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Abstract— Traditional mobile ad hoc routing protocols fail to
deliver any data in Intermittently Connected Mobile Ad Hoc
Networks (ICMN’s) because of the absence of complete end-to-
end paths in these networks. To overcome this issue, researchers
have proposed to use node mobility to carry data around the
network. These schemes are referred to as mobility-assisted
routing schemes.

A mobility-assisted routing scheme forwards data only when
appropriate relays meet each other, and the time it takes for
them to first meet each other is referred to as the meeting
time. The time duration they remain in contact with each other
is called the contact time. If they fail to exchange the packet
during the contact time, then they have to wait till they meet
each other again. This time duration is referred to as the inter
meeting time. A realistic performance analysis of any mobility-
assisted routing scheme requires a knowledge of the statistics of
these three quantities. These quantities vary largely depending
on the mobility model at hand. This paper studies these three
quantities for the three most popularly used mobility models:
random direction, random waypoint and random walk models.
Hence, this work allows to do a realistic performance analysis of
any routing scheme under any of these three mobility models.

I. INTRODUCTION

Intermittently connected mobile networks (ICMN’s) are
networks where most of the time, there does not exist a
complete end-to-end path from the source to the destination.
Even if such a path exists, it may be highly unstable because of
the topology changes due to mobility and may change or break
soon after it has been discovered. This situation arises when
the network is quite sparse, in which case it can be viewed
as a set of disconnected, time varying cluster of nodes. Ex-
amples of such networks include sensor networks for wildlife
tracking and habitat monitoring [1], [2], military networks [3],
deep-space inter-planetary networks [4], nomadic communities
networks [5], networks of mobile robots [6] vehicular ad hoc
networks [7] etc.

Traditional mobile ad hoc routing protocols will fail for
these networks because they require the existence of complete
end-to-end paths to be able to deliver any data. To overcome
this issue, researchers have proposed two approaches. Either
messages get carried by specialized mobile nodes which follow
predefined paths between disconnected parts of the network
[8], [9], or all mobile network nodes may act as relays and
as they move, carry messages from one relay node to another,
until the message reaches the destination [10], [11], [12], [13],

[14]. What the above two approaches share in common is
that node mobility is exploited to carry messages around the
network as part of the routing algorithm. We refer to these
schemes collectively as mobility-assisted routing schemes.

Since message transmission occurs only when nodes meet
each other, the time elapsed between such meetings is the
basic delay component. Therefore in order to evaluate the
performance of any mobility-assisted routing scheme, it is
necessary to know the statistics of encounter times between
nodes, called meeting times. These are the times until a
node, which, say, just received a message, first encounters
a given other node that can act as a relay. Once two nodes
meet, the time these two nodes remain in contact with one
another will determine the time duration they have to exchange
packets. This time duration is referred to as the contact time.
Contention in the network can cause the transmission between
these two nodes to fail. Then the nodes will have to wait
till they meet again to get another transmission opportunity.
The time till the two nodes, which start from within range
of each other and then move out of each other’s range, meet
again is called the inter meeting time. Performance analysis
of any mobility assisted routing scheme with contention in
the network will require a knowledge of the statistics of the
inter meeting times. These three quantities constitute the basic
components in the realistic performance analysis (any analysis
without considering finite bandwidth and contention in the
network will be unrealistic) of any scheme, and they largely
vary depending on the specific mobility model in hand. This
paper studies these three fundamental quantities for the three
most popular mobility models: the random direction, random
waypoint and random walk mobility models.

Although, there has been a lot of effort to theoretically
characterize the performance of mobility assisted routing
schemes for intemittently connected mobile networks [11],
[15], [16], [17], [18], [19], [20], [21], [22], the statistics of
these fundamental properties have remained largely unstudied
for most mobility models. Most of these papers assume infinite
bandwidth and no contention in the network. The performance
of a routing scheme in such a network depends only on the
meeting times. So, the meeting times for different mobility
models have been studied in more detail than the inter meeting
and the contact times. In particular, [11] finds the expected
meeting time value for random walk mobility model, and [21]
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finds the expected meeting time for the random waypoint and
random direction mobility models. In addition to studying its
expected value, researchers have also studied the tail of the
distribution of the meeting times. In particular, [23] proves that
the tail of the distribution of the meeting times under random
walk is exponential and [15] observes this via simulations.
Finally, [22] is the only prior work which attempts to analyze
the performance of mobility assisted routing with contention
in network and to do so, it derives the expected inter meeting
time for random walk mobility.

