
1

On Characterizing Performance of the Cell
Broadband Engine Element Interconnect Bus

Thomas William Ainsworth and Timothy Mark Pinkston

Electrical Engineering Department
University of Southern California

Los Angeles, CA 90089-2562, USA
E-mail: tainsworth@alumni.nd.edu, tpink@usc.edu

Abstract – With the rise of multicore computing, the design of on-
chip networks (or networks on chip) has become an increasingly
important component of computer architecture. The Cell
Broadband Engine’s Element Interconnect Bus (EIB), with its
four data rings and shared command bus for end-to-end control,
supports twelve nodes—more than most mainstream on-chip
networks, which makes it an interesting case study. As a first
step toward understanding the design and performance of on-
chip networks implemented within the context of a commercial
multicore chip, this paper analytically evaluates the EIB network
using conventional latency and throughput characterization
methods as well as using a recently proposed 5-tuple latency
characterization model for on-chip networks. These are used to
identify the end-to-end control component of the EIB (i.e., the
shared command bus) as being the main bottleneck to achieving
minimal, single-cycle latency and maximal 307.2 GB/sec raw
effective bandwidth provided natively by the EIB. This can be
exacerbated by poorly designed Cell software, which can have
significant impact on the utilization of the EIB. The main
findings from this study are that the end-to-end control of the
EIB which is influenced by the software running on the Cell has
inherent scaling problems and serves as the main limiter to
overall network performance. Thus, end-to-end effects must not
be overlooked when designing efficient networks on chip.

Index terms: Cell Broadband Engine, Element Interconnect
Bus, interconnection networks, on-chip network, network on
chip, heterogeneous multicore, network characterization,
performance bottleneck.

I. INTRODUCTION

With the rise of multicore computing, the design of on-
chip interconnection networks has become an increasingly
important component of computer architecture. On-chip
networks (OCNs)—also known as networks on chip (NOC)—
interconnect various functional and computational resources
on a chip. These days, researchers are actively pursuing the
design of efficient OCNs after becoming aware, in recent
years, that wires are now a dominant factor in determining
system performance, cost, power dissipation, reliability, and
other important characteristics [1] – [5]. On-chip network
architectures are being proposed that no longer are flat shared
bus structures [6], [7], [8] but, instead, are point-to-point and
switched networks taking the form of hierarchical buses, rings,
meshes, crossbars, and even irregular topologies [9] – [15]. As
summarized in [16], on-chip networks are being proposed and
finding use in research and commercial processor chips whose

microarchitecture are partitioned into multiple (and soon to be
many) clusters [17] – [20], tiles [21] – [24], and cores [25] –
[31].

On-chip networks may be used for different purposes and
take on different forms by the microarchitecture to transfer
instructions, operand values, cache/memory blocks,
cache/memory coherency traffic, status and control
information, etc. For example, of the eight on-chip networks
implemented in the TRIPS EDGE research prototype
architecture [23] for interconnecting its 106 heterogeneous
tiles composing two processor cores and L2 cache integrated
on-chip, two are 141-bit and 128-bit bidirectional mesh
networks used for transporting operand and memory data,
respectively, sent broadside; the remaining six are dedicated
fan-out trees or recombination networks with unidirectional
channels as wide as 168-bits for instruction dispatch and as
narrow as 10-bits for global status and control. Alternatively,
the Cell Broadband Engine (Cell BE) [32]—a commercial
heterogeneous multicore processor—employs the Element
Interconnect Bus (EIB) as its on-chip network used for
transporting instructions and data between twelve elements
interconnected on the chip.

The goal in designing wire-efficient on-chip networks,
typically, is to achieve the highest possible effective
bandwidth (i.e., throughput) and the lowest possible end-to-
end latency for a given cost. In designing OCNs for specific or
general purpose functions, it is important to understand the
impact and limitations of various design choices in achieving
this goal. As a first step toward understanding OCN design-
performance tradeoffs in the context of a commercial
heterogeneous multicore processor chip, we perform a case
study on the Cell BE EIB. The EIB is an interesting OCN to
study as it provides higher raw network bandwidth and
interconnects more nodes than most mainstream commercial
multicore processors. In this paper, we analytically evaluate
the EIB network using conventional latency and throughput
characterization methods as well as using a recently proposed
5-tuple latency characterization model for on-chip networks.
Collectively, these enable us to identify the end-to-end control
component of the EIB (i.e., the shared command bus) as being
the main bottleneck to achieving minimal, single-cycle latency
and maximal 307.2 GB/sec raw effective bandwidth provided
natively by the EIB. This bottleneck can be exacerbated
further by poorly designed Cell software which can
significantly impact EIB utilization. The main findings from

mailto:tainsworth@alumni.nd.edu
mailto:tpink@usc.edu

2

this study are that the end-to-end control of the EIB which is
influenced by the software running on the Cell has inherent
scaling problems and serves as the main limiter to overall
network performance. This points to the importance of not
overlooking control and other end-to-end effects when
designing multicore networks on chip.

The rest of the paper is organized as follows. Section II
gives an overview of the Cell BE architecture and the
requirements placed on its OCN. Section III provides
background on the network characterization methods used in
this study. Section IV presents EIB latency and throughput
characterization results gathered principally from analytical
cycle-counting and calculations based on published data (from
IBM). Section V presents an alternative view of EIB latency
results gathered by application of the 5-tuple delay model
proposed in [22]. Section VI describes how the Cell BE
software can affect the performance of the EIB. Finally,
Section VII briefly discusses future research directions,
followed by Section VIII which concludes the paper.

II. CELL BROADBAND ENGINE: AN OVERVIEW

The Cell Broadband Engine (Cell BE), or Cell, is the
result of over four years of development by the STI
consortium—made up of Sony, Toshiba and IBM—to develop
a high-performance media multiprocessor chip. For Sony,
Cell is the central processing unit for the Sony PlayStation 3
gaming console. Toshiba plans to use the Cell for media
processing in its high-definition television products. IBM
provides a Cell BE-based server product for scientific
computing applications and has a number of future Cell BE-
based machine designs in development. In general, STI
developed Cell to rapidly process large amounts of parallel
data. The processing capabilities of Cell are made possible by
its heterogeneous processors and its on-chip network
architecture. The Cell BE architecture, shown in Fig. 1, is a
heterogeneous multiprocessor on a chip (i.e., heterogeneous
multicore) consisting of 12 core elements connected together
through the EIB. It integrates one Power Processing Element
(PPE), eight Synergistic Processing Elements (SPEs), one
Memory Interface Controller (MIC), and one bus controller
split into two separate elements (IOIF0 and IOIF1). The PPE
is a complete 64-bit IBM Power architecture microprocessor
featuring a 32KB L1 and a 512KB L2 cache that operates at
the PPE core clock frequency of 3.2 GHz. The PPE is dual-
threaded with in-order execution. It contains a VMX
execution unit that supports SIMD and floating-point
processing. Direct memory access (DMA) and memory-
mapped input/output (MMIO) are both supported by the PPE.
The SPEs are 128-bit SIMD processing units that use a new
VMX-like instruction set architecture (ISA). Each SPE
contains 256KB of Local Store (LS) memory and operate at
3.2 GHz. The memory flow controller (MFC), found in the
SPEs, controls the memory management unit and DMA
engine. DMA is the only method supported for moving data
between LS and system memory. The MIC provides memory
access of up to 512MB of RAMBUS XDR RAM. Finally, the

