to a cost reduction ofΘ(1− 1
k2 )

for both the maximum and average hitting times.�

IV. N UMERICAL AND EXPERIMENTAL RESULTS

In this section we use Markov numerical methods and simu-
lations to study the impact of heterogeneity on the performance
of random walk-based queries. First, we briefly introduce the
method of using absorption states to obtain hitting times.
Then, we present numerical results on a line topology that
validates the analytical contributions of Section III. Finally,
we present numerical results on regular grids and random
geometric graphs, and simulation results on realistic graphs
for wireless sensor networks.

A. Background on Hitting Times in Markov Chains

Given a graphG(V, E), a random walk on the graph can
be defined by a Markov chainM, whereM represents the
transition probability matrix. The notation used for elements
and subsets ofV andE is the same as the one presented in
subsection III-B.

Let us consider that the event is in nodee ∈ V and the
sink is in nodes ∈ V . As presented in [28], absorption states
can be used to obtain hitting times. LetMe be the matrix
resulting from deleting the row and column corresponding to
e in M, and letQe be:

Qe = (I −Me)
−11 (21)

Where I is the identity matrix and1 is a column vector
of ones.Qe is an array representing the expected hitting time
from each node toe (excepte). Hence, in our casehse =
Qe(s), whereQe(s) represents thes’th element of the array.

B. Line Topologies

For a given line topologyL(n, k, d) with transition proba-
bility matrix M, where the sink is the extreme left vertices
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v0. Clusters-heads are positioned atvid where i=0,1, ..., s.
The hitting time fromv0 to a specific cluster-head isQid(v0),
whereQid is given by:

Qid = (I −Mid)
−11 (22)

Based on equation 1,Cquery is the average hitting time over
all cluster-heads and is given by:

Cquery = d
2n

(Q0(v0) + Qsd(v0)) + d
n

s−1
∑

i=1

Qid(v0)

= d
2n

(Qsd(v0)) + d
n

s−1
∑

i=1

Qid(v0)

(23)

In the previous equation all cluster-heads have the same
weight except for the extreme ones (v0 and vsd), this is due
to the fact that at the extremes, the expected number of stored
events is half of those stored at the intermediate cluster-heads.
However, for large number of cluster-heads the weight can be
considered similar and:

Cquery ≈

s
∑

i=1

Qid(v0)

s+1

(24)

Cevent will be derived according to the regions defined in 3
and algorithm 1. There ares+1 cluster-heads for which there
is no need to move the event, hence the cost is zero.

Whend < 2(k + 1), all nodes will be directly connected to
a cluster-head andCevent = n−s

n+1 . However, whend ≥ 2(k +
1) (most of region 1), there will be orphan nodes between
any pair of consecutive cluster-heads. Due to symmetry, the
cost will be the same for any subset of nodes between any
two neighboring cluster-heads and for simplicity we consider
cluster-headsv0 and vd. For these clusters, nodes between
(k +1) and(d−k−1) are orphan. Let us definea = (k +1),
b = (d − k − 1) and M(a:b) as theM’s sub-matrix which
includes only the rows and columns betweena and b. For
Ma:b, Qa:b = (I − Ma:b)

−11 is the array containing the
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expected number of steps of each orphan node to reach the
closest node directly connected to a cluster-head. Hence, the
cost of moving orphan nodes betweena andb to a cluster-head
is given by:

Corphan =
∑

i∈Q

(Qa:b(i) + 1) (25)

Where the constant 1 represents the cost of moving the event
from a node connected to a cluster-head to the cluster-head.

Finally, recalling that (n + 1) is the total number of nodes
in L, Cevent is given by:

Cevent =















2k(s+1)+sCorphan

n+1 , 2(k + 1) ≤ d ≤ n/2
n−s
n+1 , 2k ≤ d < 2(k + 1)
n−s
n+1 , region 2
n−s
n+1 , region 3

(26)

Figure 3 showsCquery, Cevent andCtotal vs the number of
clusters for a line topology with 121 nodes and different values
of k. The solid lines represent the cost obtained using Markov
numerical analysis (equations 24 and 26), and the dotted lines
represent simulation results, it can be observed that the Markov
method provides an accurate representation of the cost. Also
it must be noted that the query cost accounts for most of the
total cost, which validates the focus of the analytical section
on Cquery.