In this paper, wer compute the expected inter meeting
times of the random direction and random waypoint mobility
models. We also formally prove that the tail of the distribution
of the meeting and inter meeting times under random direction
and random waypoint mobility is memoryless. We show
through simulations that the distribution of the inter meeting
times under random walk mobility is heavy tailed. Finally,
we find the expected contact time for all the three mobility
models. Hence, we determine all the necessary quantities to
do a realistic performance analysis of mobility-assisted routing
under the three most popular mobility models.

The outline of the paper is as follows: Section II presents our
notation, assumptions and then formally defines the meeting
time, the inter meeting time and the contact time. Section
III finds the expected delay for Direct Transmission routing
scheme in terms of these statistics to demonstrate their util-
ity in the performance analysis of mobility assisted routing
schemes. Sections IV, V, VI finds these statistics for the
random direction, random waypoint and random walk mobility
models respectively. Finally, Section VII concludes the paper.

II. NOTATION AND DEFINITIONS

We first introduce our notation and state the assumptions
we will be making throughout the remainder of the paper.

(a) All nodes exist in a two dimensional torus � of area �
and have a transmission range equal to �. The position
of node � at time � is denoted as �����.

(b) Time is slotted. Two nodes exchange packets only if they
are within each other’s transmission range at the start of
the time slot.

Now we formally define the meeting time, the inter meeting
time and the contact time of a mobility model.

Definition 2.1 (Meeting Time): Let nodes � and � move
according to a mobility process ‘MM’ and start from their
stationary distribution at time �. The meeting time (���)
between the two nodes is defined as the time it takes them to

first come within range of each other, that is ��� � ��	��� �
������������� � ��.

Definition 2.2 (Inter Meeting Time): Let nodes � and �
move according to a mobility process ‘MM’. Let the nodes
start from within range of each other at time � and then
move out of the range of each other at time ��, that is
�� � ��	��� � ������ � ������ 
 ��. The inter meeting
time (��

��) of the two nodes is defined as the time it takes
them to first come within range of each other again, that is
��

�� � ��	���� �� � ������������� � ��.
Definition 2.3 (Contact Time): Let nodes � and � move

according to a mobility process ‘MM’ and assume they come
within range of each other at time �. The contact time ���

is defined as the time they remain in contact with each
other before moving out of the range of each other, that is
��� � ��	��� � � � ������ � ������ 
 ��. (Note that ��
defined in Definition 2.2 is the same ��� � �.)

III. MOTIVATING EXAMPLE: DELAY ANALYSIS OF DIRECT

TRANSMISSION

In Direct Transmission, the source holds on to the mes-
sage until it comes within range of the destination itself. It
is one of the simplest imaginable mobility assisted routing
schemes, but along with flooding (epidemic routing), it forms
the basic buidling block of all the other mobility assisted
routing schemes. We now analyze the expected delay of Direct
Transmission to demonstrate the role played by the three
fundamental quantities in the performance analysis of mobility
assisted routing.

Contention leads to a loss of transmission opportunities
when two nodes are within range of each other. We model
the loss of transmission opportunity in a time slot due to
contention as a Bernoulli Random variable with parameter
�. (For more information about the meaning and the way
to derive this quantity �, the interested reader is referred to
[22], which has derived the expected delay of epidemic routing
under contention.)

Theorem 3.1: The expected delivery delay for Direct Trans-
mission routing scheme is

���
�� � ����� �

����������
���

�� �������
(1)

where � = Pr�loss of a transmission opportunity due to
contention in one time slot given the two nodes were within
range of each other�
Proof: The expected time it takes for the source to meet
the destination for the first time is ����� (the expected
meeting time). With probability �, they are unable to exhange
the packet in one time slot. They are within range of each
other for ����� number of time slots. (We are making an
approximation here by replacing ��� by its expected value.)
Then ������� is the probability that the source fails to deliver
the packet to the destination when they came within range
of each other. Then they will have to wait for one inter
meeting time to come within range of each other. If they
fail again, they will have to wait yet another intermeeting



time to come within range. Thus, ��� � ����� �
��� ��

�
����������

��� � 	�����������
��� � � � �

�
�

����� �
�����������

���

��������� . �
The expected delivery for Direct Transmission under any

mobility model can be calculated by substituting the values of
�����, ���

��� and ����� for that mobility model into
Equation (1).

IV. RANDOM DIRECTION

Definition 4.1 (Random Direction): In the Random Direc-
tion model, each node moves as follows [24]:

1. Choose a direction � uniformly in ��� 	��.
2. Choose a speed � uniformly in ����	� ��
�� with ���	 


� and ��
� � �. Let � denote the average speed of a
node.