Fig. 1 – Block diagram of the Cell BE architecture, with the four EIB data
rings shown.

bus controller is a RAMBUS FlexIO interface with twelve 1-
byte lanes operating at 5 GHz. Seven lanes are dedicated to
outgoing data; five lanes handle incoming data. The lanes are
divided between the non-coherent IOIF0 and IOIF1 interfaces.
IOIF0 can also be used as a coherent interface by using the
Broadband Interface (BIF) protocol. The BIF protocol
supports access to other Cell processors in multiprocessor Cell
system configurations.

The Cell BE architecture places a number of requirements
on its on-chip network. The OCN must support the twelve
elements in the architecture, which is greater than the typical
two- to eight-node interconnect support needed by most other
commercially available multicore processors to date. In
addition, each Cell node is capable of 51.2 GB/s of aggregate
throughput, so the OCN must be able to support very high data
rates. In contrast, mainstream multicore processors such as
those from Intel and AMD support far less: typically, less than
15 GB/s per core. The Cell design also requires the OCN to
support coherent and non-coherent data transfers. Finally, the
OCN must efficiently support the network traffic created by
typical Cell software applications.

The Element Interconnect Bus is STI’s solution to the
OCN that is required by the Cell BE architecture. Each
element contains a Bus Interface Unit (BIU) which provides
the interface from the element components to the EIB. The
EIB consists of four 16 byte-wide data rings (two in each
direction), a shared command bus, and a central data arbiter to
connect the twelve Cell BE elements [33]. The command bus,
shown in the center of Fig. 2, distributes commands, sets up
end-to-end transactions, and handles coherency. It is
composed of five distributed address concentrators arranged in
a tree-like structure to allow the possibility of multiple
commands to be outstanding at a time across the network. It
operates at 1.6 GHz, which is one-half the PPE core clock
frequency of 3.2 GHz. The data rings also operate at the bus
clock frequency of 1.6 GHz. Each ring is capable of handling
up to three concurrent non-overlapping transfers, allowing the

3

Fig. 2 - Element Interconnect Bus – the Command Bus component (center) and

four data rings.

Fig. 3 - Element Interconnect Bus – the Data Arbiter component (center) and

four data rings.

network to support up to twelve data transfers at a time across
the EIB. The central data arbiter is shown in the center of Fig.
3, implemented in a star-like structure. It controls access to
the EIB data rings on a per transaction basis. In the following
sections, performance capabilities of the EIB are evaluated
using conventional and recently proposed network
characterization methods.

III. NETWORK PERFORMANCE CHARACTERIZATION

With the increasing importance of on-chip networks

comes the need for useful methods of characterizing network
performance. By characterizing network performance in a
consistent manner, comparisons can be made between various
network designs. Comparisons facilitate network architecture
design tradeoffs by allowing the designer a clear view of the
advantages and disadvantages of particular network design
choices and, in particular, identification of potential
performance bottlenecks. In this paper, we use conventional
methods and a recently proposed method for characterizing
the performance of the Cell BE EIB.

The conventional method of charactering network
performance applicable to OCNs as well as other network
classes is described in [34]. The two basic performance
factors are latency and throughput (also called effective
bandwidth). Latency is the amount of time (e.g., cycles or
nsec) required for a network to perform a given action, such as
a packet to traveling from one node to the next (i.e., hop
latency) or from its source to its destination (i.e., end-to-end
latency). The total latency of a network transaction is the
summation of the latencies of each step of the transaction from
beginning to end. Throughput is the amount of information
transferred per unit of time (e.g., GB/sec). Throughput is
calculated by dividing network packet size by either the
transmission time or the overhead associated with sending or
receiving the packet, whichever is the larger [34]. There are
different values of throughput for various parts of the network

end-to-end. For example, each node has a certain amount of
sending (alternatively, receiving) throughput, called injection
(alternatively, reception) bandwidth, which defines the rate at
which it can inject (alternatively, receive) data into/from the
network. Likewise, the network core fabric has a certain
amount of bandwidth it can support across its bisection, called
the bisection bandwidth. Following after [34], the overall
throughput of the network is limited by the smaller of these
accumulated bandwidths across the entire network. Network
design aspects such as topology, routing, switching, arbitration,
flow control, microarchitecture, etc., influence the latency and
throughput performance of the network. In Section IV, we
analytically evaluate the EIB using the above conventional
methods.

An alternative method of characterizing network
performance, as proposed by Taylor, et al., in [22], consists of
describing the network in terms of a 5-tuple delay model.
Although originally targeted to scalar operand networks
(SONs), this method is equally applicable to OCNs as well as
other network classes. A SON is an on-chip network designed
to transport instructions and their operands across elements.
One example of a SON is the traditional operand bypass
network found in most superscalar pipelined commercial
microprocessors, while another example is the static mesh
OCN employed by the MIT RAW research prototype
multicore processor [21]. The 5-tuple delay model comprises
five costs presented as <SO, SL, NHL, RL, RO>. Send
Occupancy (SO) is the number of cycles that a processing
element spends occupied in doing the work needed to send a
packet. Send Latency (SL) is the number of cycles a packet
spends on the sending side of the network waiting to be
injected into the network without occupying the processing
element. Network Hop Latency (NHL) is the number of
cycles needed to transport a message from one node to an
adjacent node in the network. Receive Latency (RL) is the
number of cycles an instruction needing the data on the
receiving end spends waiting in an issue-ready state waiting

4

for the remote data to be received and ready for use. Receiver
Occupancy (RO) is the number of cycles the receiving
processing element spends occupied in making the remote
data ready for use. The 5-tuple delay model is meant to allow
for comparisons of the operation-to-operand matching aspects
of a SON. For more generalized OCNs, the 5-tuple delay
model can be used as a tool for comparing different
components of network latency from end to end. In Section V,
we apply and evaluate the 5-tuple delay model to the EIB.

IV. CONVENTIONAL CHACTERIZATION: LATENCY AND
THROUGHPUT ANALYSIS

The EIB is a pipelined circuit-switched network that

employs lossless flow control in the form of end-to-end
command credits. An element on the EIB must have a free
command credit in order to make a request on the command
bus. This allows the EIB to have a simple, deterministic flow
control design. The EIB allows up to 64 outstanding requests
for each element on the bus. In order not to bottleneck
network performance, the MIC also supports the maximum 64
requests. The SPEs, on the other hand, support only 16
requests.

