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Abstract – With the rise of multicore computing, the design of on-
chip networks (or networks on chip) has become an increasingly 
important component of computer architecture.  The Cell 
Broadband Engine’s Element Interconnect Bus (EIB), with its 
four data rings and shared command bus for end-to-end control, 
supports twelve nodes—more than most mainstream on-chip 
networks, which makes it an interesting case study.  As a first 
step toward understanding the design and performance of on-
chip networks implemented within the context of a commercial 
multicore chip, this paper analytically evaluates the EIB network 
using conventional latency and throughput characterization 
methods as well as using a recently proposed 5-tuple latency 
characterization model for on-chip networks.  These are used to 
identify the end-to-end control component of the EIB (i.e., the 
shared command bus) as being the main bottleneck to achieving 
minimal, single-cycle latency and maximal 307.2 GB/sec raw 
effective bandwidth provided natively by the EIB.  This can be 
exacerbated by poorly designed Cell software, which can have 
significant impact on the utilization of the EIB.  The main 
findings from this study are that the end-to-end control of the 
EIB which is influenced by the software running on the Cell has 
inherent scaling problems and serves as the main limiter to 
overall network performance.   Thus, end-to-end effects must not 
be overlooked when designing efficient networks on chip. 
 
Index terms: Cell Broadband Engine, Element Interconnect 
Bus, interconnection networks, on-chip network, network on 
chip, heterogeneous multicore, network characterization, 
performance bottleneck. 
 

I. INTRODUCTION 
 

With the rise of multicore computing, the design of on-
chip interconnection networks has become an increasingly 
important component of computer architecture.  On-chip 
networks (OCNs)—also known as networks on chip (NOC)—
interconnect various functional and computational resources 
on a chip.  These days, researchers are actively pursuing the 
design of efficient OCNs after becoming aware, in recent 
years, that wires are now a dominant factor in determining 
system performance, cost, power dissipation, reliability, and 
other important characteristics [1] – [5]. On-chip network 
architectures are being proposed that no longer are flat shared 
bus structures [6], [7], [8] but, instead, are point-to-point and 
switched networks taking the form of hierarchical buses, rings, 
meshes, crossbars, and even irregular topologies [9] – [15]. As 
summarized in [16], on-chip networks are being proposed and 
finding use in research and commercial processor chips whose 

microarchitecture are partitioned into multiple (and soon to be 
many) clusters [17] – [20], tiles [21] – [24], and cores [25] – 
[31]. 

On-chip networks may be used for different purposes and 
take on different forms by the microarchitecture to transfer 
instructions, operand values, cache/memory blocks, 
cache/memory coherency traffic, status and control 
information, etc.  For example, of the eight on-chip networks 
implemented in the TRIPS EDGE research prototype 
architecture [23] for interconnecting its 106 heterogeneous 
tiles composing two processor cores and L2 cache integrated 
on-chip, two are 141-bit and 128-bit bidirectional mesh 
networks used for transporting operand and memory data, 
respectively, sent broadside; the remaining six are dedicated 
fan-out trees or recombination networks with unidirectional 
channels as wide as 168-bits for instruction dispatch and as 
narrow as 10-bits for global status and control. Alternatively, 
the Cell Broadband Engine (Cell BE) [32]—a commercial 
heterogeneous multicore processor—employs the Element 
Interconnect Bus (EIB) as its on-chip network used for 
transporting instructions and data between twelve elements 
interconnected on the chip.  

The goal in designing wire-efficient on-chip networks, 
typically, is to achieve the highest possible effective 
bandwidth (i.e., throughput) and the lowest possible end-to-
end latency for a given cost. In designing OCNs for specific or 
general purpose functions, it is important to understand the 
impact and limitations of various design choices in achieving 
this goal.  As a first step toward understanding OCN design-
performance tradeoffs in the context of a commercial 
heterogeneous multicore processor chip, we perform a case 
study on the Cell BE EIB.  The EIB is an interesting OCN to 
study as it provides higher raw network bandwidth and 
interconnects more nodes than most mainstream commercial 
multicore processors. In this paper, we analytically evaluate 
the EIB network using conventional latency and throughput 
characterization methods as well as using a recently proposed 
5-tuple latency characterization model for on-chip networks.  
Collectively, these enable us to identify the end-to-end control 
component of the EIB (i.e., the shared command bus) as being 
the main bottleneck to achieving minimal, single-cycle latency 
and maximal 307.2 GB/sec raw effective bandwidth provided 
natively by the EIB.  This bottleneck can be exacerbated 
further by poorly designed Cell software which can 
significantly impact EIB utilization.  The main findings from 
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this study are that the end-to-end control of the EIB which is 
influenced by the software running on the Cell has inherent 
scaling problems and serves as the main limiter to overall 
network performance.  This points to the importance of not 
overlooking control and other end-to-end effects when 
designing multicore networks on chip. 

The rest of the paper is organized as follows.  Section II 
gives an overview of the Cell BE architecture and the 
requirements placed on its OCN.  Section III provides 
background on the network characterization methods used in 
this study.  Section IV presents EIB latency and throughput 
characterization results gathered principally from analytical 
cycle-counting and calculations based on published data (from 
IBM).  Section V presents an alternative view of EIB latency 
results gathered by application of the 5-tuple delay model 
proposed in [22]. Section VI describes how the Cell BE 
software can affect the performance of the EIB.  Finally, 
Section VII briefly discusses future research directions, 
followed by Section VIII which concludes the paper. 
 