3. Choose a duration � of movement from a geometric
distribution with mean � . The average distance travelled
in a duration � is equal to ��. We assume that � �

�
��

�
�

to ensure fast mixing 1.
4. Move towards � with speed � for � time slots.
5. After � time slots, pause for ���� time slots where ����

is chosen from a geometric distribution with mean � ���.
6. Goto Step 1.
The expected meeting time of the Random Direction model

was evaluated in [21]. We first recap their result in Theorem
4.1 and then derive the expected inter meeting time in Theorem
4.2, the expected contact time in Theorem 4.3 and finally
the distribution of the meeting and the inter meeting times
in Theorem 4.4.

Theorem 4.1: The expected meeting time ����� for the
Random Direction model is given by

����� �

�
�

���

��
� � � ���

�
��
��� � 	��� ���

�

where 
��� � ��	� is the normalized relative speed �
��� �
�������������

�
for the Random Direction model, and �� �

�

��� ����
is the probability that a node is moving at any time.

Proof: See [21]. �
Theorem 4.2: The expected inter meeting time �� �

���
for the Random Direction model is approximately equal to
�����.

Proof: When the nodes move out of the range of each
other, they keep moving for a duration which is geometrically
distrbuted. Since we assumed that � � ��

�
��, the nodes

mix (reach their stationary distribution) after their respective
movement duration ends. After the two nodes get mixed, the
additional time it will take for them to meet again is equal to
the meeting time. In general, since one movement duration is
much less than the expected meeting time, �� �

��� � �����.
�

1 The mixing time of a mobility model is the time it takes for a node to
come back to its stationary distribution after starting from any arbitrary initial
distribution.

Now we find the expected contact time for the Random
Direction model. To similify the exposition, we will make a
couple of approximations.

(a) We approximate the geometric distribution with an ex-
ponential distribution. Exponential distribution is the
equivalent continuous version of geometric distribution.
In other words, we assume that both movement and
pause durations are exponentially distributed. Assuming
a continuous distribution simplifies the analysis because
we dont have to worry about the corner cases where two
time durations expire at the same time.

(b) Let � � �
�
. In general, �� � �� ����

�
, but for the ease of

analysis, we will assume that they are equal.

When two nodes come within range of each other, one of
the following is true: (a) Both the nodes are moving or (b)
Only one of the nodes is moving and the other is paused. Let
������ denote the expected contact time given both nodes were
moving when they came within range of each other and let
������ denote the expected contact time given only one of the
nodes was moving when they came within range. We derive
their values in Appendix A.

Theorem 4.3: The expected contact time ����� for the
Random Direction model is given by

����� �
���

��� � 	����� ���
�������

	����� ���

��� � 	����� ���
������

where �� � �

��� ����
is the the probability that a node is

moving at any time.
Proof: The probability that both nodes are moving is equal to
���. The probability that only one of the nodes is moving is
equal to 	���� � ���. For two nodes to come within range
from out of range, at least one of the nodes has to be moving.
Hence, to find �����, we have to condition over the fact that
at least one of the two nodes is moving. Applying the law of
total probability gives the result. �

We made a few approximations during the course of the
analysis to keep it tractable. Since all the approximations were
easily justifiable, we do not expect that they would drastically
effect the accuracy of the analysis, which we verify in Figures
1(a)-1(d) where we compare the analytical and simulation
results for the expected contact time of the Random Direction
model.

Theorem 4.4: The tail of the distribution of the meeting
time and the inter meeting time of the Random Direction
model is geometric.
Proof: Let node � and node � start from their stationary
distribution at time �. Lets define one time epoch as the time
duration at the end of which one of the two nodes change
their state (either from moving to paused or from paused to
moving). Let ����� denote the number of epochs until node
� meets node �, and �������� 
 	� denote the probability
that node � and node � do not meet after 	 epochs.

Although consecutive epochs are not independent (the end
of one epoch is the beginning of the next one), the random
process describing the lengths and end points of the sequence
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Fig. 1. Comparison of the theoretical and simulation results for the expected contact time for the Random Direction Mobility model with parameters (a)
� � ��� � ���� � � ���� � � �� � ���� � �� (b) � � ��� � ���� � � ���� � � �� � ���� � ��� (c) � � ��� � ���� � � ���� � � �� � ���� � �� (d)
� � ��� � ���� � � ���� � � �� � ���� � ���

of epochs drawn is ergodic [25]. Thus, we can use the statistics
of a single epoch to describe the whole process, as if the
epochs were drawn independently (the argument is similar to
the one made in [21] and [25]). Thus, �������� 
 	� � ���A
and B do not meet in the first n time epochs� � ����A
and B do not meet in a time epoch��	. Consequently, the
number of epochs needed till � meets � is geometrically
distributed. Thus the distribution for the meeting time when
the meeting time is much larger than one epoch time, is also
geometric. Thus the tail of the distribution of the meeting time
is geometric.