Figures 4 and 5 compare the maximum and expected hitting
time between the Markov analysis (full lines) and the expres-
sions obtained through the resistance method (dotted lines) for
a line topology with 121 nodes and values ofk ranging from
5 to 10. The dotted lines show that the bounds get tighter
for higher values ofk in both figures. The figures also shows
a line with circle markers depicting the number of clusters
required to reach the first local minima according to our
analysis (equation 14), which supports the results presented
in Theorem 1. It is important to notice that the analytical
values for the number of clusters are not necessarily integers
and hence they may not match exactly the numerical ones,
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Fig. 6. (A) Cevent , (B) Cquery and (C)Ctotal for a grid topology with 169 nodes and values ofk ranging from 2 to 6.

specially for low values ofk. However, for large values ofk
andn the floor or ceiling of the analytical value will not incur
in significant differences. It is also important to notice that the
first cluster-heads added leads to a significant cost reduction
(region 1 and part of region 2), adding even more high-degree
nodes beyond this point provides diminishing returns or in
some cases even degrades the performance.

C. Regular Grids and Random Geometric Graphs

Grids and Random Geometric Graphs (RGG) are common
models to study various properties and protocols for wireless
systems. In the previous section, we showed that in line
topologies the addition of cluster-heads can greatly reduce the
cost of random-walk-based queries, do cluster-heads have the
same significant effect on 2-dimensional topologies?

1) Grids: We assume that the number of cluster-heads is a
perfect square and they are uniformly distributed on the grid,
i.e. the grid is divided in the same number of cells as cluster-
heads and each cluster-head is positioned in the node at the
center of each cell.

According to the algorithm presented in 1, events appearing
in a cluster-head has a cost of 0, events appearing in nodes
directly connected to a cluster-head have a cost of 1 and events
appearing in orphan nodes perform a simple random walk
until it hits a node that is directly connected to a cluster-head.
DenotingM as the transitional probability matrix,w ⊆ V
as the subset of vertices containing all cluster-heads and all
the nodes directly connected to them andw̄ ⊆ V as its
complement; we defineMw as the sub-matrix where all the
rows and columns of the vertices inw have been removed.
Hence, the hitting time for orphan nodes is given by:

hw̄w =

|w̄|
∑

i=0

(Qw(i) + 1) (27)

And Cevent cost for the grid topology is given by:

Cevent =
(|w| − (s + 1)) + hsw

n
(28)

In our analysis the sink is located at the bottom-left corner
of the grid (v0). The query costCquery is the average hitting

time from the sink to the set of cluster-heads and it is given
by combining equations 1 and 21.

Figure 6 presents results forCevent, Cquery andCtotal ((A),
(B) and (C) respectively) for 169 nodes deployed on a 2D
grid. The y axis represent the cost and the x axis the number
of clusters. There are two important observations: i) contrary
to the line topology, the case when all nodes are high-degree
perform significantly worse, ii) similar to the line topology,
the first cluster-heads account for most of the savings (greater
than 30%) and the higherk the higher the savings. Also note
that, ask increases, the case where all nodes are high-degree
approaches a complete graph.

Another important difference with respect to the line topol-
ogy is that the event cost plays a significant role in the total
cost, while the query cost does not a have the same significant
impact. This may be due to several reasons one of them is that
for the same number of nodes the diameter of a line (Θ(n))
topology is significantly larger than a grid (Θ(

√
n)) topology.

From the resistance method perspective, in grids we can not
eliminate the edges beyond a given cluster, all edges should
be considered and hence according to equation 2 this would
make the query cost for different clusters more similar.