II. CELL BROADBAND ENGINE: AN OVERVIEW 
 

The Cell Broadband Engine (Cell BE), or Cell, is the 
result of over four years of development by the STI 
consortium—made up of Sony, Toshiba and IBM—to develop 
a high-performance media multiprocessor chip.  For Sony, 
Cell is the central processing unit for the Sony PlayStation 3 
gaming console.  Toshiba plans to use the Cell for media 
processing in its high-definition television products.  IBM 
provides a Cell BE-based server product for scientific 
computing applications and has a number of future Cell BE-
based machine designs in development.  In general, STI 
developed Cell to rapidly process large amounts of parallel 
data.  The processing capabilities of Cell are made possible by 
its heterogeneous processors and its on-chip network 
architecture. The Cell BE architecture, shown in Fig. 1, is a 
heterogeneous multiprocessor on a chip (i.e., heterogeneous 
multicore) consisting of 12 core elements connected together 
through the EIB.  It integrates one Power Processing Element 
(PPE), eight Synergistic Processing Elements (SPEs), one 
Memory Interface Controller (MIC), and one bus controller 
split into two separate elements (IOIF0 and IOIF1).  The PPE 
is a complete 64-bit IBM Power architecture microprocessor 
featuring a 32KB L1 and a 512KB L2 cache that operates at 
the PPE core clock frequency of 3.2 GHz.  The PPE is dual-
threaded with in-order execution.  It contains a VMX 
execution unit that supports SIMD and floating-point 
processing.  Direct memory access (DMA) and memory-
mapped input/output (MMIO) are both supported by the PPE.  
The SPEs are 128-bit SIMD processing units that use a new 
VMX-like instruction set architecture (ISA).  Each SPE 
contains 256KB of Local Store (LS) memory and operate at 
3.2 GHz.  The memory flow controller (MFC), found in the 
SPEs, controls the memory management unit and DMA 
engine.  DMA is the only method supported for moving data 
between LS and system memory.  The MIC provides memory 
access of up to 512MB of RAMBUS XDR RAM.  Finally, the  

Fig. 1 – Block diagram of the Cell BE architecture, with the four EIB data 
rings shown. 

 
bus controller is a RAMBUS FlexIO interface with twelve 1-
byte lanes operating at 5 GHz.  Seven lanes are dedicated to 
outgoing data; five lanes handle incoming data.  The lanes are 
divided between the non-coherent IOIF0 and IOIF1 interfaces.  
IOIF0 can also be used as a coherent interface by using the 
Broadband Interface (BIF) protocol.  The BIF protocol 
supports access to other Cell processors in multiprocessor Cell 
system configurations. 

The Cell BE architecture places a number of requirements 
on its on-chip network.  The OCN must support the twelve 
elements in the architecture, which is greater than the typical 
two- to eight-node interconnect support needed by most other 
commercially available multicore processors to date.  In 
addition, each Cell node is capable of 51.2 GB/s of aggregate 
throughput, so the OCN must be able to support very high data 
rates.  In contrast, mainstream multicore processors such as 
those from Intel and AMD support far less: typically, less than 
15 GB/s per core. The Cell design also requires the OCN to 
support coherent and non-coherent data transfers.  Finally, the 
OCN must efficiently support the network traffic created by 
typical Cell software applications. 

The Element Interconnect Bus is STI’s solution to the 
OCN that is required by the Cell BE architecture.  Each 
element contains a Bus Interface Unit (BIU) which provides 
the interface from the element components to the EIB.  The 
EIB consists of four 16 byte-wide data rings (two in each 
direction), a shared command bus, and a central data arbiter to 
connect the twelve Cell BE elements [33].  The command bus, 
shown in the center of Fig. 2, distributes commands, sets up 
end-to-end transactions, and handles coherency.  It is 
composed of five distributed address concentrators arranged in 
a tree-like structure to allow the possibility of multiple 
commands to be outstanding at a time across the network.  It 
operates at 1.6 GHz, which is one-half the PPE core clock 
frequency of 3.2 GHz.  The data rings also operate at the bus 
clock frequency of 1.6 GHz.  Each ring is capable of handling 
up to three concurrent non-overlapping transfers, allowing the  
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Fig. 2 - Element Interconnect Bus – the Command Bus component (center) and 

four data rings. 
 

 
Fig. 3 - Element Interconnect Bus – the Data Arbiter component (center) and 

four data rings. 
 

network to support up to twelve data transfers at a time across 
the EIB.  The central data arbiter is shown in the center of Fig. 
3, implemented in a star-like structure.  It controls access to 
the EIB data rings on a per transaction basis.  In the following 
sections, performance capabilities of the EIB are evaluated 
using conventional and recently proposed network 
characterization methods. 