A similar argument holds for the inter meeting time also.
�

We plot the distribution of the meeting time and inter
meeting time of the Random Direction model for some sample
values in Figures 2(a)-2(d) and Figures 3(a)-3(d) respectively.
The tails of all the distributions are geometric.

V. RANDOM WAYPOINT

Definition 5.1 (Random Waypoint): In the Random Way-
point model, each node moves as follows [26]:

1. Choose a point � in the network uniformly at random.
2. Choose a speed � uniformly in ����	� ��
�� with ���	 


� and ��
� � �. Let � denote the average speed of a
node.

3. Move towards � with speed � along the shortest path to
� .

4. When at � , pause for ���� time slots where ���� is
chosen from a geometric distribution with mean � ���.

5. Go to Step 1.
One iteration of these steps is referred to as an epoch.

Lemma 5.1: (a) The stationary distribution of nodes mov-
ing according to Random Waypoint model on a torus is
uniform.

(b) Let � be the length of an epoch, measured as the distance
between the starting and the finishing points of the epoch.
Then ��� � ���	�

�
� .

Proof:
(a) See [27]. �
(b) The current position as well as the destination picked

is uniformly distributed on the torus. The pdf of � can

be easily evaluated using geometrical arguments to be

����� �

�
���
�

� �
�
�
�

��
�

�
�
� � 	�� ��

��
�
��

�� �
�
� � � �

�
��
�

.

Then ��� �
� �	�

�

� �����!� � ���	�
�
� . �

The expected meeting time of the Random Waypoint model
was evaluated in [21]. We first recap their result in Theorem
5.1 and then derive the expected inter meeting time in Theorem
5.2, the expected contact time in Theorem 5.3 and finally
the distribution of the meeting and the inter meeting times
in Theorem 5.4.

Theorem 5.1: The expected meeting time ������ for the
Random Waypoint model is given by

������ �

�
�

������

��
����
�

� � ���

�
��
���� � 	��� ���

where 
���� � ��	� is the normalized relative speed �
���� �
�������������

�
for the Random Waypoint model, and �� �

��
�
�

��
�
�

�� ����
is the probability that a node is moving at any

time.
Proof: See [21]. �

Theorem 5.2: The expected inter meeting time �� �
����

for the Random Waypoint model is approximately equal to
������.
Proof: When the nodes move out of the range of each other,
they pick up a destination uniformly at random in the torus.
After reaching their destination, they are fully mixed (back in
their stationary distribution) and the additional time it takes for
them to meet again is equal to the meeting time. In general,
since an epoch time is much less than the expected meeting
time, ���

���� � ������. �
Now we find the expected contact time for the Random

Waypoint mobility model. The approach is exactly the same
as for the Random Direction model. Also, we will make the
same two approximations as we made to find the expected
contact time for the Random Direction model.

Theorem 5.3: The expected contact time ������ for the
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Fig. 2. Meeting distribution for Random Direction Mobility model with parameters (a) � � ��� � ���� � � ��� � � ���� � � �� ����� � �� (b)
� � ���� ����� � ��� � � ���� � � �� � ���� � ��� (c) � � ���� ����� � 	�� � � ���� � � �� � ���� � �� (d) � � ���� ���� � � 	�� � �
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Fig. 3. Inter Meeting distribution for Random Direction Mobility model with parameters (a) � � ��� � ����� � ��� � � ���� � � �� ����� � �� (b)
� � ���� ����� � ��� � � ���� � � �� � ���� � ��� (c) � � ���� ����� � 	�� � � ���� � � �� � ���� � �� (d) � � ���� ���� � � 	�� � �
���� � � �� � ���� � ���

Random Waypoint model is given by

������ �
���

��� � 	����� ���
������� �

	����� ���

��� � 	����� ���
��������

where �� �
��
�
�

��
�
�

�� ����
is the the probability that a node

is moving at any time, �� ����� is the expected contact time
given both nodes were moving when they came within range
of each other and �� ����� is the expected contact time given
only one of the nodes was moving when they came within
range. We find their values in Appendix B.
Proof: The proof runs along similar lines as the proof of
Theorem 4.3. �

We made a few approximations during the course of the
analysis to keep it tractable. Since all the approximations were
easily justifiable, we do not expect that they would drastically
effect the accuracy of the analysis. To validate our claim we
compare the analytical and simulation results for the expected
contact time of the Random Waypoint model in Figures 4(a)-
4(d), and find that the two curves match.

