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Abstract— Epidemic routing has been proposed as a robust
transmission scheme for sparse mobile ad hoc networks. Under
the assumption of no contention, epidemic routing has the
minimum end-to-end delay amongst all the routing schemes
proposed for such networks. The assumption of no contention
was justified by arguing that since the network is sparse, there
will be very few simultaneous transmissions. Some recent papers
have shown through simulations that this argument is not correct
and that contention cannot be ignored while analyzing the
performance of routing schemes, even in sparse networks.

Incorporating contention in the analysis has always been a
hard problem and hence its effect has been studied mostly
through simulations only. In this paper, we find analytical
expressions for the delay performance of epidemic routing with
contention in the network. We include all the three main man-
ifestations of contention, namely (i) the finite bandwidth of the
link which limits the number of packets two nodes can exchange,
(ii) scheduling of transmissions between nearby nodes which is
needed to avoid excessive interference, and (iii) interference from
transmissions outside the scheduling area. The accuracy of the
analysis is verified via simulatons.

I. INTRODUCTION

Routing in a mobile ad hoc network is an important and
challenging problem and many routing protocols have been
proposed and studied (DSDV [1], DSR [2], AODV [3]). These
protocols borrowed ideas from wired routing and maintained
routing states in the nodes.

In Delay Tolerant Mobile Networks, there does not exist a
complete end-to-end path from a source to a destination. Even
if such a path exists, it is highly unstable and may change or
break soon after it has been discovered (or even while it is
being discovered). So, the conventional mobile ad hoc routing
protocols will fail to successfully route packets through such
networks. The reactive schemes will fail to discover a complete
path while proactive protocols will fail to converge. Examples
of such networks include sensor networks for wildlife tracking
and habitat monitoring [4], [5], military networks [6], inter-
planetary networks [7], nomadic communities networks [8],
networks of mobile robots [9] etc.

Epidemic routing was proposed [10] as a robust routing
scheme for such a network. It adopts a ”store-carry-forward”
paradigm: every node acts as a relay for other flows. The
algorithm is essentially flooding with some variations to re-
duce overhead. There has been some effort to theoretically

characterize the performance of epidemic routing [11], [12],
[13]. But none of these analytical works take contention into
account. This is not because contention is not an important
problem but because it is very hard to analyze. [14], [15], [16],
[17] have taken contention into account through simulations
and shown its detrimental effect on the performance.

This paper finds analytical expressions for the delay per-
formance of epidemic routing with contention in the network.
Contention manifests itself in three ways: (i) finite bandwidth,
which limits the number of packets two nodes can exchange
when they are within range, (ii) scheduling of transmissions
between nearby nodes which is needed to avoid excessive
interference, and (iii) interference from transmissions outside
the scheduling area. The reason for taking finite bandwidth
into account is easy to see, but taking both scheduling
and interference into account might, at first glance, appear
unnecessary. However, recent studies [18], [19], [20] have
shown that the circular disk model is an inaccurate channel
model and multipath fading in a realistic channel can result
in significant received power from transmitters which are not
nearby. Hence, if a realistic fading channel model is assumed,
then the interference from nodes outside the scheduling area
cannot be neglected.

The outline of the paper is as follows. Section II presents
our notation and assumptions, states some useful results for
the random walk mobility model which we use during the
course of the analysis and provides a brief introduction to
epidemic routing principles. Section III finds the probability
that a particular packet is successfully exchanged inspite of
contention in the network. Section IV computes the expected
delay for epidemic routing in sparse networks and verifies
through simulations that the approximations made to simplify
the analysis do not effect the accuracy of the analysis. Finally,
Section V concludes our paper.

II. PRELIMIARIES

A. Notation and Assumptions

This section defines our model for the network.

1.
�

nodes perform independent random walks on a
� ���

� �
2-D torus.

2. Each node moves one grid unit in one time unit.



�
Number of grid points�

Number of nodes in the network�
The transmission range�
The desirable SIR ratio�

Average number of distinct packets in the network

TABLE I

NOTATION USED

3. We use manhattan distance (L1 norm) to measure the
distance between two nodes.

4. Each node acts as a source sending packets to a randomly
selected destination.

5. The average number of distinct packets in the network at
a given time is � .

6. Two nodes transmit to each other when the distance
between them is less than � . The justification for this
scheme can be found in studies which characterize the
physical channel [18], [20]. If the distance between the
two nodes is less than � (whose actual value depends
on the transmitted power), then the packet reception rate
is equal to one. (This is called the connected region.)
Note that this does not imply that transmissions from
nodes at a distance greater than � are not going to
interfere with the ongoing transmission.