The EIB’s data arbiter implements round-robin bus
arbitration with two levels of priority. This scheme works the
same for the data arbiter as it does for the shared command
bus. The MIC has highest priority while all other elements
have lower priority, the same for each of them. The data
arbiter does not allow a packet to be transferred along hops
totaling more than half the ring diameter. That is, a data ring
is granted to a requester only so long as the circuit path
requested is no more than six hops. If the request is greater
than six hops, the requester must wait until a data ring
operating in the opposite direction becomes free. As briefly
mentioned above, the command bus uses end-to-end command
credits, or tokens, for control of the bus. Elements use tokens
to post commands to the command bus. An element may send
only as many commands as it has tokens. Each token is held
by the command bus until the associated command is
complete, at which point the token is returned to the element.

The Cell BE has a software-controlled Resource
Allocation Manager that allows applications to manage EIB
resources in software. The Resource Allocation Manager is an
optional feature that allocates the usage of resources to prevent
individual elements from becoming overwhelmed. It divides
memory and IO resources into resource banks and separates
requestors into groups. Software controls access to each
group again using tokens.

IV.1 Best-case Latency Estimates

Given the above mechanics, the EIB network

performance can be characterized in terms of packet latency
and effective bandwidth (throughput). The EIB supports two
types of data transfer modes: DMA and MMIO. The overall
network latency is, essentially, the same for both transfer

modes. The latency of a packet through the network end-to-
end can be calculated using the following equation:

Latency = Sending Overhead + Time of Flight +
Transmission Time + Receiver Overhead

(1)

EIB transactions can be divided into four phases: the Sending
Phase, the Command Phase, the Data Phase, and the
Receiving Phase. The Sending Phase is responsible for
initiating a transaction. It consists of all processor and DMA
controller activities needed before transactions are injected
into any components within the EIB. At the end of the
Sending Phase, a command is issued to the command bus to
begin the Command Phase. The Command Phase coordinates
end-to-end transfers across the EIB. During the command
phase, the EIB informs the read or write target element of the
impending transaction to allow the target to set up the
transaction (i.e., data fetch or buffer reservation). The
Command Phase is also responsible for coherency checking,
synchronization, and inter-element communication (i.e.,
injection into BIUs). The Data Phase begins at the conclusion
of the Command Phase. The Data Phase handles data ring
arbitration and actual data transfers across the rings. Since
end-point setup was completed during the Command Phase,
the Data Phase is left with the task of granting access to one of
the four data rings to packets when a ring becomes free and no
more than six hops are needed along the ring. Pipelined
circuit-switched transport of packets occurs end-to-end over
the granted EIB ring. The Receiving Phase concludes the
transaction by transferring received data from the receiving
node’s BIU to its final destination at that receiver, such as LS
memory or system memory. With these four phases, the
latency of packets across the EIB can be calculated using a
revised version of the network latency equation above, where
Sending Overhead is composed of the Sending Phase and
Command Phase, and Time of Flight and Transmission Time
combine to form the Data Phase:

Latency = Sending Phase + Command Phase + Data
Phase + Receiving Phase

(2)

In the following, we calculate the number of processor

cycles needed to execute the communication phases above (in
the best case) for DMA transfers based on the required
number and type of instructions needing to be executed and
the microarchitecture of the elements executing them. All
calculations assume ideal, best-case scenarios for simplicity,
leading to lower-bound latency estimates. For example, the
EIB is assumed to be unloaded—meaning that all queues are
empty and no additional waiting due to resource contention or
otherwise is incurred during arbitration. Also, no processor
stalls are assumed to occur in executing instructions, i.e., due
to cache misses or any other type of anomaly.

The Sending Phase of an EIB transfer is made up of the
following: processor pipeline latency, DMA setup, and DMA
controller processing. Both the PPE and SPE have 23-stage
processor pipelines, yielding a pipeline latency of 23 processor

5

clocks. The next step, DMA setup, requires 5 instructions to
begin a DMA: 1) Write SPE Local Store Address, 2) Write
Effective Address High (upper 32-bits), 3) Write Effective
Address Low (lower 32-bits), 4) Write DMA size, and 5)
Write DMA command (send, receive, etc). Since the DMA
controller operates at the bus clock rate, these five instructions
can complete in 10 processor clocks. Once the DMA is issued,
the DMA controller takes an additional 20 processor clocks to
select the command, unroll the bus transaction, send the
command to the BIU, and then issue the command to the
command bus [35], [36]. Thus, the Sending Phase takes a
total of 53 processor clock cycles, which is 26.5 bus cycles.

The Command Phase consists of five steps [37], [38]:
command issue, command reflection, snoop response,
combined snoop response, and final snoop response. The
length of the command phase depends on whether or not the
transaction is coherent or non-coherent. The EIB master
initiates a transaction during the command issue setup, which
takes 11 bus cycles for coherent commands and 3 bus cycles
for non-coherent commands. The command reflection step
depends only on the distance an element is from the AC0
address concentrator. From AC1, command reflection takes 3
bus cycles. Two bus cycles are added for elements connected
to AC2. Elements connected to AC3 add another 2 bus cycles
for a total of 7 cycles of command reflection. Responses to
the reflected commands are gathered during the snoop
response step, which takes 13 bus cycles, regardless of
coherency. In the combined snoop response step, the
responses are distributed to all elements in 9 bus cycles for
coherent transactions and 5 bus cycles for non-coherent
transactions. The final snoop response ends the Command
Phase, requiring an additional 3 bus cycles. In total, the
Command Phase minimally requires 43 bus cycles for
coherent transactions and 31 bus cycles for non-coherent
transactions.

The Data Phase consists of data arbitration steps, data
propagation, and transmission time. The Data Phase latency is
independent of the coherency of the data. A transaction takes
2 bus cycles to make a request to the data arbiter, another 2
cycles for data arbitration and, assuming no contention, 2
more cycles to be granted access to a data ring by the data

arbiter [38]. Time of flight of a DMA transfer after arbitration
is limited to a maximum of six hops by design (half the
network diameter). Each hop takes one bus cycle. Therefore,
the worst-case time of flight is 6 bus cycles after arbitration.
To make the EIB more deterministic, all packets are designed
to be 128 bytes in size. Since each data ring of the EIB is 16
bytes wide, every transaction takes 8 bus cycles to complete.
Therefore, transmission time is 8 bus cycles. All together,
arbitration, worst-case time of flight, and transmission time
take at total of 20 bus cycles to complete.

The Receiving Phase takes only 2 bus cycles for the SPEs
and PPE. The first cycle is used to move data from the BIU to
the MFC. Conservatively, the DMA engine in the MFC can
write the 128 byte data packet into LS memory in the second
bus cycle.