Theorem 5.4: The tail of the distribution of the meeting
time and the inter meeting time of the Random Waypoint
model is geometric.

The proof of Theorem 5.4 runs along the same line as the

proof of Theorem 4.4. We plot the distribution of the meeting
time and inter meeting time of the Random Direction model
in Figures 5(a)-5(d) and Figures 6(a)-6(d) for some sample
values. The tails of all the distributions are geometric.

VI. RANDOM WALK

We now assume that nodes are moving on a
�
� 	 �

�
grid in a 2-D torus. Each node moves one grid unit in one
time unit.

Definition 6.1 (Random Walk): In the Random Walk mo-
bility model, each node moves as follows:

1. Choose one of the four neighboring grid points uniformly
at random.

2. Move towards the chosen grid point during that time slot.
3. Goto Step 1.
The expected meeting time and the expected inter meeting

time of the Random Walk model was evaluated in [21] and
[22] respectively. We first recap these results in Theorems 6.1
and 6.2 and then find the expected contact time in Theorem
6.3. Then we cite the result about the tail of the distribution of
the meeting time from [23]. Finally, we study the distribution
of the inter meeting time using simulations.

Theorem 6.1: The expected meeting time ����� for the
Random Walk model is given by

����� �
�

	

�
���"� � 	��� �� � 	

	� � �

�
�
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Fig. 4. Comparison of the theoretical and simulation results for the expected contact time for the Random Waypoint Mobility model with parameters (a)
� � ��� � ���� � � �� � ���� � �� (b) � � ��� � ���� � � �� � ���� � ��� (c) � � ��� � ���� � � �� � ���� � �� (d) � � ��� � ���� � �
�� � ���� � ���
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Fig. 5. Meeting distribution for Random Waypoint Mobility model with parameters (a) � � ��� � ���� � � ��� � � �� ����� � �� (b) � �
��� � ����� � ��� � � �� � ���� � ��� (c) � � ���� ����� � 	�� � � �� � ���� � �� (d) � � ��� � ����� � 	�� � � �� � ���� � ���
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Fig. 6. Inter Meeting distribution for Random Waypoint Mobility model with parameters (a) � � ��� � ����� � ��� � � �� ����� � �� (b)
� � ��� � ���� � � ��� � � �� � ���� � ��� (c) � � ��� � ����� � 	�� � � �� � ���� � �� (d) � � ��� � ���� � � 	�� � � �� � ���� � ���

Proof: See [11]. �
Theorem 6.2: The expected inter meeting time �� �

��� for
the Random Walk model is given by
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Proof: See [22]. �
Now we find the expected contact time for the Random

Walk mobility model.

Theorem 6.3: Let �$� �� denote the expected additional
time two nodes will remain in contact with each other when the
distance between them is equal to % � �. By definition, the
expected contact time ����� for the Random Walk mobility
model is equal to �$� �� . The �$� ��’s can be found by
solving the following set of linear equations:
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Fig. 7. Inter Meeting distribution for Random Walk Mobility model (with
parameters � � 
�� 
�� � � �) and an exponential distribution having the
same mean.
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Proof: Let one node be static and the other node move two
grid units in one time unit. Both the steps are picked uniformly
at random. This model is equivalent to one where both nodes
move one grid unit in one time unit. The distance between the
two nodes can either increase by two, decrease by two or stay
the same depending on the node movement. The probability
of these events can found by simple combinatrics. The law of
total probability allows us to write the set of linear equations
using these probabilities.

When the nodes come within range, the distance between
them is equal to �. Hence, by definition, the expected contact
time ����� is equal to �$� �� . �

Theorem 6.4: The tail of the distribution of the meeting
time of the Random Walk model is memoryless.
Proof: See [23]. �

Now we look at the distribution of the inter meeting time
of the Random Walk model. We plot the distribution and the
distribution of a geometric random variable having the same
mean, in Figure 7. Its easy to see that they don’t match.

The probability that the two nodes meet again in the first
few time slots after moving out of range, is very high. Still,
the expected value of the inter meeting time is very large
(���� where � is the area of the grid). This suggests that
inter meeting times are heavy tailed.

We plot the inter meeting distribution for some sample
network paramaters and the discretized Bounded Pareto in
Figures 8(a)-8(d). Its easy to see that discretized Bounded
Pareto fits the inter meeting time distribution pretty well.