 
III. NETWORK PERFORMANCE CHARACTERIZATION 
 
With the increasing importance of on-chip networks 

comes the need for useful methods of characterizing network 
performance.  By characterizing network performance in a 
consistent manner, comparisons can be made between various 
network designs.  Comparisons facilitate network architecture 
design tradeoffs by allowing the designer a clear view of the 
advantages and disadvantages of particular network design 
choices and, in particular, identification of potential 
performance bottlenecks.  In this paper, we use conventional 
methods and a recently proposed method for characterizing 
the performance of the Cell BE EIB. 

The conventional method of charactering network 
performance applicable to OCNs as well as other network 
classes is described in [34].  The two basic performance 
factors are latency and throughput (also called effective 
bandwidth).  Latency is the amount of time (e.g., cycles or 
nsec) required for a network to perform a given action, such as 
a packet to traveling from one node to the next (i.e., hop 
latency) or from its source to its destination (i.e., end-to-end 
latency).  The total latency of a network transaction is the 
summation of the latencies of each step of the transaction from 
beginning to end.  Throughput is the amount of information 
transferred per unit of time (e.g., GB/sec).  Throughput is 
calculated by dividing network packet size by either the 
transmission time or the overhead associated with sending or 
receiving the packet, whichever is the larger [34].  There are 
different values of throughput for various parts of the network 

end-to-end.  For example, each node has a certain amount of 
sending (alternatively, receiving) throughput, called injection 
(alternatively, reception) bandwidth, which defines the rate at 
which it can inject (alternatively, receive) data into/from the 
network.  Likewise, the network core fabric has a certain 
amount of bandwidth it can support across its bisection, called 
the bisection bandwidth. Following after [34], the overall 
throughput of the network is limited by the smaller of these 
accumulated bandwidths across the entire network.  Network 
design aspects such as topology, routing, switching, arbitration, 
flow control, microarchitecture, etc., influence the latency and 
throughput performance of the network.  In Section IV, we 
analytically evaluate the EIB using the above conventional 
methods. 

An alternative method of characterizing network 
performance, as proposed by Taylor, et al., in [22], consists of 
describing the network in terms of a 5-tuple delay model.  
Although originally targeted to scalar operand networks 
(SONs), this method is equally applicable to OCNs as well as 
other network classes.  A SON is an on-chip network designed 
to transport instructions and their operands across elements. 
One example of a SON is the traditional operand bypass 
network found in most superscalar pipelined commercial 
microprocessors, while another example is the static mesh 
OCN employed by the MIT RAW research prototype 
multicore processor [21].  The 5-tuple delay model comprises 
five costs presented as <SO, SL, NHL, RL, RO>.  Send 
Occupancy (SO) is the number of cycles that a processing 
element spends occupied in doing the work needed to send a 
packet.  Send Latency (SL) is the number of cycles a packet 
spends on the sending side of the network waiting to be 
injected into the network without occupying the processing 
element.  Network Hop Latency (NHL) is the number of 
cycles needed to transport a message from one node to an 
adjacent node in the network.  Receive Latency (RL) is the 
number of cycles an instruction needing the data on the 
receiving end spends waiting in an issue-ready state waiting 
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for the remote data to be received and ready for use.  Receiver 
Occupancy (RO) is the number of cycles the receiving 
processing element spends occupied in making the remote 
data ready for use.  The 5-tuple delay model is meant to allow 
for comparisons of the operation-to-operand matching aspects 
of a SON.  For more generalized OCNs, the 5-tuple delay 
model can be used as a tool for comparing different 
components of network latency from end to end.  In Section V, 
we apply and evaluate the 5-tuple delay model to the EIB.   
 

IV. CONVENTIONAL CHACTERIZATION: LATENCY AND 
THROUGHPUT ANALYSIS 

 
The EIB is a pipelined circuit-switched network that 

employs lossless flow control in the form of end-to-end 
command credits.  An element on the EIB must have a free 
command credit in order to make a request on the command 
bus.  This allows the EIB to have a simple, deterministic flow 
control design.  The EIB allows up to 64 outstanding requests 
for each element on the bus.  In order not to bottleneck 
network performance, the MIC also supports the maximum 64 
requests.  The SPEs, on the other hand, support only 16 
requests.  

The EIB’s data arbiter implements round-robin bus 
arbitration with two levels of priority.  This scheme works the 
same for the data arbiter as it does for the shared command 
bus.  The MIC has highest priority while all other elements 
have lower priority, the same for each of them.  The data 
arbiter does not allow a packet to be transferred along hops 
totaling more than half the ring diameter.  That is, a data ring 
is granted to a requester only so long as the circuit path 
requested is no more than six hops.  If the request is greater 
than six hops, the requester must wait until a data ring 
operating in the opposite direction becomes free.  As briefly 
mentioned above, the command bus uses end-to-end command 
credits, or tokens, for control of the bus.  Elements use tokens 
to post commands to the command bus.  An element may send 
only as many commands as it has tokens.  Each token is held 
by the command bus until the associated command is 
complete, at which point the token is returned to the element.   

The Cell BE has a software-controlled Resource 
Allocation Manager that allows applications to manage EIB 
resources in software.  The Resource Allocation Manager is an 
optional feature that allocates the usage of resources to prevent 
individual elements from becoming overwhelmed.  It divides 
memory and IO resources into resource banks and separates 
requestors into groups.  Software controls access to each 
group again using tokens. 

 
IV.1 Best-case Latency Estimates 

 
Given the above mechanics, the EIB network 

performance can be characterized in terms of packet latency 
and effective bandwidth (throughput).  The EIB supports two 
types of data transfer modes: DMA and MMIO.  The overall 
network latency is, essentially, the same for both transfer 

modes.  The latency of a packet through the network end-to-
end can be calculated using the following equation:  
 

Latency = Sending Overhead + Time of Flight + 
Transmission Time + Receiver Overhead 

(1) 

 
EIB transactions can be divided into four phases: the Sending 
Phase, the Command Phase, the Data Phase, and the 
Receiving Phase.  The Sending Phase is responsible for 
initiating a transaction.  It consists of all processor and DMA 
controller activities needed before transactions are injected 
into any components within the EIB.  At the end of the 
Sending Phase, a command is issued to the command bus to 
begin the Command Phase.  The Command Phase coordinates 
end-to-end transfers across the EIB.  During the command 
phase, the EIB informs the read or write target element of the 
impending transaction to allow the target to set up the 
transaction (i.e., data fetch or buffer reservation).  The 
Command Phase is also responsible for coherency checking, 
synchronization, and inter-element communication (i.e., 
injection into BIUs).  The Data Phase begins at the conclusion 
of the Command Phase.  The Data Phase handles data ring 
arbitration and actual data transfers across the rings.  Since 
end-point setup was completed during the Command Phase, 
the Data Phase is left with the task of granting access to one of 
the four data rings to packets when a ring becomes free and no 
more than six hops are needed along the ring.  Pipelined 
circuit-switched transport of packets occurs end-to-end over 
the granted EIB ring.  The Receiving Phase concludes the 
transaction by transferring received data from the receiving 
node’s BIU to its final destination at that receiver, such as LS 
memory or system memory.  With these four phases, the 
latency of packets across the EIB can be calculated using a 
revised version of the network latency equation above, where 
Sending Overhead is composed of the Sending Phase and 
Command Phase, and Time of Flight and Transmission Time 
combine to form the Data Phase:  
 

Latency = Sending Phase + Command Phase + Data 
Phase + Receiving Phase 

(2) 

 
In the following, we calculate the number of processor 

cycles needed to execute the communication phases above (in 
the best case) for DMA transfers based on the required 
number and type of instructions needing to be executed and 
the microarchitecture of the elements executing them.  All 
calculations assume ideal, best-case scenarios for simplicity, 
leading to lower-bound latency estimates.  For example, the 
EIB is assumed to be unloaded—meaning that all queues are 
empty and no additional waiting due to resource contention or 
otherwise is incurred during arbitration.  Also, no processor 
stalls are assumed to occur in executing instructions, i.e., due 
to cache misses or any other type of anomaly.   

The Sending Phase of an EIB transfer is made up of the 
following: processor pipeline latency, DMA setup, and DMA 
controller processing.  Both the PPE and SPE have 23-stage 
processor pipelines, yielding a pipeline latency of 23 processor 
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clocks.  The next step, DMA setup, requires 5 instructions to 
begin a DMA: 1) Write SPE Local Store Address, 2) Write 
Effective Address High (upper 32-bits), 3) Write Effective 
Address Low (lower 32-bits), 4) Write DMA size, and 5) 
Write DMA command (send, receive, etc).  Since the DMA 
controller operates at the bus clock rate, these five instructions 
can complete in 10 processor clocks.  Once the DMA is issued, 
the DMA controller takes an additional 20 processor clocks to 
select the command, unroll the bus transaction, send the 
command to the BIU, and then issue the command to the 
command bus [35], [36].  Thus, the Sending Phase takes a 
total of 53 processor clock cycles, which is 26.5 bus cycles. 

The Command Phase consists of five steps [37], [38]: 
command issue, command reflection, snoop response, 
combined snoop response, and final snoop response.  The 
length of the command phase depends on whether or not the 
transaction is coherent or non-coherent.  The EIB master 
initiates a transaction during the command issue setup, which 
takes 11 bus cycles for coherent commands and 3 bus cycles 
for non-coherent commands.  The command reflection step 
depends only on the distance an element is from the AC0 
address concentrator.  From AC1, command reflection takes 3 
bus cycles.  Two bus cycles are added for elements connected 
to AC2.  Elements connected to AC3 add another 2 bus cycles 
for a total of 7 cycles of command reflection.  Responses to 
the reflected commands are gathered during the snoop 
response step, which takes 13 bus cycles, regardless of 
coherency.  In the combined snoop response step, the 
responses are distributed to all elements in 9 bus cycles for 
coherent transactions and 5 bus cycles for non-coherent 
transactions.  The final snoop response ends the Command 
Phase, requiring an additional 3 bus cycles.  In total, the 
Command Phase minimally requires 43 bus cycles for 
coherent transactions and 31 bus cycles for non-coherent 
transactions. 

The Data Phase consists of data arbitration steps, data 
propagation, and transmission time.  The Data Phase latency is 
independent of the coherency of the data.  A transaction takes 
2 bus cycles to make a request to the data arbiter, another 2 
cycles for data arbitration and, assuming no contention, 2 
more cycles to be granted access to a data ring by the data 

arbiter [38].  Time of flight of a DMA transfer after arbitration 
is limited to a maximum of six hops by design (half the 
network diameter).  Each hop takes one bus cycle.  Therefore, 
the worst-case time of flight is 6 bus cycles after arbitration.  
To make the EIB more deterministic, all packets are designed 
to be 128 bytes in size.  Since each data ring of the EIB is 16 
bytes wide, every transaction takes 8 bus cycles to complete.  
Therefore, transmission time is 8 bus cycles.  All together, 
arbitration, worst-case time of flight, and transmission time 
take at total of 20 bus cycles to complete. 

The Receiving Phase takes only 2 bus cycles for the SPEs 
and PPE.  The first cycle is used to move data from the BIU to 
the MFC.  Conservatively, the DMA engine in the MFC can 
write the 128 byte data packet into LS memory in the second 
bus cycle.   

The end-to-end network latency for packets is obtained by 
summing each of the phases together. A non-coherent transfer 
minimally takes 79.5 bus cycles or 49.6875 nsec to complete.  
Coherent transfers minimally require 91.5 bus cycles or 
57.1875 nsec to complete.  Table 1 summarizes the EIB 
latency calculations described above.  Again, we emphasize 
that the latency calculations should be considered as best-case, 
lower-bound estimates.  Any bus arbitration time, network 
contention, stalls, or other delays will directly impact the 
packet latency across the EIB. 

MMIO transfers essentially have the same latency as 
DMA transfers as they require the full Command and Data 
Phases mentioned above.  All MMIO transfers also are 
coherent, meaning that some DMA transfers will actually have 
a lower latency.  Regardless of their latency, MMIO transfers 
are far less efficient than DMA transfers as every EIB transfer 
assumes a packet size of 128 bytes, whether or not the full 
width is needed.  DMA transfers use all 128 bytes, but MMIO 
transfers only use 4 or 8 bytes, resulting in significant under-
utilization of the network bandwidth. 

One major advantage of the EIB is its ability to pipeline 
DMA data transfers.  The data arbiter can start a transfer on 
every bus cycle and each data ring supports a new operation 
every three cycles.  This allows a single element to 
continuously pipeline transmissions on the EIB assuming there 
is low network contention, i.e., no conflicting overlaps of 

 
TABLE 1 – EIB ZERO-LOAD PACKET LATENCY ESTIMATES – BEST-CASE, LOWER-BOUND RESULTS. 

  

Sending Phase 
(29% of Coherent Total) 
(33% of Non-coherent Total) 

Command Phase 
(47% of Coherent Total) 
(39% of Non-coherent Total) 

Data Phase 
(22% of Coherent Total) 
(25% of Non-coherent Total) 

Receiving 
Phase 
(2% of C) 
(3% of NC) Totals 

  

xPE 
Pipeline 
Latency 

xPE 
Issue 
to 
Queue 

DMAC 
Issue 
to 
Cmd 
Bus 

Cmd 
Issue 

Cmd 
Refl. 

AC2 
Cmd 
Refl. 

AC3 
Cmd 
Refl. 

Snoop 
Resp. 

Comb. 
Snoop 
Resp. 

Final 
Snoop 
Resp. 

Data 
Req. 
to 
Arbiter 

Data 
Arb, 

Data 
Grant 

Time 
of 
Flight 

Trans. 
Time Overhead 

Clock 
Cycles 

CPU 
Clock 23 10 20 22 6 4 4 26 18 6 4 4 4 12 16 4 183 

C
oh

er
en

t 

Bus 
Clock 11.5 5 10 11 3 2 2 13 9 3 2 2 2 6 8 2 91.5 

CPU 
Clock 23 10 20 6 6 4 4 26 10 6 4 4 4 12 16 4 159 

N
on

-C
oh

er
en

t 

Bus 
Clock 11.5 5 10 3 3 2 2 13 5 3 2 2 2 6 8 2 79.5 
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source-destination paths over a ring.  The overlap provided by 
pipelined data transfers reduces sender/receiver overhead, and 
increases the effective bandwidth when considering the 
command phase and the data arbitration and propagation 
portions of the data phase (as we show below).  Through 
pipelining, there are only 8 bus cycles or 5 nsec of latency 
between DMA transactions, equating to the 8 bus cycles of 
transmission time. Thus, since there are no wasted cycles 
between transmissions, the data rings can be considered as 
running at 100% efficiency in this case.   

 
IV.2 Best-case Effective Bandwidth Estimates 
 

The maximum effective bandwidth (throughput) required 
by a network design is determined by summing across all 
interconnected elements the maximum data rate at which 
packets can be injected (alternatively, received) at each 
element. Each element in the EIB is theoretically capable of 
sending and receiving 16 bytes per cycle, which equates to 
25.6b GB/sec of injection (alternatively, reception) bandwidth.  
The total bidirectional effective bandwidth of an element is, 
therefore, 51.2 GB/sec.  In order to accommodate all twelve 
elements, the EIB should be capable of providing a total 
throughput of 307.2 GB/sec, based on the effective 
bandwidths of each element.  The EIB, as designed, indeed 
provides this in terms of raw network bandwidth. It supports a 
maximum of three concurrent transfers on each of its four 16-
byte rings.  Each ring can begin a new transfer every three 
cycles, and all transfers are eight cycles or 128 bytes long, 
which means that when the data rings are fully utilized, the 
EIB supplies a peak effective bandwidth of 307.2 GB/sec.  
Thus, theoretically, the EIB fully supports the bandwidth 
requirements of the twelve elements in the Cell BE processor.  
Unfortunately, as we show below, the EIB suffers from a 
number of limitations that, realistically, result in much lower 
effective bandwidth in the best case. 

The EIB faces the same throughput limitations as all 
networks.  For example, if a single element is in high demand, 
network throughput will be limited by the response of the 
most heavily-loaded element or set of links along the path to 
that element.  In the Cell processor, the MIC serves as such a 
heavily utilized element as most SPE/PPE threads require 
regular access to system memory.  In addition to this challenge, 
the design of the EIB poses additional limitations on effective 
bandwidth, as described below. 

The first major limitation on EIB throughput is that which 
is imposed by the command bus.  The command bus is 
severely limited in the number of bus requests it can process 
concurrently.  For non-coherent transactions, it is limited to 
one request per bus cycle; for memory coherent transactions, 
the command arbiter can handle only one request every two 
bus cycles [39].  Thus, the non-coherent data rate is limited to 
204.8 GB/sec, and the coherent data rate is limited to 102.4 
GB/sec due to the shared command bus posing as a major 
bottleneck. All system memory commands such as MIC and 
PPE cache transfers are coherent commands.  Some I/O 
commands, i.e., those typically for multi-Cell applications, are 

also coherent.  Thus, a large fraction of EIB transactions 
(depending on the application) make use of only 33% of the 
raw effective bandwidth provided by the EIB network. The 
effect of coherency on EIB throughput need not be linear, 
however.  As long as coherent transactions are limited to one 
command every other clock cycle, there is no loss due to 
coherency.  However, if two or more coherent transactions 
enter the command queue consecutively, there will be 
bandwidth losses.   Fortunately, SPE to SPE transfers are non-
coherent, but even for these EIB transactions, only 66% of the 
raw effective bandwidth provided by the EIB network can be 
used.  Thus, regardless of the additional limitations caused by 
coherent transfers, the design of the command bus prevents 
applications from being able to exploit the 307.2 GB/sec 
effective bandwidth provided natively by the four EIB data 
rings, even under best-case operational scenarios.  In its 
current implementation, the EIB is unable to handle the full 
injection bandwidth of the twelve Cell BE elements. 

The choice of a ring topology for the EIB serves as 
another possible design limitation in achieving full injection 
bandwidth.  In order to support three packet transfers per ring, 
the transfers must occur over non-overlapping source-
destination paths.  If a transaction traverses an element, that 
element is unable to perform another transfer on the same data 
ring until the first transaction completes.  A maximum transfer 
distance of six hops potentially prevents up to five elements 
from being able to access a data ring.  In [5], IBM conducted a 
series of throughput tests using non-coherent transfers 
between SPEs to measure effective bandwidth under various 
conflicting and non-conflicting traffic scenarios over the data 
rings.  Depending on the location of transfer sources and 
destinations, measurements show that throughput can range 
from 96% of the command bus-limited 204.8 GB/sec 
(realistic) maximum down to 38% of that maximum.  Fig. 4 
shows the traffic pattern used for the high-efficiency test that 
resulted in a throughput of 197 GB/sec.  As illustrated, since 
no ring contention exists and all transfers are non-coherent, 
the command bus maximum of eight concurrent ring transfers 
can be achieved (note: this is less than the twelve concurrent 
ring transfers provided natively by EIB without the command 
bus limitation).  Fig. 5 illustrates how conflicted overlapping 
transfers (i.e., transfers requiring the same links of a ring) limit 
the EIB to only one transfer per ring, thus further reducing the 
effective bandwidth down to 78 GB/sec.  Coherent transfers 
would further throttle the network bandwidth. 

Finally, the EIB effective bandwidth can be further 
reduced due to under-utilization resulting from less than full 
packet transfer size.  The choice of optimizing the design for 
wide packets of 128 bytes can greatly diminish the utilization 
of allocated bandwidth when only a fraction of that packet size 
is actually used.  For example, MMIO with its 4 or 8 byte 
transfers is the greatest culprit of bandwidth under-utilization.  
Fortunately, most transfers in the Cell BE are in units of 128 
bytes, since the PPE uses 128 byte cache lines and the SPEs 
use 128 byte memory blocks.  Under-utilization is a challenge 
for most network architecture designs.  However, this issue is 
exacerbated in the EIB as poor packet efficiency also increases  
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Fig. 4 – Non-conflicting traffic pattern for the high-efficiency transfer test. 
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Fig. 5 – Conflicting traffic pattern for the low-efficiency transfer test. 

 
data ring contention, which reduces the achievable effective 
bandwidth of the network. 
 