The end-to-end network latency for packets is obtained by
summing each of the phases together. A non-coherent transfer
minimally takes 79.5 bus cycles or 49.6875 nsec to complete.
Coherent transfers minimally require 91.5 bus cycles or
57.1875 nsec to complete. Table 1 summarizes the EIB
latency calculations described above. Again, we emphasize
that the latency calculations should be considered as best-case,
lower-bound estimates. Any bus arbitration time, network
contention, stalls, or other delays will directly impact the
packet latency across the EIB.

MMIO transfers essentially have the same latency as
DMA transfers as they require the full Command and Data
Phases mentioned above. All MMIO transfers also are
coherent, meaning that some DMA transfers will actually have
a lower latency. Regardless of their latency, MMIO transfers
are far less efficient than DMA transfers as every EIB transfer
assumes a packet size of 128 bytes, whether or not the full
width is needed. DMA transfers use all 128 bytes, but MMIO
transfers only use 4 or 8 bytes, resulting in significant under-
utilization of the network bandwidth.

One major advantage of the EIB is its ability to pipeline
DMA data transfers. The data arbiter can start a transfer on
every bus cycle and each data ring supports a new operation
every three cycles. This allows a single element to
continuously pipeline transmissions on the EIB assuming there
is low network contention, i.e., no conflicting overlaps of

TABLE 1 – EIB ZERO-LOAD PACKET LATENCY ESTIMATES – BEST-CASE, LOWER-BOUND RESULTS.

Sending Phase
(29% of Coherent Total)
(33% of Non-coherent Total)

Command Phase
(47% of Coherent Total)
(39% of Non-coherent Total)

Data Phase
(22% of Coherent Total)
(25% of Non-coherent Total)

Receiving
Phase
(2% of C)
(3% of NC) Totals

xPE
Pipeline
Latency

xPE
Issue
to
Queue

DMAC
Issue
to
Cmd
Bus

Cmd
Issue

Cmd
Refl.

AC2
Cmd
Refl.

AC3
Cmd
Refl.

Snoop
Resp.

Comb.
Snoop
Resp.

Final
Snoop
Resp.

Data
Req.
to
Arbiter

Data
Arb,

Data
Grant

Time
of
Flight

Trans.
Time Overhead

Clock
Cycles

CPU
Clock 23 10 20 22 6 4 4 26 18 6 4 4 4 12 16 4 183

C
oh

er
en

t

Bus
Clock 11.5 5 10 11 3 2 2 13 9 3 2 2 2 6 8 2 91.5

CPU
Clock 23 10 20 6 6 4 4 26 10 6 4 4 4 12 16 4 159

N
on

-C
oh

er
en

t

Bus
Clock 11.5 5 10 3 3 2 2 13 5 3 2 2 2 6 8 2 79.5

6

source-destination paths over a ring. The overlap provided by
pipelined data transfers reduces sender/receiver overhead, and
increases the effective bandwidth when considering the
command phase and the data arbitration and propagation
portions of the data phase (as we show below). Through
pipelining, there are only 8 bus cycles or 5 nsec of latency
between DMA transactions, equating to the 8 bus cycles of
transmission time. Thus, since there are no wasted cycles
between transmissions, the data rings can be considered as
running at 100% efficiency in this case.

IV.2 Best-case Effective Bandwidth Estimates

The maximum effective bandwidth (throughput) required
by a network design is determined by summing across all
interconnected elements the maximum data rate at which
packets can be injected (alternatively, received) at each
element. Each element in the EIB is theoretically capable of
sending and receiving 16 bytes per cycle, which equates to
25.6b GB/sec of injection (alternatively, reception) bandwidth.
The total bidirectional effective bandwidth of an element is,
therefore, 51.2 GB/sec. In order to accommodate all twelve
elements, the EIB should be capable of providing a total
throughput of 307.2 GB/sec, based on the effective
bandwidths of each element. The EIB, as designed, indeed
provides this in terms of raw network bandwidth. It supports a
maximum of three concurrent transfers on each of its four 16-
byte rings. Each ring can begin a new transfer every three
cycles, and all transfers are eight cycles or 128 bytes long,
which means that when the data rings are fully utilized, the
EIB supplies a peak effective bandwidth of 307.2 GB/sec.
Thus, theoretically, the EIB fully supports the bandwidth
requirements of the twelve elements in the Cell BE processor.
Unfortunately, as we show below, the EIB suffers from a
number of limitations that, realistically, result in much lower
effective bandwidth in the best case.

The EIB faces the same throughput limitations as all
networks. For example, if a single element is in high demand,
network throughput will be limited by the response of the
most heavily-loaded element or set of links along the path to
that element. In the Cell processor, the MIC serves as such a
heavily utilized element as most SPE/PPE threads require
regular access to system memory. In addition to this challenge,
the design of the EIB poses additional limitations on effective
bandwidth, as described below.

The first major limitation on EIB throughput is that which
is imposed by the command bus. The command bus is
severely limited in the number of bus requests it can process
concurrently. For non-coherent transactions, it is limited to
one request per bus cycle; for memory coherent transactions,
the command arbiter can handle only one request every two
bus cycles [39]. Thus, the non-coherent data rate is limited to
204.8 GB/sec, and the coherent data rate is limited to 102.4
GB/sec due to the shared command bus posing as a major
bottleneck. All system memory commands such as MIC and
PPE cache transfers are coherent commands. Some I/O
commands, i.e., those typically for multi-Cell applications, are

also coherent. Thus, a large fraction of EIB transactions
(depending on the application) make use of only 33% of the
raw effective bandwidth provided by the EIB network. The
effect of coherency on EIB throughput need not be linear,
however. As long as coherent transactions are limited to one
command every other clock cycle, there is no loss due to
coherency. However, if two or more coherent transactions
enter the command queue consecutively, there will be
bandwidth losses. Fortunately, SPE to SPE transfers are non-
coherent, but even for these EIB transactions, only 66% of the
raw effective bandwidth provided by the EIB network can be
used. Thus, regardless of the additional limitations caused by
coherent transfers, the design of the command bus prevents
applications from being able to exploit the 307.2 GB/sec
effective bandwidth provided natively by the four EIB data
rings, even under best-case operational scenarios. In its
current implementation, the EIB is unable to handle the full
injection bandwidth of the twelve Cell BE elements.

The choice of a ring topology for the EIB serves as
another possible design limitation in achieving full injection
bandwidth. In order to support three packet transfers per ring,
the transfers must occur over non-overlapping source-
destination paths. If a transaction traverses an element, that
element is unable to perform another transfer on the same data
ring until the first transaction completes. A maximum transfer
distance of six hops potentially prevents up to five elements
from being able to access a data ring. In [5], IBM conducted a
series of throughput tests using non-coherent transfers
between SPEs to measure effective bandwidth under various
conflicting and non-conflicting traffic scenarios over the data
rings. Depending on the location of transfer sources and
destinations, measurements show that throughput can range
from 96% of the command bus-limited 204.8 GB/sec
(realistic) maximum down to 38% of that maximum. Fig. 4
shows the traffic pattern used for the high-efficiency test that
resulted in a throughput of 197 GB/sec. As illustrated, since
no ring contention exists and all transfers are non-coherent,
the command bus maximum of eight concurrent ring transfers
can be achieved (note: this is less than the twelve concurrent
ring transfers provided natively by EIB without the command
bus limitation). Fig. 5 illustrates how conflicted overlapping
transfers (i.e., transfers requiring the same links of a ring) limit
the EIB to only one transfer per ring, thus further reducing the
effective bandwidth down to 78 GB/sec. Coherent transfers
would further throttle the network bandwidth.