7. The signal to interference ratio should be greater than a
desired threshold, which we call � , for the transmission
to be successful.

8. We assume a Rayleigh-Rayleigh fading model (both the
desired and the interfering signals are Rayleigh dis-
tributed).

B. Useful Results for Random Walk Mobility Model

This section presents results on random walks which we use
during the analysis. The first two lemmas state known results
from previous works while Lemma 2.4 introduces a new result
which we derive in this paper.

Let �
	��� denote the expected hitting time until a walk start-
ing from the stationary distribution reaches � . On a symmetric
graph, this quantity is independent of � , and we denote it as��� . Let � � denote the expected time until two independent
random walks, starting from the stationary distribution, first
meet each other. For random walks on a 2-D torus, the values
of these quantities are well known and the following lemma
states these results.

Lemma 2.1: Let independent random walks be performed
on a
� � � � �

torus. Then,

(i) The steady state distribution of the location of each walk
is uniform.

(ii) ������� ������� � , where ������� �! . In theory, this result is
valid as

�#"%$
. However, the result is quite accurate

for
�'&)(+*

[21], [22].
(iii) � � �-,. ��� .
(iv) The tail of hitting times is exponentially distributed.

Proof: See [22]. /

The above lemma computes the meeting times for random
walks with �0��� . The following lemma extends the previous
lemma when �'12� .

Lemma 2.2: For �314� ,
�5�6� �37 � ����� �98 (;:=< , 8 � 8>(( : 8)? @BA (1)

� � � ?( �5��� (2)
Proof: See [12]. /
[22] shows that it is the tails of the hitting and meeting

times that are exponential. Here, we assume that the bodies
are also exponentially distributed. According to [11], this is a
good approximation for small to moderate � with respect to
the total area. Since we are assuming a sparse network (where�DC�C � ), this approximation does not have a significant
impact on the accuracy of the analysis.� � < denotes the expected intermeeting time which is the
expected time for two walks to meet if they started from within
range of each other. We find its value in Lemma 2.4. But, first
we prove a useful result which will be used to derive � � < .

Lemma 2.3: Let � be a position in the torus, and let EGF��IH
denote the subset of all positions J such that, KMLON 8 L  KP KRQ+N 8 Q  K �#� . Let a random walk start from ESF��IH
and move towards � in its first step (that is after the first
step, the distance between the walk and � is equal to � 8B? ).
Let further �  denote the time until this random walk first
hits � and � <T denote the time until this random walk first
returns to ESF��IH . Then, UVFW� <T C4�  HX� , <ZY\[^]`_, <ZY\[ , where

� : �? P)a :cb ,dWe ,gf dh e ,
ikjl j and m h � . h < ,n h , o h � . h b ,n h .
Proof: Lets assume that the walk is at one of  +p positions at

distance prq2� from node � . Out of these  +p positions,  are
corner positions and the rest  ;p 8  are non-corner positions.
From a corner point, the walk can go to a position at a distancep P ? from node � with probability sn and to a position at a
distance p 8�? with probability ,n . From a non-corner point,
these probabilities are ,. and ,. respectively.

Let UVFWp!H denote the probability that a walk, currently at a
distance pSq2� away from node � , will hit EGF��IH before node� . Then,

UVFWp!HX�   ;p 7 � UVF�p P ? H P ? UVF�p 8)? H @ P +p 8   ;p 7 ?( UVF�p P ? H P ?( UVF�p 8)? H @
t UVFWp!HM� ( p P ? +p UVFWp P ? H P ( p 84? ;p UVF�p 84? Hu� (3)

Using the boundary conditions UVFv�+Hw�x� and UVF��IHc� ? ,
the recursive equation (3) can be solved for UVFWp!H . UVFW� <T C�  Hy�zUVF�� 8{? H as after the first step, the walk is � 8{?
distance from node � . Solving (3) gives the desired expression./

In Lemma 2.4, we first derive the expected time it takes for
a random walk to come back to a subset of nodes and then
use this value to find � � < .