Now we discuss how to find the parameters of the Bounded
Pareto distribution in terms of the network parameters. The
pdf of the Bounded Pareto distribution is,

���&� � ��

��� �� �
&����  � & � ' (2)

The Bounded Pareto pdf has three unknowns,  � ' and
(. For the inter meeting time distribution,  � � as its

going to take at least one time unit for the nodes to come
back within range. We need two equations to find the other
two unknowns. We will use �����

�� � �� � �

��� �
� �

 and

���
��� � �����

�� � ��
�
�� '���� to find ' and (.

Now, since ' 
 ���
��� 

 �, �����

�� � �� � ( and

' �
�
����

��������
�����

�����
� �
� �

��
.

The value of ���
��� was stated in Theorem 6.2. Now we

derive �����
�� � ��.

The probability that the inter meeting time is equal to �
can be easily evaluated using simple combinatrics. Nodes can
either move at a distance of two away from each other in one
time unit or still remain within range. So, when the nodes
move out of range, they are at a distance of � �	 from each
other after the first time slot. The inter meeting time will be
equal to one only if they come back within range of each other
in the next time slot. We found the probability that the distance
between two nodes decreases by two in one time unit given
their current distance in Theorem 6.3. Using these results, we
find �����

�� � �� for the Random Walk mobility model is
given by,

�����
�� � �� �


�
�

�	��������
	������ � 
 �

�
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� � � �

� (3)

The parameters of the Bounded Pareto distributions plot-
ted in Figures 8(a)-8(d) were derived using the preceeding
method.

VII. CONCLUSIONS AND DISCUSSION

Realistic performance analysis of mobility-assisted routing
with contention in the network requires a knowledge of the
statistics of the meeting time, inter meeting time and the
contact time. Delay analysis of Direct Transmission shows
the importance of these quantities for performance analysis.
These quantities vary largely depending on the mobility model
in hand. In this paper, we compute the expected inter meeting
times of the random direction and random waypoint mobility
models. We also prove that the tail of the distribution of the
meeting and inter meeting time for random direction and ran-
dom waypoint is memoryless. We show through simulations
that the inter meeting time distribution for random walks is
heavy tailed. Finally, we find the expected contact time for all
the three mobility models.

In future, we plan to study these quantities for other mobility
models too, for example, the community based mobility model
[21]. We also plan to provide realistic performance analysis
of many routing schemes, in addition to Direct Transmission.
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APPENDIX

A. Expected Contact Time for the Random Direction Mobility
model

Lemma 1.1: The expected contact time given both nodes
were moving when they came within range of each other,
������, is given by,

������ � ��� ���
��

��	���
� ��

�
�������

��	��
��)� 
 �����

�

where �� �
� �
�

�
�

�
�� )�

��������

������
�
�
!* is the probability that

one of the two nodes pause while they are within range of each
other and �)� 
 ����� is the expected additional time the two
nodes remain within range after one of the nodes paused. We
will find the value of �)� 
 ����� in Lemma 1.3.
Proof: When both the nodes are moving when they come
within range of each other, either they move out of each other’s
range before any of them pauses or one of them pauses before
they move out of range.

(a) They move of each other’s range before pausing: Let one
node be static and let the other node move at a speed
+���+�� . This model is equivalent to the model when both
nodes are moving at speeds +�� and +�� respectively. We
will work with the former model during this proof as
well as all the subsequent proofs. The angle of +� ��+�� is
uniformly distributed between ��� 	��.
So, when these two nodes come within range of each
other, the angle * in Figure 9 will be uniformly ditributed
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Fig. 9. The first node enters the transmission range of the second node at
an angle � to the tangent at 	 and moves along the chord 	
.

within ��� ��. It cannot be greater than � as * 
 � implies
that the nodes were already in contact with each other.
They will remain in contact with each other while the
first node travels along the chord AB in Figure 9. The
length of the chord AB is equal to 	� �	�*�. E[distance
for which the nodes remain in contact with each other] =
E[length of chord AB] =

� �
�

�
�
	� �	�*�!* = ��

�
. The

expected speed of moving node is  ��+� � � +���� � ��	��.
Thus the expected time they remain in contact with each
other is approximately equal to ��

������ .
(b) One of the nodes pauses before they move out of each

other’s range: We again work with the model where
one of the nodes is static and the other node is mov-
ing at a speed +�� � +�� . The moving node is equally
likely to pause anywhere on the chord AB in Figure
9 since the distribution of movement duration is mem-
oryless. Let the node stop at point C which is � �
& � 	� �	�*� distance away from A. Thus �����& 

*� �

 �
����	��� � � & � 	� �	�*�

� otherwise
. Multiplying

by ���*� and integrating over * gives us ���&�. The
expected distance node travels before pausing can then
be evaluated to �������. The expected time the node
travels before pausing is equal to ��	
		�

����� . �)� 
 �����
is the additional time spent within range of each other.