2) Random Geometric Graphs: The procedure for getting
event and query costs in random geometric graphs is the same
as for grids (equation 28, and a combination of equations 1
and 21). However, the interesting case in random geometric
graphs is that even when only low-degree nodes are deployed
there are some inherent cluster-heads due to some favorable
geographical position. We further enhance the inherent cluster-
heads formed by increasing their transmission range. Accord-
ing to the algorithm presented in 1, in these scenarios the event
moves in a greedy way towards the local cluster-head.

Table III presents results for 169 nodes deployed randomly
on a 1x1 square area. The results are the average over 50
runs. The initial radius is 0.12 which for this density givesa
connectivity probability of≈ 0.5. The table has two columns
named “clustering” and “no clustering”. Due to the random
deployment some nodes will end up being local-clusters (their
degree is higher or equal than their neighbors). For the “clus-
tering” column, we enhance these local clusters by increasing
their transmission range to the value given in the “transmission
range” column, while the nodes that are not local cluster-



transmission range clustering no clustering savings (%)
0.12 679.7 833.0 18.4
0.18 414.2 296.2 -39.8
0.24 171.4 225.0 23.8
0.30 88.0 202.7 56.6
0.36 52.9 193.5 72.7

TABLE III

RANDOM GEOMETRICGRAPHS

heads have a range of 0.12. For the “no clustering” column
all nodes have the transmission range given the ”transmission
range” column, but events stay in the nodes where they appear.
We observe that in random geometric graphs clustering also
have a significant impact on the performance of random-walk-
based queries (except for r=0.18 where ”no clustering” is
better) . It is important to mention that for the initialr=0.12
approximately∼11% of the nodes end up being local clusters.

D. Low-Power Wireless Graphs

Using the link layer model proposed in [31], we eval-
uate through simulations the effectiveness of cluster-heads
in realistic graphs, which are characterized by the presence
of unreliable and asymmetric links. In order to guarantee
the survival of the random walk we implemented a 3-way
handshake protocol. A node with the random walk issues
a request to the next neighbor to receive the random walk,
upon reception of the packet the neighbor acknowledges the
reception of the random walk, finally upon reception of the
acknowledgment, the original node sends a release packet
which ends the transfer of the random walk.

Tables IV and V present the results for grid and random
deployments. The presentation is similar to Table III, the “clus-
tering” column represents networks were only the inherent
local cluster-heads are enhanced by increasing their output
power, while in the “no clustering” column all nodes increase
their output power but events remain in the nodes where they
appear. We can observe that clustering plays a significant role
in reducing the cost of random walk-based queries (between
30% and 50%). On grid deployments approximately 12%
of the nodes are inherent cluster-heads, while on random
deployments about 8% of nodes are cluster-heads.

V. RELATED WORK

The simplest implementation of a query dissemination pro-
tocol for a sensor network is the basic flooding mechanism
where a query message is forwarded by all nodes in the
network. Flood-based queries (used, for instance, in Directed
Diffusion [4] to set up routes from the sources to the querying
node) have the advantage of simplicity, and, when used in the
context of continuous data stream responses, can be justified
because their costs can be amortized over the period of the
response. However, for one-shot queries, other techniquesare
desired. Several researchers have studied the use of sequential
TTL-based controlled floods (expanding rings) as unstructured
query mechanisms [1], [5], [6], [7], [8]. An important approach
for pull-based one-shot queries in unstructured systems isthe
use of random walks.

output power (dBm) clustering no clustering savings (%)
-14 263.1 428.7 38.6
-13 211.7 370.4 42.8
-12 174.6 333.4 47.6
-11 152.6 311.4 51.0
-10 132.5 278.1 52.3

TABLE IV

GRID DEPLOYMENTS IN REALISTIC ENVIRONMENTS

output power (dBm) clustering no clustering savings (%)
-14 367.2 557.7 34.2
-13 250.4 432.9 42.2
-12 243.8 380.8 36.0
-11 207.9 332.9 37.6
-10 169.9 294.4 42.3