Lemma 2.4:� � < � � ( 7 (;:=< , 8 � 8B(( : 8)? @ 7 ?( � P ?7  +� 8 F ( � P ? H 8 7 ? P � :cb ,? P � : F ( � 84? H @=@
@ A
where

� : � ? P4a :cb ,dWe ,gf dh e , ikjl j and m h � . h < ,n h , o h � . h b ,n h .
Proof: Let a walk start from EGFv� H . The expected time till

it hits the node � , � 	 � T�� �� , can be written as

� 	 � T�� �  �   `� 7 � � � T � <T P � 	 � T�� � �� P? � UVFW� <T C4�  H � 	 � T�� �  P UVFW� <T & �  H � , F��IH�� @ P +� 8   `� 7 ?( � � T � <T P � 	 � T�� �  � P
?( � UVFW� <T C)�  H � 	 � T�� �  P UVF�� <T & �  H � , F�� H � @ A (4)

where
� , Fv� H �	�yF�� . H and � 	 � T�� �  � ��
 . [��`_ b :cb .. [ b , 

[12]. When
�'&�& � , Equation (4) can be written as

� 	 � T�� �  � ( � P ? +� � � T � <T P � 	 � T�� �  �P ( � 8)? `� UVFW� <T C)�  H � 	 � T�� �  �
Rearranging the terms gives

� T � <T � �37 (;:=< , 8 � 8B(( : 8)? @ 7 ?( � P ?�  `� 8 F ( � P ? H 8 UVFW� <T C4�  H F ( � 8)? H ��� �� � < , the expected intermeeting time between two walks,
is equal to ,. � T � <T as the walks are moving on a symmetric
graph. /
C. Epidemic Routing

This section summarizes the basic epidemic routing princi-
ples [10], [24]. Each node stores and forwards packets destined
for other nodes. Each node maintains a summary vector that
indicates the set of packets which it has. When two nodes come
within transmission range of each other, they first exchange
their summary vectors. Next, based on this information, they
exchange packets which they don’t have. Thus, the source node
copies the packet to every node it meets, and each node in turn
forwards the copy to every other node it meets. The packet
is delivered when the first node carrying a copy of the packet
meets the destination. But, the packet will continue to get
copied from one node to the other until all the nodes have
a copy of the packet or its TTL expires. We assume that the
TTL of the packet is large enough to ensure that all packets
are delivered to the destination, that is there is no packet loss
due to TTL expiry.

III. CONTENTION ANALYSIS

First we identify the three mainfestations of contention;

Finite Bandwidth: When two nodes meet, they might
have more than one packet to exchange. We assume that
two nodes can exchange only one packet in one time unit.
They will have to wait until they meet again to transfer
more packets.
The number of packets which can be exchanged in a time
unit is a function of the packet size and the bandwidth
of the links. The following analysis is easily modified if
more than one packet can be exchanged in a time unit.
Scheduling: We assume a scheduling mechanism is in
place which ensures that no two transmitters are within a
distance of

( � to each other. This scheduling mechanism
is very similar to the CSMA-CA algorithm.
Interference: Even though the scheduling mechanism is
ensuring that no simultaneous transmissions are taking
place within a distance

( � of each other, there is no
restriction on simultaneous transmissions taking place
seperated by a distance more than

( � . These transmis-
sions will interfere with each other which can lead to
packet loss.

Lets look at a particular packet, label it Packet A. Two nodes,�
and � at a distance � q)� from each other, want to exchange

Packet A. Let m d���� F���H define the probability that they will
successfully exchange Packet A.

Let there be � other packets (other than Packet A) which�
and � want to exchange (a packet will be exchanged if and

only if one of them has a copy of the packet and the other one
doesn’t). We label this event as ��� . The packet exchanged is
randomly selected from amongst these � P ? packets.

Let there be J nodes within a distance
( � of the transmit-

ting node (label it event �RN ) and let there be � nodes in the( � C�� q{�+� ring (label it event ��� ) from the transmitter.
The nodes in the

( �'C��Vq2�;� ring have to be accounted for
because a node at the edge of the

( � circle can be within the
transmission range of these nodes and will contend with the
desired transmitter. Let � F�J A � H denote the number of possible
transmissions whose transmitter lies within

( � distance of
the desired transmitter. The scheduling mechanism will allow
transmission between

�
and � w.p.

?�� � FvJ A � H .
There are

� 8 J nodes outside the
( � range from the

transmitter. If two of these nodes are within the transmission
range of each other, then they can exchange packets causing
interference with the transmission between

�
and � . Lets label

the event that the packet between
�

and � is successfully
exchanged inspite of the interference caused by these

� 8 J
nodes as �! b N .

Then, m d���� F"��H �$# � b ,% & e , ?� P ? UVFW�'�uH)( �
# % N�* � ?� F�J A � H UVFv�
N H UVFv�!�RK!�
N H UVFv�! b N;H+(6� (5)



Equation (5) seperates out the effect of each of the factors
on m d���� F"��H . Next, we find expressions for the unknown values
in Equation (5).