Finally, the EIB effective bandwidth can be further
reduced due to under-utilization resulting from less than full
packet transfer size. The choice of optimizing the design for
wide packets of 128 bytes can greatly diminish the utilization
of allocated bandwidth when only a fraction of that packet size
is actually used. For example, MMIO with its 4 or 8 byte
transfers is the greatest culprit of bandwidth under-utilization.
Fortunately, most transfers in the Cell BE are in units of 128
bytes, since the PPE uses 128 byte cache lines and the SPEs
use 128 byte memory blocks. Under-utilization is a challenge
for most network architecture designs. However, this issue is
exacerbated in the EIB as poor packet efficiency also increases

7

Data
Arbiter

Controller

EIB Ramp

Controller

EIB Ramp

Controller

EIB Ramp

Controller

EIB Ramp

Controller

EIB Ramp

Controller

EIB Ramp

Controller

EIB Ramp

Controller

EIB Ramp

Controller

EIB Ramp

Controller

EIB Ramp

Controller

EIB Ramp

Controller

EIB Ramp

PPE SPE1 SPE3 SPE5 SPE7 IOIF1

MIC SPE0 SPE2 SPE4 SPE6 BIF / IOIF0

Data
Arbiter

Controller

EIB Ramp

Controller

EIB Ramp

Controller

EIB Ramp

Controller

EIB Ramp

Controller

EIB Ramp

Controller

EIB Ramp

Controller

EIB Ramp

Controller

EIB Ramp

Controller

EIB Ramp

Controller

EIB Ramp

Controller

EIB Ramp

Controller

EIB Ramp

PPE SPE1 SPE3 SPE5 SPE7 IOIF1

MIC SPE0 SPE2 SPE4 SPE6 BIF / IOIF0

Data
Arbiter

Controller

EIB Ramp

Controller

EIB Ramp

Controller

EIB Ramp

Controller

EIB Ramp

Controller

EIB Ramp

Controller

EIB Ramp

Controller

EIB Ramp

Controller

EIB Ramp

Controller

EIB Ramp

Controller

EIB Ramp

Controller

EIB Ramp

Controller

EIB Ramp

PPE SPE1 SPE3 SPE5 SPE7 IOIF1

MIC SPE0 SPE2 SPE4 SPE6 BIF / IOIF0

Fig. 4 – Non-conflicting traffic pattern for the high-efficiency transfer test.

Data
Arbiter

Controller

EIB Ramp

Controller

EIB Ramp

Controller

EIB Ramp

Controller

EIB Ramp

Controller

EIB Ramp

Controller

EIB Ramp

Controller

EIB Ramp

Controller

EIB Ramp

Controller

EIB Ramp

Controller

EIB Ramp

Controller

EIB Ramp

Controller

EIB Ramp

PPE SPE1 SPE3 SPE5 SPE7 IOIF1

MIC SPE0 SPE2 SPE4 SPE6 BIF / IOIF0

Data
Arbiter

Controller

EIB Ramp

Controller

EIB Ramp

Controller

EIB Ramp

Controller

EIB Ramp

Controller

EIB Ramp

Controller

EIB Ramp

Controller

EIB Ramp

Controller

EIB Ramp

Controller

EIB Ramp

Controller

EIB Ramp

Controller

EIB Ramp

Controller

EIB Ramp

PPE SPE1 SPE3 SPE5 SPE7 IOIF1

MIC SPE0 SPE2 SPE4 SPE6 BIF / IOIF0

Data
Arbiter

Controller

EIB Ramp

Controller

EIB Ramp

Controller

EIB Ramp

Controller

EIB Ramp

Controller

EIB Ramp

Controller

EIB Ramp

Controller

EIB Ramp

Controller

EIB Ramp

Controller

EIB Ramp

Controller

EIB Ramp

Controller

EIB Ramp

Controller

EIB Ramp

PPE SPE1 SPE3 SPE5 SPE7 IOIF1

MIC SPE0 SPE2 SPE4 SPE6 BIF / IOIF0

Fig. 5 – Conflicting traffic pattern for the low-efficiency transfer test.

data ring contention, which reduces the achievable effective
bandwidth of the network.

V. AN ALTERNATIVE CHARACTERIZATION: THE 5-TUPLE
DELAY MODEL

The 5-tuple delay model proposed in [22] serves as an

alternative method of characterizing network latency
performance. Building from the best-case latency components
given in Section IV.1, we assign values to the 5-tuple
parameters as described below. Both the SPEs and the PPE
take 5 bus cycles to start a DMA transaction, thus the Send
Occupancy of the EIB is 5 cycles. Send Latency includes the
time it takes the DMA controller to process the DMA, the
entire command phase, and the data phase up to the point at
which data is ready to be sent over the EIB data ring. This
gives a total Send Latency of 59 bus cycles for coherent
transfers and 47 bus cycles for non-coherent transfers. The
EIB requires only a single cycle per hop between EIB
elements, yielding a Network Hop Latency of 1 bus cycle.
There is some difficulty in applying the 5-tuple delay model at
the receiving side of the EIB. Receive Latency on the EIB can
be 1 bus cycle if the DMA transaction has completed before
the processing element accesses the data. That clock cycle is
used to load the data from the Local Store into the processing
element’s register file. However, in the worst-case, the
processing element may need to wait for an entire DMA to
start, which can take over 90 bus cycles. Similarly, Receive
Occupancy is zero cycles if the DMA has completed and the
data is in memory since there is no additional penalty for using
remote data found in the LS. If the data is not yet in the LS,

then the Receive Occupancy cost would be significantly
higher.

The level of abstraction of the EIB in matching operations
to operands makes it difficult to compare it directly to true
SONs. The EIB is designed to handle data at the system
memory level, whereas SONs are designed to handle data at
the operand level. Due to its higher level of abstraction, the
EIB will naturally have higher 5-tuple costs than a typical
SON. Nevertheless, using data from [22], [23], [40], Table 2
shows how the EIB compares with other types of networks.
Not surprisingly, the EIB has a much larger 5-tuple delay cost
than the superscalar bypass networks and SONs used to
transport data operands. However, the EIB compares
reasonably well with distributed shared memory and other
message passing networks, both of which operate at the
system memory level of abstraction. The high send latency
cost of the EIB reveals a scalability issue with the EIB. While
the data rings have an efficient 1 cycle per hop latency, the
shared command bus takes a long time to synchronize all EIB
interfaces. Given the longer latency, the EIB will have
problems scaling beyond twelve nodes. In fact, it is likely that
more nodes would require even more time during the
command phase for synchronization, which would lead to an
even higher Send Latency.

The 5-tuple delay model analysis also highlights the
impact software has on EIB utilization. If a Cell programmer
carefully plans out memory transfers, Receive Latency and
Receive Occupancy can be much lower and more in line with
those of the SONs. However, poor software programming
could cause very large latency costs for the EIB if not tuned
correctly. The effect of software on the EIB is discussed
further in the next section.

8

TABLE 2 – SUMMARY OF THE 5-TUPLE DELAY MODEL FOR THE EIB IN COMPARISON TO OTHER NETWORKS

Tuple Costs

Cell BE
EIB

Coherent

Cell BE EIB
Non-

coherent

Typical Super-
scalar bypass

network

Distributed
Shared
Memory

Message
Passing

M.I.T.
Raw

M.I.T.
Raw-

Dynamic

Power4
bypass
network

U.T.
Austin
TRIPS
EDGE

Send
Occupancy 5 5 0 1 3 0 0 2 0

Send Latency 59 47 0
14+commit

latency
3+commit

latency 1 2 14 0
Network hop

latency 1 1 0 2 1 1 1 0 1
Receive
latency >= 0 >= 0 0 24 1 1 2 14 0
Receive

occupancy >= 0 >= 0 0 1 12 0 0 4 0

VI. SOFTWARE EFFECTS ON THE EIB

Estimating the packet latency and effective bandwidth

values provide only part of the story when evaluating network
architectures. Eventually, the applications that are to run on
the network must be considered. Sections IV and V
characterize the performance of the EIB only analytically as
cycle-accurate simulation over the EIB cannot be performed
using the publicly available Cell BE simulator [41]. Without
considering the applications running on the Cell BE system,
including its software optimizations, the EIB network cannot
be fully evaluated.

Developing software for the Cell processor is the greatest
challenge for Cell-based system design. This heterogeneous
multicore processor requires a substantially different
programming paradigm. IBM has written a five-part guide to
provide an introduction to programming and compiling for the
Cell architecture [42]. From the network perspective, the
challenge for software is to balance the workload on the Cell
processor with the strengths and limitations of the EIB. In
general, EIB transactions have significant latency. To
complicate matters further, the latency is not deterministic and
varies based on contention and the transfer paths of the traffic.
Thus, software development for the processor needs to take
EIB latency and command bus bandwidth limitations into
account. While software teams would like to treat all SPEs
the same, Section IV shows that SPE transfer paths can
drastically affect EIB performance.

There are three main application models for the Cell BE
[43], [44]. The job queue model uses the PPE as the central
processor which maintains a job queue and sends tasks to the
SPEs. This model has lower EIB utilization than the other
models since latency is of less concern. However, this model
achieves only moderate performance as the SPEs are not fully
utilized. The self-multitasking model is a distributed
application model that operates across the SPEs. It is a high-
performance application model, but it has increased
synchronization requirements which place additional stress on
the EIB. The last model, the stream processing model, is also
SPE based. In this case, each SPE runs a single application
and processes one part of the data stream. This model
achieves high-performance as well, but it also highly utilizes
the EIB. Of the three models, we believe analysis would show
the stream processing model to be the best at balancing the
latency limitations and bandwidth strengths of the EIB.

As mentioned above, EIB transactions have significant
latency which has to be handled by software. By using the
significant bandwidth of the EIB, Cell software can greatly
reduce EIB latency. For example, by pre-fetching data,
bandwidth can be traded to avoid the latency of unnecessary
stalls. Software pipelining can also be helpful, but
unpredictable access patterns may limit its effectiveness.
Double buffering is used to stream data through the SPE LS,
bypassing latency effects. Since the SPEs lack caches, a
software cache can be used instead to handle workloads with
temporal and spatial memory locality.

By using latency hiding techniques, software may be
better able to utilize the abundant bandwidth provided by the
EIB. However, there are some pitfalls that software should
avoid to achieve optimal EIB performance, such as the under-
utilization of packets. Cell uses a mailbox communication
model with special registers that allow for communication
between the PPE and the SPEs [45]. Some of these mailbox
channels use MMIO which limit bandwidth utilization. In
general, MMIO should be avoided as much as possible.
Another problem area is SPE management. The SPEs are
capable of context switches when necessary, but context
switches take approximately twenty microseconds to complete,
which is more than 33,000 bus cycles. The SPEs should
always finish program execution to avoid this severe context
switch penalty.

VII. FUTURE RESEARCH

One area of future research is to characterize typical Cell
application code and its related EIB utilization using a cycle-
accurate Cell simulator or actual Cell hardware. The Sony
Playstation 3 and various Cell-based Linux distributions
would be possible test platforms for such research. With such
a platform, it would be possible to quantify the impact of
software alluded to in Section VI. Without simulation or
hardware testing, the effects of software can only be estimated,
as is done here. Such tasks would require Cell code
development, which implies another set of issues, but with the
use of a test platform, the effectiveness of the EIB could be
better understood.

Another area of research (possibly already in the works at
IBM) is to consider design improvements for a second
generation EIB. In [46], David Krolak points out that Cell is
architected to allow the EIB to be easily replaced with a
different network, such as a crossbar switch. He continues to

9

say that a crossbar switch would take too much die space to be
practical in the first Cell processor [46]. When IBM moves
Cell to the next process generation, from 90 nm to 65 nm, it
may be possible to include a richer network, such as a crossbar
or higher-dimensional network. Improvements to end-to-end
control of the network would certainly help, no matter what
the network. Again, such design upgrades could be tested
using a cycle-accurate simulator.

VIII. CONCLUSION

The Element Interconnect Bus is a network design that
faces a number of challenges. This paper attempts to identify a
number of these challenges by characterizing network
performance using conventional and recently proposed
methods based on analytical analysis. Network performance
characterization in traditional terms of packet latency and
effective bandwidth is a good starting point to understanding
OCN design choices, but deeper analysis can be done in order
not to evaluate the network in a vacuum. The entire system,
including application characteristics and software
optimizations, should be considered in future work to
characterize the network more accurately.

Our findings reveal that the EIB suffers from latency and
bandwidth limitations imposed by the mechanism used for
end-to-end control. The complexity of the EIB design
necessitates long Sending and Command Phases implemented
over a shared command bus that provides limited concurrency.
This greatly increases the packet latency and reduces the
achievable effective bandwidth of the EIB. Although the data
rings provide sufficient effective bandwidth, the command bus
severely limits the use of that bandwidth. This result points to
the importance of not overlooking control and other end-to-
end effects when designing multicore on-chip networks.

Despite these limitations, the EIB is still capable of an
effective bandwidth in excess of 100 GB/s, which compares
favorably against current multicore processors. The 5-tuple
delay model shows that the EIB is similar to other OCNs that
transport memory data but that the EIB will not scale well
beyond its twelve element design due to the command bus
architecture. Design tradeoffs made by EIB designers require
that software programmers strike a delicate balance when
writing applications on Cell BE systems. In order to achieve
the best performance, Cell software applications should make
use of the relatively large bandwidth provided by the EIB to
overcome the long latencies of the network, while being
careful not to underutilize nor over prescribe that bandwidth.
If properly utilized by Cell software, the EIB can achieve near
superscalar bypass network latencies at the receive end of the
network.

Acknowledgements

We acknowledge the help and advice of Scott Clark, Mike
Kistler, and Fabrizio Petrini in clarifying various aspects of
EIB design features and operation. This work was supported,
in part, by NSF grants, CCR-0311742 and CCF-0541200.

References

[1] William J. Dally, “Interconnect limited VLSI architecture,” in

Proceedings of International Interconnect Technology Conference, pp
15-17, May 1999.

[2] William J. Dally and Brian Towles, “Route Packets, Not Wires: On-
Chip Interconnection Networks,” in Proceedings of the Design
Automation Conference, pp 684-689, ACM, June 2001.

[3] Luca Benini and Giovanni De Micheli, “Networks on Chip: A New
SoC Paradigm,” IEEE Computer, Volume 35, Issue 1, pp 70-80,
January 2002.

[4] Ahmed Hemani, Axel Jantsch, Shashi Kumar, Adam Postula, Johnny
O’berg, Mikael Millberg, and Dan Lidqvist, “Network on a Chip: An
Architecture for Billion Transitor Era,” in Proceedings of the IEEE
NorChip Conference, November 2000.

[5] Marco Sgroi, M. Sheets, A. Mihal, Kurt Keutzer, Sharad Malik, Jan
M. Rabaey, and Alberto L. Sangiovanni-Vincentelli, “Addressing the
system-on-a-chip interconnect woes through communication-based
design,” in Proceedings of Design Automation Conference, pp 667-
672, June 2001.

[6] David Flynn, “AMBA: Enabling Resuable On-Chip Designs,” IEEE
Micro, pp 20-27, July/August 1997.

[7] “IBM CoreConnect,” Technical Report,
www.chips.ibm.com/products/powerpc/cores, 2000.

[8] Kanishka Lahiri, Anand Raghunathan, and Ganesh Lakshminarayana,
“LotteryBus: A New High-Performance Communication Architecture
for System-on-Chip Designs,” in Proceedings of the Design
Automation Conference, ACM, June 2001.

[9] Rakesh Kumar, Victor Zyuban, and Dean~M. Tullsen,
“Interconnections in Multi-Core Architectures: Understanding
Mechanisms, Overheads, and Scaling,” in Proceedings of the
International Symposium on Computer Architecture, IEEE Computer
Society, June 2005.

[10] Jian Liang, Sriram Swaminathan, and Russell Tessier, “aSoC: A
Scalable, Singlechip Communications Architecture,” in International
Conference on Parallel Architectures and Compilation Techniques, pp
37-46, October 2000.

[11] Pierre Guerrier and Alain Greiner, “A Generic Architecture for On-
Chip Packet-Switched Interconnections,” in Proceedings of the
Design Automation and Test in Europe, pp 250-256, March 2000.

[12] Adrijean Adriahantenaina, Herv ‘e Charlery, Alain Greiner, Laurent
Mortiez, and Cesar~Albenes Zeferino, “SPIN: A Scalable, Packet
Switched, On-Chip Micro-Network,” in Proceedings of the Design,
Automation and Test in Europe Conference,, March 2003.

[13] Shashi Kumar, Axel Jantsch, Juha-Pekka Soininen, Martti Forsell,
Mikael Millberg, Johnny O’berg, Kari Tiensyrja, and Ahmed Hemani,
“A Network on Chip Architecture and Design Methodology,” in
Proceedings of the IEEE Computer Society Annual Symposium on
VLSI, pp 105-112, 2002.

[14] Jacob Chang, Srivaths Ravi, and Anand Raghunathan, “FLEXBAR:
A Crossbar Switching Fabric with Improved Performance and
Utilization,” in Proceedings of the IEEE CICC, pp 405-408, 2002.

[15] A. Brinkmann, J. C. Niemann, I. Hehemann, D. Langen, M.
Porrmann, and U. Ruckert, “On-chip Interconects for Next
Generation Systems-on-Chips,” in Proceedings of the 15th Annual
IEEE International ASIC/SOC Conference, pp 211-215, September
2002.

[16] Timothy Mark Pinkston and Jeonghee Shin, “Trends Toward On-
Chip Networked Microsystems,” Technical Report, to appear in
International Journal of High Performance Computing and
Networking, University of Southern California, CENG-2004-17,
December 2004.

[17] Joan-Manuel Parcerisa, Julio Sahuquillo, Antonio Gonzalez, and Jose
Duato, “Efficient Interconnects for Clustered Microarchitectures,” in
Proceedings of 2002 International Conference on Parallel
Architectures and Compilation Techniques, September 2002.

[18] Aneesh Aggarwal and Manoj Franklin, “Hierarchical Interconnects
for On-chip Clustering,” in Proceedings of International Parallel and
Distributed Processing Symposium, April 2002.

http://www.chips.ibm.com/products/powerpc/cores

10
[19] Shubhendu S. Mukherjee, Peter Bannon, Steven Lang, Aaron Spink,

and David Webb, “The Alpha 21364 Network Architecture,” in
Proceedings of Hot Interconnects 9, pp 113-117, August 2001.

[20] Gurindar S. Sohi, Scott E. Breach, and T. N. Vijaykumar,
“Multiscalar Processors,” in Proceedings of the 22nd Annual
International Symposium on Computer Architecture, pp 414-425,
June 1995.

[21] Michael Taylor, Jason Kim, Jason Miller, David Wentzlaff, Fae
Ghodrat, Ben Greenwald, Henry Hoffman, Paul Johnson, Jae-Wook
Lee, Walter Lee, Albert Ma, Arvind Saraf, Mark Seneski, Nathan
Shnidman, Volker Strumpen, Matthew Frank, Saman Amarasinghe,
and Anant Agarwal,” The Raw Microprocessor: A Computational
Fabric for Software Circuits and General-Purpose Programs,” IEEE
Micro, Volume 22, Issue 2, pp 25-35, March/April 2002.

[22] Michael Bedford Taylor, Walter Lee, Saman P. Amarasinghe, and
Anant Agarwal, “Scalar Operand Networks,” IEEE Transactions on
Parallel and Distributed Systems, Volume 16, Issue 2, February 2005.

[23] Doug Berger, Steve Keckler, and the TRIPS Project Team, “Design
and Implementation of the TRIPS EDGE Architecture,” ISCA-32
Tutorial, pp 1-239, June 2005.

[24] Ramadass Nagarajan, Karthikeyan Sankaralingam, Doug Burger, and
Stephen W. Keckler, “A design space evaluation of grid processor
architectures,” in Proceedings of the 34th Annual International
Symposium on Microarchitecture, pages 40-51, December 2001.

[25] H. Peter Hofstee, “Power Efficient Processor Architecture and the
Cell Processor,” in Proceedings of the Eleventh International
Symposium on High-Performance Computer Architecture (HPCA-
11), IEEE Computer Society, February 2005.

[26] Kevin Krewell, “Sun's Niagara Pours on the Cores,” Microprocessor
Report, pp 1-3, September 2004.

[27] James M. Baker Jr., Brian Gold, Mark Bucciero, Sidney Bennett,
Rajneesh Mahajan, Priyadarshini Ramachandran, and Jignesh Shah,
“SCMP: A Single-Chip Message-Passing Parallel Computer,” The
Journal of Supercomputing, Volume 30, pp 133-149, 2004.

[28] Terry Tao Ye, Luca Benini, and Giovanni De Micheli, “Packetized
On-Chip Interconnect Communication Analysis for MPSoC,” in
Proceedings of the Design, Automation and Test in Europe
Conference, pp 344-349, March 2003.

[29] Peter N. Glaskowsky, “IBM rasies curtain on Power5,”
Microprocessor Report, Volume 17, Issue 10, pp 13-14, October 2003.

[30] Joel M. Tendler, Steve Dodson, Steve Fields, Hung Le, and Balaram
Sinharoy, “POWER4 system microarchitecture,” IBM Journal of
Research and Development, Volume 46, Issue 1, pp 5-26, January
2002.

[31] Seon Wook Kim, Chong-Liang Ooi, Il~Park, Rudolf Eigenmann,
Babak Falsafi, and T. N. Vijaykumar, “Multiplex: unifying
conventional and speculative thread-level parallelism on a chip
multiprocessor,” in Proceedings of International Conference on
Supercomputing, pp 368-380, June 2001.

[32] J. A. Kahle, M. N. Day, H. P. Hofstee, C. R. Johns, T. R. Maeurer,
and D. Shippy, “Introduction to the Cell multiprocessor,” IBM
Journal of Research and Development, Volume 49, Number 4/5, 2005.

[33] Thomas Chen, Ram Raghavan, Jason Dale, Eiji Iwata, “Cell
Broadband Engine Architecture and its first implementation: A
performance view,” 29 Nov 2005, http://www-
128.ibm.com/developerworks/power/library/pa-cellperf/

[34] Timothy M. Pinkston and Jose Duato, “Appendix E: Interconnection
Networks” in Computer Architecture: A Quantitative Approach, 4th
Edition, by John L. Hennessy and David A Patterson, pp 1-114,
Elsevier Publishers, 2007.

[35] Mike Kistler, Michael Perrone, and Fabrizio Petrini, “Cell
Microprocessor Communication Network: Built for Speed,” IBM
Austin Research Lab White Paper

[36] Mike Kistler, (Private Communication), June 2006
[37] Scott Clark, (Private Communication), December 2005
[38] Scott Clark, (Private Communication), June/July 2006
[39] David Krolak, “Just like being there: Papers from the Fall Processor

Forum 2005: Unleashing the Cell Broadband Engine Processor: The
Element Interconnect Bus,” 29 Nov 2005, http://www-
128.ibm.com/developerworks/power/library/pa-fpfeib/

[40] Michael B. Taylor. “Scalar Operand Networks for Tiled
Microprocessors,” invited talk at the Workshop on On- and Off-chip

Interconnection Networks, Stanford University, December 2006,
http://www.ece.ucdavis.edu/~ocin06/program.html.

[41] Power Architecture technology editors, developerWorks, IBM, “Meet
the experts: The Mambo team on the IBM Full-System Simulator for
the Cell Broadband Engine processor,” 22 Nov 2005, http://www-
128.ibm.com/developerworks/library/pa-expert7/

[42] Power Architecture technology editors, developerWorks, IBM, “An
introduction to compiling for the Cell Broadband Engine
Architecture,” Parts 1-5, Part 1: 07 Feb 2006, http://www-
128.ibm.com/developerworks/edu/pa-dw-pa-cbecompile1-i.html

[43] Power Architecture technology editors, developerWorks, IBM, “Just
like being there: Papers from the Fall Processor Forum 2005:
Unleashing the Cell Broadband Engine Processor: A programming
model approach,” 16 Nov 2005, http://www-
128.ibm.com/developerworks/library/pa-fpfunleashing/

[44] Power Architecture technology editors, developerWorks, IBM, “Meet
the experts: Alex Chow on Cell Broadband Engine programming
models,” 22 Nov 2005, http://www-
128.ibm.com/developerworks/library/pa-expert8/

[45] Vaidyanathan Srinivasan, Anand Santhanam, Madhaven Srinivasan,
“Cell Broadband Engine processor DMA Engines, Part 1: The little
engines that move data,”06 Dec 2005, http://www-
128.ibm.com/developerworks/power/library/pa-celldmas/

[46] Power Architecture technology editors, developerWorks, IBM, “Meet
the experts: David Krolak on the Cell Broadband Engine EIB bus,” 6
Dec 2005, http://www-
128.ibm.com/developerworks/power/library/pa-expert9/

Other articles relating to Cell are available at the Cell BE Resource Center
provided by IBM at http://www-
128.ibm.com/developerworks/power/cell/articles.html

http://www-128.ibm.com/developerworks/power/library/pa-cellperf/
http://www-128.ibm.com/developerworks/power/library/pa-cellperf/
http://www-128.ibm.com/developerworks/power/library/pa-fpfeib/
http://www-128.ibm.com/developerworks/power/library/pa-fpfeib/
http://www.ece.ucdavis.edu/%7Eocin06/program.html
http://www-128.ibm.com/developerworks/library/pa-expert7/
http://www-128.ibm.com/developerworks/library/pa-expert7/
http://www-128.ibm.com/developerworks/edu/pa-dw-pa-cbecompile1-i.html
http://www-128.ibm.com/developerworks/edu/pa-dw-pa-cbecompile1-i.html
http://www-128.ibm.com/developerworks/library/pa-fpfunleashing/
http://www-128.ibm.com/developerworks/library/pa-fpfunleashing/
http://www-128.ibm.com/developerworks/library/pa-expert8/
http://www-128.ibm.com/developerworks/library/pa-expert8/
http://www-128.ibm.com/developerworks/power/library/pa-celldmas/
http://www-128.ibm.com/developerworks/power/library/pa-celldmas/
http://www-128.ibm.com/developerworks/power/library/pa-expert9/
http://www-128.ibm.com/developerworks/power/library/pa-expert9/
http://www-128.ibm.com/developerworks/power/cell/articles.html
http://www-128.ibm.com/developerworks/power/cell/articles.html