V. AN ALTERNATIVE CHARACTERIZATION: THE 5-TUPLE 
DELAY MODEL 

 
The 5-tuple delay model proposed in [22] serves as an 

alternative method of characterizing network latency 
performance.  Building from the best-case latency components 
given in Section IV.1, we assign values to the 5-tuple 
parameters as described below.  Both the SPEs and the PPE 
take 5 bus cycles to start a DMA transaction, thus the Send 
Occupancy of the EIB is 5 cycles.  Send Latency includes the 
time it takes the DMA controller to process the DMA, the 
entire command phase, and the data phase up to the point at 
which data is ready to be sent over the EIB data ring.  This 
gives a total Send Latency of 59 bus cycles for coherent 
transfers and 47 bus cycles for non-coherent transfers. The 
EIB requires only a single cycle per hop between EIB 
elements, yielding a Network Hop Latency of 1 bus cycle.  
There is some difficulty in applying the 5-tuple delay model at 
the receiving side of the EIB.  Receive Latency on the EIB can 
be 1 bus cycle if the DMA transaction has completed before 
the processing element accesses the data.  That clock cycle is 
used to load the data from the Local Store into the processing 
element’s register file.  However, in the worst-case, the 
processing element may need to wait for an entire DMA to 
start, which can take over 90 bus cycles.  Similarly, Receive 
Occupancy is zero cycles if the DMA has completed and the 
data is in memory since there is no additional penalty for using 
remote data found in the LS.  If the data is not yet in the LS, 

then the Receive Occupancy cost would be significantly 
higher. 

The level of abstraction of the EIB in matching operations 
to operands makes it difficult to compare it directly to true 
SONs.  The EIB is designed to handle data at the system 
memory level, whereas SONs are designed to handle data at 
the operand level.  Due to its higher level of abstraction, the 
EIB will naturally have higher 5-tuple costs than a typical 
SON.  Nevertheless, using data from [22], [23], [40], Table 2 
shows how the EIB compares with other types of networks.  
Not surprisingly, the EIB has a much larger 5-tuple delay cost 
than the superscalar bypass networks and SONs used to 
transport data operands.  However, the EIB compares 
reasonably well with distributed shared memory and other 
message passing networks, both of which operate at the 
system memory level of abstraction.  The high send latency 
cost of the EIB reveals a scalability issue with the EIB.  While 
the data rings have an efficient 1 cycle per hop latency, the 
shared command bus takes a long time to synchronize all EIB 
interfaces.  Given the longer latency, the EIB will have 
problems scaling beyond twelve nodes.  In fact, it is likely that 
more nodes would require even more time during the 
command phase for synchronization, which would lead to an 
even higher Send Latency.   

The 5-tuple delay model analysis also highlights the 
impact software has on EIB utilization.  If a Cell programmer 
carefully plans out memory transfers, Receive Latency and 
Receive Occupancy can be much lower and more in line with 
those of the SONs.  However, poor software programming 
could cause very large latency costs for the EIB if not tuned 
correctly.  The effect of software on the EIB is discussed 
further in the next section. 
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TABLE 2 – SUMMARY OF THE 5-TUPLE DELAY MODEL FOR THE EIB IN COMPARISON TO OTHER NETWORKS 

Tuple Costs 

Cell BE 
EIB 

Coherent 

Cell BE EIB 
Non-

coherent 

Typical Super-
scalar bypass 

network 

Distributed 
Shared 
Memory 

Message 
Passing 

M.I.T. 
Raw 

M.I.T. 
Raw-

Dynamic 

Power4 
bypass 
network 

U.T. 
Austin 
TRIPS 
EDGE 

Send 
Occupancy 5 5 0 1 3 0 0 2 0 

Send Latency 59 47 0 
14+commit 

latency 
3+commit 

latency 1 2 14 0 
Network hop 

latency 1 1 0 2 1 1 1 0 1 
Receive 
latency >= 0 >= 0 0 24 1 1 2 14 0 
Receive 

occupancy >= 0 >= 0 0 1 12 0 0 4 0 

 
VI. SOFTWARE EFFECTS ON THE EIB 

 
Estimating the packet latency and effective bandwidth 

values provide only part of the story when evaluating network 
architectures.  Eventually, the applications that are to run on 
the network must be considered.  Sections IV and V 
characterize the performance of the EIB only analytically as 
cycle-accurate simulation over the EIB cannot be performed 
using the publicly available Cell BE simulator [41].  Without 
considering the applications running on the Cell BE system, 
including its software optimizations, the EIB network cannot 
be fully evaluated.   

Developing software for the Cell processor is the greatest 
challenge for Cell-based system design.  This heterogeneous 
multicore processor requires a substantially different 
programming paradigm.  IBM has written a five-part guide to 
provide an introduction to programming and compiling for the 
Cell architecture [42].  From the network perspective, the 
challenge for software is to balance the workload on the Cell 
processor with the strengths and limitations of the EIB.  In 
general, EIB transactions have significant latency.  To 
complicate matters further, the latency is not deterministic and 
varies based on contention and the transfer paths of the traffic.  
Thus, software development for the processor needs to take 
EIB latency and command bus bandwidth limitations into 
account.  While software teams would like to treat all SPEs 
the same, Section IV shows that SPE transfer paths can 
drastically affect EIB performance. 

There are three main application models for the Cell BE 
[43], [44].  The job queue model uses the PPE as the central 
processor which maintains a job queue and sends tasks to the 
SPEs.  This model has lower EIB utilization than the other 
models since latency is of less concern.  However, this model 
achieves only moderate performance as the SPEs are not fully 
utilized.  The self-multitasking model is a distributed 
application model that operates across the SPEs.  It is a high-
performance application model, but it has increased 
synchronization requirements which place additional stress on 
the EIB.  The last model, the stream processing model, is also 
SPE based.  In this case, each SPE runs a single application 
and processes one part of the data stream.  This model 
achieves high-performance as well, but it also highly utilizes 
the EIB.  Of the three models, we believe analysis would show 
the stream processing model to be the best at balancing the 
latency limitations and bandwidth strengths of the EIB. 

As mentioned above, EIB transactions have significant 
latency which has to be handled by software.  By using the 
significant bandwidth of the EIB, Cell software can greatly 
reduce EIB latency.  For example, by pre-fetching data, 
bandwidth can be traded to avoid the latency of unnecessary 
stalls.  Software pipelining can also be helpful, but 
unpredictable access patterns may limit its effectiveness.  
Double buffering is used to stream data through the SPE LS, 
bypassing latency effects.  Since the SPEs lack caches, a 
software cache can be used instead to handle workloads with 
temporal and spatial memory locality. 

By using latency hiding techniques, software may be 
better able to utilize the abundant bandwidth provided by the 
EIB.  However, there are some pitfalls that software should 
avoid to achieve optimal EIB performance, such as the under-
utilization of packets.  Cell uses a mailbox communication 
model with special registers that allow for communication 
between the PPE and the SPEs [45].  Some of these mailbox 
channels use MMIO which limit bandwidth utilization.  In 
general, MMIO should be avoided as much as possible.  
Another problem area is SPE management.  The SPEs are 
capable of context switches when necessary, but context 
switches take approximately twenty microseconds to complete, 
which is more than 33,000 bus cycles.  The SPEs should 
always finish program execution to avoid this severe context 
switch penalty. 
  

VII. FUTURE RESEARCH 
 

One area of future research is to characterize typical Cell 
application code and its related EIB utilization using a cycle-
accurate Cell simulator or actual Cell hardware.  The Sony 
Playstation 3 and various Cell-based Linux distributions 
would be possible test platforms for such research.  With such 
a platform, it would be possible to quantify the impact of 
software alluded to in Section VI.  Without simulation or 
hardware testing, the effects of software can only be estimated, 
as is done here.  Such tasks would require Cell code 
development, which implies another set of issues, but with the 
use of a test platform, the effectiveness of the EIB could be 
better understood. 

Another area of research (possibly already in the works at 
IBM) is to consider design improvements for a second 
generation EIB.  In [46], David Krolak points out that Cell is 
architected to allow the EIB to be easily replaced with a 
different network, such as a crossbar switch.  He continues to 
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say that a crossbar switch would take too much die space to be 
practical in the first Cell processor [46].  When IBM moves 
Cell to the next process generation, from 90 nm to 65 nm, it 
may be possible to include a richer network, such as a crossbar 
or higher-dimensional network.  Improvements to end-to-end 
control of the network would certainly help, no matter what 
the network.  Again, such design upgrades could be tested 
using a cycle-accurate simulator. 
 

VIII. CONCLUSION 
 

The Element Interconnect Bus is a network design that 
faces a number of challenges. This paper attempts to identify a 
number of these challenges by characterizing network 
performance using conventional and recently proposed 
methods based on analytical analysis.  Network performance 
characterization in traditional terms of packet latency and 
effective bandwidth is a good starting point to understanding 
OCN design choices, but deeper analysis can be done in order 
not to evaluate the network in a vacuum.  The entire system, 
including application characteristics and software 
optimizations, should be considered in future work to 
characterize the network more accurately. 

Our findings reveal that the EIB suffers from latency and 
bandwidth limitations imposed by the mechanism used for 
end-to-end control. The complexity of the EIB design 
necessitates long Sending and Command Phases implemented 
over a shared command bus that provides limited concurrency.  
This greatly increases the packet latency and reduces the 
achievable effective bandwidth of the EIB.  Although the data 
rings provide sufficient effective bandwidth, the command bus 
severely limits the use of that bandwidth.  This result points to 
the importance of not overlooking control and other end-to-
end effects when designing multicore on-chip networks.  

Despite these limitations, the EIB is still capable of an 
effective bandwidth in excess of 100 GB/s, which compares 
favorably against current multicore processors.  The 5-tuple 
delay model shows that the EIB is similar to other OCNs that 
transport memory data but that the EIB will not scale well 
beyond its twelve element design due to the command bus 
architecture. Design tradeoffs made by EIB designers require 
that software programmers strike a delicate balance when 
writing applications on Cell BE systems.  In order to achieve 
the best performance, Cell software applications should make 
use of the relatively large bandwidth provided by the EIB to 
overcome the long latencies of the network, while being 
careful not to underutilize nor over prescribe that bandwidth.  
If properly utilized by Cell software, the EIB can achieve near 
superscalar bypass network latencies at the receive end of the 
network.   
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