A. Finite Bandwidth

In this section, we figure out the probability that nodes
�

and � have � other packets to exchange.
Let m�� ��� � P(nodes

�
and � want to exchange a particular

packet B). Nodes
�

and � will try to exchange packet B only
if either

�
has it and � doesn’t or vice versa. Since there are� 86? packets other than packet A in the network, UVFW� � H
�7 � 8)?� @ F m�� ��� H � F ?�8 m�� ��� H � b � b , . The following lemma

derives the value of m�� ��� for epidemic routing.
Lemma 3.1:

m � ��� �  b ,%� e , (�� F � 8	� H� F � 8)? H � F � F � H Ha  b ,Y e , � F"��F � H H � (6)

where ��F � H is the time it takes for the copies of a packet in
the network to increase from

�
to

� P ?
, and � F � F � H H is its

expected value.
Proof: The probability that there are

�
copies of a packet in

the network is equal to the (expected amount of time there
are

�
copies of the packet in the network)/(expected total

time the packet spends in the network before being removed).
The packet is removed from the network when no futher
transmission of the packet will take place. This occurs either
when all nodes have a copy of the packet or its TTL expires.
Since we had assumed the TTL is large enough to ensure that
all packets are delivered to their destination, the packet will
be removed when all nodes have a copy of the packet. Hence,
P(
�

copies of the packet in the network) =

 ��� � � ����� ]`_��� _ 
 ��� � Y ��� .

Now, given that there are
�

copies of packet B in the
network, the probability that node

�
has the packet and �

doesn’t is equal to
� �  b � � �  b , � . Consequently,

m�� ��� �  b ,%� e , (�� F � 8	� H� F � 84? H � F"��F � H Ha  b ,Y e , � F � F � H H �\/
In the subsequent analysis, we will assume that when

two nodes meet, the probability that they have no packet
to exchange Fk� F ?58 m�� ��� H � H is negligible. This is a valid
assumption if the traffic load is not very low. Since contention
will occur only when traffic load is not very low, this is a valid
assumption to make while studying contention.

B. Scheduling

Each of the other
� 8�(

nodes (other than
�

and � ) are
equally likely to be at any of the

�
grid points because

the random walk mobility model has a uniform stationary
distribution. So, we use geometric arguments to figure out
how many transmissions does the transmission between

�
and� contend with.

Lemma 3.2: UVF�� N H � 7 � 8B(J 8>( @ F m , H N b . F ?S8 m , H  b N
where m , � , < n : � . :=< , �� .

Proof: The node is equally likely to be at any of the
�

grid points. Consequently, m , = P(there is one node within
a distance

( � of the transmitting node) = (number of grid
points within distance

( � )/(total number of grid points). m , �, < �� [j � _ n
h� � , < n : � . :=< , �� . Recall that two nodes,

�
and � , are

already within � distance of the transmitter. So, UVF��cN!H �7 � 8B(J 8>( @ F m , H N b . F ?
8 m , H  b N . /
Corollary 3.1: UVF�� � K)� N Hz� 7 � 8 J� @ F m . H � F ? 8m . H  b N b � where m . � . F�� : � <O: H� .
Proof: m . = P(there is one node within the

( �DC � q�;� ring from the transmitter) = (number of grid points in
the

( � C �#q �;� ring)/(total number of grid points)� . F�� : � <O: H� . The probability that � nodes out of the
� 8J nodes are in the

( � C � q �;� ring is equal to7 � 8 J� @ F m . H � F ?=8 m . H  b N b � . /
Lemma 3.3: � FvJ A � Hy� 7 ? P m N 7�7 J ( @ 84? @�@ P � N � l��. �

where m N � ,,�� P Tn 	 : � , m � � s.�� 8 T� 	 : � andE � � . :: �. : � � � . � � � b , 
 � � b s : �. : �  P
 +� . � � � b , 
 � � < s : �n : �  8 ,.�� F�L . 8 � . H F� ;� . 8 L . H"! �+L .

Proof: It is given that there are J nodes within
( � distance

of the transmitting node. Hence, there are
7 J ( @ pairs of

nodes. Lets choose one such pair and define m N � P(this pair
of nodes are within a distance � of each other).

Out of these J nodes,
�

and � are already within �
distance of each other. The rest of these nodes are within �
distance of each other with probability m N . Hence, the expected
number of possible transmissions amongst these J nodes is? P m N 7�7 J ( @ 8)? @ .

Next we figure out the value of m N . Lets choose a pair of
nodes amongst these J nodes and label the nodes # , and # . .
The probability that a node # , is at a distance L away from
the transmitter is

. 	 � � �n 	 : � . Conditioned over the fact that node# , is at a distance L from the transmitter, the probability that
node # . is within � distance from # , is equal to the common
area $ between the two circles in Figure 1 divided by total
area where node # . can lie ( �2 &%O� . ) . The common area to
both the circles is� . � � � b , 
 � � b s : �. : �  P  `� . � � � b , 
 � � < s : �n : � 8 ,.�� F�L . 8 � . H F� ;� . 8 L . H A if L & � A

and %O� . A if L�q2� �
Hence,

m Nw�(' :� ( %ZL � %O� . )%O� . �  &%O� . �;L P ? )%O� . ' .
:: L( � .* � . � � � b , 7 L . 8 �;� .( ��L @ P  +� . � � � b , 7 L . P �;� . +� L @



Fig. 1. Node ��� is at a distance � from the transmitter. If another nodes lies in
the area

�
, transmissions between them contend with the desired transmission.

If another node lies in the area � , the transmission emanating from ��� to
this node contends with the desired transmission

8 ?( � F�L . 8 � . H F� ;� . 8 L . H � �+L � ??	� P E )%O� . �
Now, we quantify the contention due to the � nodes in the( � C ��q �;� ring. Contention arises when one of the J

nodes can transmit to one of the � nodes. There are J � such
pairs. Lets choose one pair and label the corresponding nodes# , and # s , where # , lies within

( � distance of the transmitter
while # s lies in the

( �'C � q)�;� ring. Define m � = P( # , and# s are within a distance � of each other). Though both the
nodes can transmit to each other, contention with the desired
transmitter will arise only when # , transmits to # s . # s can
transmit to # , wihtout contending with the transmitter as # s is
not within

( � distance of the transmitter. Hence, the expected
number of transmissions contending are

N � l �. .
To find m � , notice that, conditioned over the fact that node# , is at a distance L from the transmitter, the probability that

node # s is within � distance from # , , is equal to the Area
Z in Figure 1 divided by the total area where node # s can lie
( � * %O� . ). In a manner similar to that used for the deriviation
of m N , m � is derived to be s.�� 8 T� 	 : � . /
C. Interference

Given that there are
� 8 J nodes outside the scheduling

area (event � N ), let there be L interfering transmissions at a
distance of � , A � . A � � � A � � from the desired transmitter. Then,UVF��! b N!H � % � %� _ * � � *�
�
�
 * �� UVF��! b NyK L A � , A � . A � � � � � H

UVF�L K � N H UVF � , A � . A � � � A � � K L Hu� (7)

It is possible to calculate both UVFWL K �RN!H andUVF � , A � . A � � � A � � K L H to substitute in Equation (7), but, the
resulting expressions will be very complicated. So, we will
replace L and the � & ’s with their expected values.

Since each node is moving independently of each other,� � � , ! �6� � � . ! � � � �`� � N��� . We label � � L K �RN�! as L .
First, we figure out � N��� . Let UVF"�`H denote the probability

that the distance between any two nodes on the grid equals � .

Then,

UVF"�`H �
������ �����

?�� � �y�6� � � � ? q � C�� �;(( F�� 8)? H � � �S��� �!( �F�� 8 �`H � � � �!( C��VC��?�� � �y���
�

Hence, � N��� � � � distance between two simultaneous
transmissions ! � a�� � e . :=< , � � UVF � H which can be computed
using algebra.

Next, we figure out L ��� � L K � N ! .
Lets define m � to be the probability that two nodes meet.

Then, m � is just the inverse of the intermeeting time, that is,m � � ,
  � . There are
7 � 8 J( @ possible pairs of nodes.

Hence, the expected number of interfering transmissions �L � m � 7 � 8 J( @ .UVF��! b N K L A � , A � . A � � ��� � H is the complement of the
outage probability and depends on the channel model. Kan-
dukuri et al [23] evaluated the outage probability to be?
8 f �h e , ,, <����! j�  " for the Rayleigh-Rayleigh fading channel,

where U$#� is the received power from the desired signal andU%#h is the received power from the p d�& interferer. Assum-
ing all the nodes are transmitting at the same power level
and '0� (

in the distance attenuation model, UVFv�  b NxKL A � , A � . A � � � � � HX� f �h e , ,, < ��( �"( �j
, where � � � � (the distance

between the node
�

and node � ). Replacing L and the � & ’s with

their expected values gives UVFv�� b N!H � # ,, < ��) �( � *,+.- ( � .
Note that the preceeding analysis neglects the inteference

due to transmissions between a node outside the
( � circu-

lar region and a node inside it. Since the number of such
transmissions are very few in number as compared to the
other transmissions, even though they are closer than other
transmissions, their effect on interference is negligible.

Now, we have all the components to put together to findm d���� F���H in Equation (5).

IV. DELAY ANALYSIS OF EPIDEMIC ROUTING FOR SPARSE

NETWORKS

A number of papers [11], [12], [13] have analyzed epidemic
routing but none of them take contention into account. These
papers argue that since the network is pretty sparse, there
won’t be a lot of contention in the first place and hence,
nothing much is lost by analyzing the protocol without taking
contention into account. [14], [16], [17] have shown through
simulations that this assumption is not valid. In Section IV-
A, we reconfirm through simulations that contention has a
significant impact on the system performance, which implies
that an analysis that does not take contention into account is
inaccurate.



A. Motivation

This section shows through simulations that inspite of the
network being sparse, since epidemic routing is a flooding
based protocol, contention will have a big impact on the
system performance. System performance is measured using
end to end delay which is defined as the time needed to
transfer the packet between a source and a destination. The
TTL is assumed to be large enough to ensure that all packets
get delivered to their respective destinations. We assume that
the average number of distinct packets in the network at a
given snapshot in time is equal to the number of nodes, that is�>� � . We choose this value because this is the highest value� can have without making the system unstable: as soon as a
distinct packet is serviced, that is, everybody has a copy of it, a
new distinct packet is introduced. Clearly, choosing the highest
possible value of � will create the worst-case contention.

A realistic simulator written in C++ is used to evaluate
the performance of epidemic routing. The simulator allows
the user to choose from different physical layers and mobility
models, simulates MAC layer collision avoidance and allows
the user to build any routing scheme on top of it. We simulate
epidemic routing with Rayleigh fading channel and random
walk mobility model. We modify the scheduling scheme to
disallow any other transmission upto two hops from the
transmitter.

Figure 2(a) plots the delay as a function of
�

for
� � ? �+� ,� � (

and �'�0 while Figure 2(b) plots the delay as a
function of � for

� �6  ;�;� , � � ? �;� and �g�� .
The plots show that ignoring contention in the analysis is

not only grossly underestimating the delay but also predicting
incorrect trends. For example, the delay as a function of� achieves a minimum with contention but it is strictly
decreasing without contention. Even though the networks are
very sparse, contention is having a significant impact on the
system performance.
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Fig. 2. Comparison of delay with and without taking contention into account
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B. Delay Analysis

Theorem 4.1: Let � �
denote the expected delay until a

packet is delivered to its destination. Then,

� � �  b ,% & e , ?
� 84?

&%� e , � F � F � H H A (8)

where � F"��F � H H is the expected time it takes for the copies of
a packet in the network to increase from

�
to

� P ?
.

Proof: At the start of the
� d�&

time epoch,
�

of the
�

nodes
have the packet. When one of the remaining

� 8 �
nodes

gets the packet, the copies of the packet increase to
� P ?

and
the

� d�&
time epoch ends. Since the destination was chosen

randomly, it is equally likely to obtain a copy of the packet
at the end of any of the

? q � q � 8 ?
time epochs.

Consequently, � � � a  b ,& e , , b , a
&
� e , � F"��F � H H . /Next, we derive � F"��F � H H . Two nodes can start talking as

soon as they come within � distance of each other. If the
first exchange of the given packet is unsuccessful, then in the
next time step, either the nodes might move away from each
other, in which case they will wait for another intermeeting
time, or else they might remain in contact with each other, in
which case they have another chance to exchange the packet.
In the second case, they will keep on trying until either they
successfully exchange the packet or they move out of the range
of each other. Let m �����)� �+�+� denote the probability that the nodes
successfully exchange the given packet before going out of
range of each other.

When the packet is generated at the source, the source node
can be uniformly distributed anywhere on the 2-D torus. So,
the expected time to meet another node is equal to � � , the
expected meeting time. Now, if the source meets another node
and is unable to successfully exchange the given packet, then
the expected time till it meets this node again is equal to� � < , the intermeeting time. Consequently at the start of each
time epoch, there will be certain pair of nodes whose expected
time to meet is � � and for the other pairs, it will be � � < .
This number will have to be tracked as time evolves to find� F"��F � H H .

Lemma 4.1:

� � ��F � H !Z� i .��%� e ,
�� ?� , b l���� ��������� � � i . � b � �
  P m �����)� �+��� 
 i , � < �
  � P i . � b �
  �� � b ,!Y e �

� , b l ��� ��������� � � i .�� b�Y �
  � , b l���� ���"����� � � i . � b�Y �
  P m �����)� �+�+� 
 i , � <OY
  � P i . � b Y
  
#$%#$

(9)
where o ? � � F �-8)? H F � 8 � H and o ( � � F � 8	� H .

Proof: When there are
�

copies of a packet in the network,
if any of these

�
nodes meet any of the other

� 8 �
nodes,

a packet exchange is possible. The packet exchange will take
place successfully with probability m �����)� �+��� . The

� d�&
time

epoch starts when a transmission occurs to increase the number
of copies of the packet to

�
. The new node can now exchange

the packet with the rest of the
� 8 �

nodes. When this new



node receives the packet, it can be anywhere on the 2-D torus
with the same probability. Hence, the meeting time for these
new
� 8 �

pairs is exponentially distributed with mean � � .
The rest of the F �28 ? H F � 8 � H pairs are carried forward from
the previous time epochs. Depending on whether these pairs
have met or not in the previous time epochs, some of these
will have the exponential meeting times with mean � � and
the rest will have exponential meeting times with mean � � < .
We assume that all these F ��8 ? H F � 8 � H pairs have expected
meeting times equal to � � < , that is all of them have met each
other in the previous time epochs. This is a valid assumption if
there is significant contention in the network and the value ofm �����)� �+�+� is small. Since epidemic routing is a flooding based
protocol, there is enough contention in the network to make
the assumption accurate.

Let o ? � and o ( � denote the number of pairs, at the start
of the

� d�&
time epoch, whose meeting times are exponential

with means � � < and � � respectively. Then, o ? � � F � 8? H F � 8	� H and o ( � � F � 8 � H .
For the

� d�&
time epoch, the set of states (number of pairs

with meeting time exponential with mean � � < , number of
pairs with meeting time exponential with mean � � ) along
with a state TS (transmission successful) (jumping to this state
denotes the end of the time epoch) form a continuous time
markov chain. The chain will have transient states Fvo ? � P� A o ( � 8 � H�� ��q��Iq o ( � and an absorbing state TS. The
CTMC jumps from state F�o ? � P � A o ( � 8 ��H to Fvo ? � P � P? A o ( � 8 � 8>? H when any of the o ( � 8 � pairs meet but they
are unable to exchange the packet and the corresponding rate
is
� , b l �"� ���"����� � � i . � b � �
  . The CTMC jumps from state F�o ? � P� A o ( � 8 ��H to state TS when any of the

� F � 8 � H pairs
meet and they successfully exchange the given packet and the
corresponding rate is m � ���)� ���+� 
 i , � < �
  � P i .�� b �
   .

q1m, q2m q1m+1, q2m-1 q1m+k, q2m-k q1m+q2m, 0

TS

(1-psuccess)q2m/EM
(1-psuccess)(q2m-k)/EM

psuccess[q2m/EM +q1m/EM+]

psuccess(q1m+q2m)/EM+

psuccess[(q2m-k)/EM 
+ (q1m+k)/EM+]

Fig. 3. The Markov Chain describing the evolution of (number of pairs with
expected meeting times

���X�
, number of pairs with expected meeting times��� ���

) when there are � copies of the packet in the network.

The CTMC is shown in Figure 3. � F"��F � H H is equal to the
expected time it takes the markov chain to end up in the TS
state. Solving the markov chain gives the desired result. /

Now we derivate m �����)� �+��� . Two nodes meet if they come
within a distance � of each other. If the packet exchange is
unsuccessful, then the two nodes will both move before trying

to transmit again. This can be modeled as if one node does
not move and the other node moves two steps before another
transmission is attempted. These attempted transmissions will
have to be tracked to find m������)� �+�+� .

Let m � denote the probability that the two nodes move out
of the range of each other without being able to exchange the
packet given that the current distance between them is � q)� .
Then,

m � � � F ?=8 m d���� F"� H H � . � < ,n � m � < , P . � b ,n � m � b , � � 8 � is even� . � < ,n � m � < , P . � b ,n � m � b , � � 8 � is odd A
(10)

where m d���� F���H is the probability that they successfully ex-
change the given packet if the distance between them is � (its
value was derived in Section III).