Now we find �� to complete the proof. �� � the probability
that one of the two nodes pause before moving out of range.
Since the movement duration of both the nodes is exponential
with mean � , �� given * and �+�� � +��� is equal to � �
)
� ��������

�
�
��������� . To simplify exposition, we replace �+�� � +��� by

its expected value. Hence, �� �
� �
�

�
�

�
�� )�

��������

������
�
�
!*

which can be evaluated numerically. �
In the previous lemma, we found the expected contact time

given both nodes were moving when they came within range
of each other. Next lemma evaluates the expected contact time
when only one node was moving when they came within range
of each other.

When only one node is moving, either they will move out
of each other’s range before the paused node restarts again
and the moving node pauses, or the moving node pauses or
the paused node restarts before they move out of each other’s
range. The derivation has to account for all the three scenarios.

Lemma 1.2: The expected contact time given only one of
the nodes was moving when they came within range of each
other, �� ����, is given by,
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���� !* is the probability

that the paused node restarts again or the moving node pauses

before moving out of each other’s range, � �� �
�
�

�
�
� �
�����

is

the probability that the moving node pauses before the paused

node restarts and ��� �
�

�����
�
�
� �
�����

is the probability that the

paused node restarts before the moving node pauses. �)� 
 	��
and �)� 
 	�� are the expected additional times the two nodes
remain within range after both of them are paused and after
both of them start moving respectively. We will find their value
in Lemma 1.3.

Proof:

(a) Both nodes move out of the range of each other without
any of them changing state: The expected time they
remain in contact is ��

��
. The proof goes along the same

lines as in proof of Lemma 1.1 (a). Except here, the
expected relative speed is �.

(b) The moving node pauses or the paused node starts
moving before they move out of each other’s range: The
expected time before one of the nodes change their state is
��	
		�

�
. The proof goes along the same lines as in proof

of Lemma 1.1 (b). Except here, the expected relative
speed is �.

(i) The moving node pauses before the paused node
restarts: The movement duration is exponentially
distributed with mean � while the pause duration is
exponentially distributed with mean � ���. Hence,
the probability that the paused node restarts before
the moving node pauses = ��� can be easily derived
using the properties of exponential distribution to be

�
�

�
�
� �
�����

. �)� 
 	�� is the additional time spent

within range of each other.
(ii) The paused node restarts before moving node pauses:

The probability that the moving node pauses before
the paused node restarts = ��� � � � ���. �)� 

	�� is the additional time spent within range of each
other. Note that using exponential distribution instead
of geometric simplifies the analysis as the probability



that both the nodes change state at the same time is
zero.

Now we find the value of �� to complete the proof. �� can be
derived in a manner similar to the derivation of �� in Lemma
1.1. Except the relative speed here is � and the mean of the
running exponential is �

�
�
� �
�����

. �

Next we find the values of �)� 
 �����, �)� 
 	�� and
�)� 
 	��.

Lemma 1.3: �)� 
 �����, �)� 
 	�� and �)� 
 	��
are related to each other through the following set of linear
equations:
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where ����� is the probability that one of the nodes change
their state (either the paused node starts moving or the moving
node pauses) before they go out of the range of each other,
��� is the probability that the moving node pauses before the
paused node starts moving and ��� � �� ���, and ��� is the
probability the one of the nodes pause before they go out of
the range of each other.
Proof: We will derive each of the equations one by one.

(4) �)� 
 ����� is the additional time two nodes remain
in contact when only one node is paused and the other
node is moving. Either of the following can happen in
the succeeding time slots:

(a) The two nodes move out of the range of each other
without either of the nodes changing states: The
expected distance the node travels before going out
of range is �������. (This is the expected length
from a point anywhere on chord AB in Figure 9 to
point B.) The expected relative speed is �. Hence, the
expected duration the two nodes remain in contact is
��	
		�

�
.

(b) The moving node pauses before moving out of range.
The additional time both nodes spend within range
of each other is �)� 
 	��.

(c) The paused node starts moving before the nodes
move out of range. The additional time both nodes
spend within range of each other is �)� 
 	��.

Let ����� � ��� one of the node changes its state � and
let � � be the distance travelled by the node before one
of them changes state .
The movement duration is exponentially distributed
with mean �

�
and the pause duration is exponen-

tially distributed with mean �
� ����

. Hence, ����� �
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. The probability that the moving node pauses
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.