TABLE V

RANDOM DEPLOYMENTS IN REALISTIC ENVIRONMENT

Random walks on graphs have been studied mathematically,
and there is a substantial-yet-growing body of theoretical
literature on the subject [9], [10], [11]. They are also finding
increasing use in a wide range of protocols in the context of
several networked distributed systems. For instance, theyhave
been used in Grid-aware operating systems [12], in unstruc-
tured P2P Networks [13], [14], [15], for hybrid application
overlays [16], for group membership services in mobile ad hoc
networks [17], [18], for distributed model checking [19], and
for index quality determination for the world-wide web [20].

Specifically in the context of unstructured wireless sensor
networks, different variants of random-walk-based protocols
have been proposed and analyzed by several research groups.
Servetto and Barrenechea [21] proposed and analyzed the
use of constrained random walks on a grid for performing
load-balanced routing between two known nodes. Avin and
Brito [22] have argued that even simple random walks can
be used for efficient and robust querying because they are
inherently load-balanced and their partial cover times show
good scaling behavior. The ACQUIRE protocol [23] provides
a tunable look-ahead parameter to combine random walks
with controlled floods and show that such random-walk-based
hybrids can outperform flooding and even expanding-ring-
based approaches in the presence of replicated data. The
rumor routing algorithm [24] is a hybrid push-pull mechanism
that advocates the use of multiple random walks from the
events as well as the sinks, so that their intersection points
can be used to provide a rendezvous point. Shakkottai [25]
has analyzed different variants of random-walk-based query
mechanisms and concludes that source and sink-driven sticky-
searches (similar to rumor routing) provide a rapid increase
of query success probability with the number of steps. Most
recently, Alanyaliet al. [26] have proposed the use of random
walks in energy-constrained networks to perform efficient
distributed computation of a class of decomposable functions
(useful in computing certain kinds of aggregates). To our
knowledge, these prior studies have not investigated the impact
of heterogeneous deployments on the performance of random-
walk-based querying protocols.



VI. CONCLUSIONS

Our work presented an study of the impact of heterogeneous
node connectivity on random walk-based queries. The main
contribution of the work is showing that with a small percent-
age of high-degree nodes in the network (< 10%) and using
a simple distributed push-pull mechanism, significant cost
savings can be obtained — between 30% and 70% depending
on the coverage of the high-degree nodes. Our work provides
interesting theoretical results for line topologies showing that
when cluster-heads have a coveragek (coverk nodes to the
right and left) and are uniformly distributed, a fraction of4

5k

nodes being cluster-heads can offer a reduction in query cost
of O(1 − 1

k2 ) by using a simple distributed algorithm.
While designing a system it is important to discuss the extra

cost of high-degree nodes. In wireless systems, high-degree
nodes can be special nodes or nodes whose output power is
increased, in both cases a high-degree node incurs a higher
cost. Our work provided the impact of clustering without
considering costs, however, costs can be easily inserted inour
analysis by multiplying the cost for each value of delta by
the extra cost incurred by the fraction of high-degree nodes
utilized.

Another important issue is the one of delay. One of the
drawbacks of random walks is the significant delay that they
encounter. In our work, by minimizing the required number
of steps on the random walk we are not only reducing the
cost but also the delay. Hence, heterogeneous networks also
provide an extra advantage in terms of delay. However, an
accurate quantification of the savings should include specific
characteristics of the protocol used at the MAC layer.

Given the performance improvement that heterogeneous
networks have on random walk-based queries. It is important
to highlight some other effects that may strength heterogeneity
in real networks, for instance remaining battery power, antenna
orientation and geographical position above ground may lead
to larger cluster-heads. Also, given the distributed nature of
random walks and the push-pull algorithm proposed, cluster-
heads can rotate in order to avoid energy depletion, and the
only nodes that need to be informed are the neighbors.
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