The boundary conditions are,

m � � � F ?=8 m d���� F��`H H m , � is evenm , � is odd,

and m :=< , � ? �
After the first unsuccessful exchange, the two nodes move

within a distance � 84? with probability
. :cb ,n : or move to a

distance � P ? with probability
. :=< ,n : . Hence,

m � ���)� ���+�=� ?;8�7 F ?=8 m d���� Fv� H H 7 ( � P ? +� P 7 m :cb , ( � 84? +� @�@�@ �
(11)m :cb , can be evaluated by solving the linear set of Equations

(10) and then m �����)� �+�+� can be evaluated using Equation (11).
The value of � F � F � H H depends on m������)� �+�+� which in

turn depends on m d���� F"��H whose value depends on � F � F � H H
(through Equation (6). Since the functions defining these
dependencies are not straightforward (for example m'�����)� �+�+�
depends on m^F���H through the linear set of Equations (10)),
we recursively solve for � F"��F � H H . The recursive algorithm is
as follows:

1. First assume m F"��H � � ?
	 � , where the superscript
represents the iteration number in the recursion.

2. Lemma 4.2 determines the value of � F � F � H H � for m F"��H �?
.

3. Using � F � F � H H Y b , , determine m^F���H Y .
4. Determine � F � F � H H Y using m^F���H Y .
5. If the change in the value of

a  b ,� e , � F � F � H H Y is less
than

*��
in the

� d�&
iteration, stop else goto Step 3.

In all the cases that we studied, the recursive loop always
converged after 4 iterations.

Lemma 4.2: For m^F"� HX� ?�	 � ,

� F � F � H HM� � �� F � 8 � H
Proof: The proof follows along the same line as in [12]. Let
the state of a Markov Chain be defined as the number of copies
the packet has. The rate of going from state

�
to state

� P ?
is

� �  b � �
  . (The markov chain is shown in Figure 4.) The
expected amount of time the MC spends in state

�
is equal

to � F � F � H HM� 
  � �  b � � . /



1 2 3 M−1 M

2(M−2)/EM

m

M−1/EMM−1/EM
(m−1)(M−m−1)/EM m(M−m)/EM

Fig. 4. The Markov Chain describing the evolution of the number of copies
of a packet when ������� � �

.

C. How accurate are the approximations

Some approximations were made during the course of the
analysis to keep it tractable. Since all the approximations were
easily justifiable, we do not expect that they would drastically
effect the accuracy of the analysis. To validate our claim, we
use simulations to evaluate their effect on the accuracy of the
analysis. In this section, we plot the theoretical results against
the simulation results for a number of representative cases.

Figures 5-7 plot � �
against

�
for different values of

�
,� and � . Since both the curves in all the figures are close to

each other, we can conclude that the analysis is fairly accurate.
Comments on which approximations are causing more error

than others are in order. Except for two approximations, all
the other have a negligible impact. Both the approximations
were made in Section III-C while analyzing interference.
The assumption to neglect the interference from transmissions
between nodes within a distance

( � from the transmitter and
the nodes in the

( � C � q �;� ring becomes worse as �
and � increase. This approximation results in an overestimate
of m F��IH and hence gives a lower value of � �

than the
actual value. This explains the curves in Figures 5(b), 6(b)
and 7(b). The second approximation is replacing L with its
expected value in Equation (7). Since the outage probability
is a convex function of L for the Rayleigh fading channel,
Jensen’s inequality implies that m^F���H will be an underestimate
of the actual value resulting in a higher value of � �

. The
effect of this approximation becomes more visible for lower
values of � . This explains the curves in Figures 5(a), 6(a) and
7(a).

1000 2000 3000 4000 5000 6000 7000
100

200

300

400

500

600

700

800

900

N

E
D

simulation
theoretical

(a)

2000 3000 4000 5000 6000 7000
100

200

300

400

500

600

700

N

E
D

simulation
theoretical

(b)

Fig. 5. Analysis vs Simulation: Delay vs
�

for
� �����

(a)
� ���
	 � ��


(b)
� ��
�	 � ��

.

V. CONCLUSIONS

The paper provides analytical expressions for the delay
performance of epidemic routing under contention. All three
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mainfestations of contention, finite bandwidth, scheduling and
interference are incorporated in the analysis. Simulations are
used to verify that the approximations made to simplify the
analysis do not have a significant effect on the accuracy of the
analysis.
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