Now we figure out � � which is the distance travelled be-
fore one of the nodes changed states. � � � �distance
between points $ and � on the chord in Figure 9 �

�
� �
�

� ����	���

�

� �
�

���
�������	�����

! !&!* � ��

� . Hence,

the expected time spent before one of the two nodes
change their states � ��


�� .
(5) �)� 
 	�� is the additional time two nodes remain in

contact when both the nodes are paused. The expected
time before one of the nodes starts moving is � ���,	
as the paused duration is exponentially distributed with
mean �

� ����
. The additional time both the nodes spent

within range is equal to �)� 
 �����.
(6) �)� 
 	�� is the additional time two nodes remain in

contact when both the nodes are moving. Either of the
following can happen in the succeeding time slots:
(a) The two nodes move out of the range of each other

without either of the nodes pausing. The expected
duration the two nodes remain in contact is ��	
		�

����� .
(The derivation is similar to the one for 4 (a).)

(b) One of the two nodes pause before moving out of
the range of each other. The expected time spent
before one of the node pauses = ����

����� . The additional
time both nodes spend within range of each other is
�)� 
 �����.

The probability that one of the nodes pause before
moving out of the range of each other � ��� �� �
�

� ����	���
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�����	���
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The set of linear equation in Lemma 1.3 can be solved to
get �)� 
 �����, �)� 
 	�� and �)� 
 	��.

B. Expected Contact Time for the Random Waypoint Mobility
model

Lemma 1.4: Let � = ���node � pauses within the
transmission range of node � 
 node � is passing through the

transmission range of node ��. Then � �
���
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��� � ��� is the probability that node A will pass through the
transmission range of node � but not pause within node �’s
transmission range.
Proof: Let node � start from point � shown in Figure 10. �. �

and �.� are tangents from point � to the circle denoting the
transmission range of node �. If the destination of node �
falls within the marked region, then node � will pass within
transmission radius of node �. but not pause within node �’s
transmission range. � denotes the distance between point �
and node �. The pdf of the random variable � is given in
the proof of Lemma 5.1(b). The angle � shown in Figure 10



Fig. 10. Node 	 will pass through the transmission range of node 
 if and
only if its destination lies in the shaded region.

is equal to 	 �	��
�
�
�

�
. The sector of a circle at a distance

� from node � and lying within the shaded region is equal
to ��. Integrating over all possible values of � and � will give
the probability that the chosen destination lies in the shaded
region. ��� and ��� represent the probabilities when � � � ��
�
� and

�
�
� � � �

�
��
�

respectively. �
Lemma 1.5: The expected contact time given both nodes

were moving when they came within range of each other,
�������, is given by,

������� � ������
��

���	��
��	�����

�
�������

��	��
��)� 
 �����

�
where �)� 
 ����� is the expected additional time the two
nodes remain within range after one of the nodes paused. We
will find its value in Lemma 1.7.

Proof: The proof runs along similar lines as the proof of
Lemma 1.1. The only difference is that the probability that
none of the nodes pause while within range of each other is
equal to ��� ���. �

The next lemma evaluates the expected contact time when
only one node was moving when the nodes came within range
of each other.

Lemma 1.6: The expected contact time given only one of
the nodes was moving when they came within range of each
other, �� �����, is given by,
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where � is the probability that the moving
node pauses while within range and �� �� �
�

� ����	���

�
�

�����	���

�
�� )

�
��

������

��
!&!* is the

probability that the paused node starts moving again before
both the nodes move out of each other’s range. �)� 
 	�� and
�)� 
 	�� are the expected additional times the two nodes
remain within range after both of them are paused and after

both of them start moving respectively. We will find their
value in Lemma 1.7.

Proof: The proof runs along similar lines as the proof of
Lemma 1.2. Only the probabilities of nodes changing states
while within range of each other are different. The value of �
was derived in Lemma 1.4. Now, we derive the value of � � to
complete the proof. The moving node enters along chord ��
as shown in Figure 9 and let the paused node restarts when
the moving node is at $. $ is equally likely to be any point
on the chord ��. Given the value of & and *, the probability
that the paused node restarts between & and & � !& is equal

to � � )

�
��

������

�
. Multiplying by the pdf’s of & and * and

integrating gives the result. �
Next we find the values of �)� 
 �����, �)� 
 	�� and

�)� 
 	��.
Lemma 1.7: �)� 
 �����, �)� 
 	�� and �)� 
 	��

are related to each other through the following set of linear
equations:
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�
where �� is the probability that the paused node starts moving
again before both the nodes move out of each other’s range and
is the same as derived Lemma 1.6, �� is the probability that
the moving node chooses a destination within the transmission
range of the paused node and is equal to ���

�
.

Proof: The proof runs along similar lines as the proof of
Lemma 1.3. �


