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On the Performance Evaluation of Encounter-based 

Worm Interactions Based on Node Characteristics 
 

 
Abstract: An encounter-based network is a frequently-

disconnected wireless ad-hoc network requiring nearby 

neighbors to store and forward data utilizing mobility and 

encounters over time. Using traditional approaches such as 

gateways or firewalls for deterring worm propagation in 

encounter-based networks is inappropriate. Because this 

type of network is highly dynamic and has no specific 

boundary, a distributed counter-worm mechanism is 

needed. We propose models for the worm interaction 

approach that relies upon automated beneficial worm 

generation to alleviate problems of worm propagation in 

such networks. We study and analyze the impact of key 

mobile node characteristics including node cooperation, 

immunization, on-off behavior on the worm propagations 

and interactions. We validate our proposed model using 

extensive simulations. We also find that, in addition to 

immunization, cooperation can reduce the level of worm 

infection. Furthermore, on-off behavior linearly impacts 

only timing aspect but not the overall infection. Using 

realistic mobile network measurements, we find that 

encounters are non-uniform, the trends are consistent with 

the model but the magnitudes are drastically different. 

Immunization seems to be the most effective in such 

scenarios. These findings provide insight that we hope 

would aid to develop counter-worm protocols in future 

encounter-based networks. 

 
1. Introduction 

 
An encounter-based network is a frequently-

disconnected wireless ad-hoc networks requiring close 
proximity of neighbors, i.e., encounter, to disseminate 
information. Hence, we call this the “encounter-based 
network” which can be considered as a terrestrial delay-
and-disruptive-tolerant network. It is an emerging 
technology that is suitable for applications in highly 
dynamic wireless networks.  

 Most previous work on worm propagation has 
focused on modeling single worm type in well-connected 
wired network. However, many new worms are targeting 
wireless mobile phones. The characteristics of worms in 
mobile networks are different from random-scan network 
worms. Worm propagations in mobile networks depend 
heavily on user encounter patterns. Many of those worms 

rely on Bluetooth to broadcast their replications to 
vulnerable phones, e.g., Cabir and ComWar.M [16]. Since 
Bluetooth radios have very short range around 10-100 
meters, the worms need neighbors in close proximity to 
spread out their replications.  Hence, we call this 
“encounter-based worms”. This worm spreading pattern is 
very similar to spread of packet replications in delay 
tolerant networks [18, 22], i.e., flooding the copies of 
messages to all close neighbors. An earlier study in 
encounter-based networks actually used the term “epidemic 
routing” [18] to describe the similarity of this routing 
protocol to disease spreading.  

Using traditional approaches such as gateways or 

firewalls for deterring worm propagation in encounter-

based networks is inappropriate. Because this type of 

network is highly dynamic and has no specific boundary, a 

fully distributed counter-worm mechanism is needed. We 

propose to investigate the worm interaction approach that 

relies upon automated beneficial worm generation [1]. This 

approach uses an automatic generated beneficial worm to 

terminate malicious worms and patch vulnerable hosts.   

Our work is motivated by wars of Internet worms such 

as the war between NetSky, Bagle and MyDoom [13]. This 

scenario is described as “worm interactions” in which one 

or multiple type of worm terminates or patches other types 

of worms. In [14, 15], we have classified worm interaction 

types. However, this is the first study on the effect of 

fundamental characteristics of node behavior on worm 

propagation.  

There are many important node characteristics to be 

considered, but we focus only a fundamental subset 

including node cooperation, immunization and on-off 

behavior. We shall show that these are key node 

characteristics for worm propagation in encounter-based 

networks. Other characteristics such as trust between users, 

battery life, energy consumption, and buffer capacity are 

subject to further study and are out of scope of this paper. 

The majority of routing studies in encounter-based 

networks usually assume ideal node characteristics 

including full node cooperation and always-on behavior. 

However, in realistic scenarios, nodes do not always 

cooperate with others and may be off most of the time [26]. 

In worm propagation studies, many works also assume all 

nodes to be susceptible (i.e., not immune) to worm 

infection. An immune node does not cooperate with 
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infected hosts and is not infected. To investigate more 

realistic scenarios, we propose to study the mobile node 

characteristics and analyze the impact of node cooperation, 

immunization and on-off behavior on the worm 

interactions. Cooperation and on-off behavior are expected 

to have impact on the timing of infection. Intuitively, 

cooperation makes the network more susceptible to worm 

attacks. Immunization, however, may help reduce overall 

infection level. This paper examines the validity of these 

expectations, using the overall infection level and timing of 

infection as metrics (see Section 3.C). 

Most worm propagation studies only focus on 

instantaneous number of infected hosts as a metric. We feel 

that additional systematic metrics are needed to study 

worm response mechanisms. We utilize new metrics 

including total infectives, maximum infectives, total 

lifespan, average lifespan, time-to-infect-all, and time-to-

remove-all to quantify the effectiveness of worm 

interaction. 

 In this paper, we try to answer following questions: 

How can we model this war of the worms systemically 

based on node characteristics including cooperation, 

immunization, and on-off behavior in encounter-based 

networks? What conditions of node characteristics can 

alleviate the level of worm infection?  This worm 

interaction model can be extended to support more 

complicated current and future worm interactions in 

encounter-based networks. Due to limited space, we only 

model node characteristics on aggressive one-sided worm 

interactions [14] in which there are two types of worms; 

beneficial worm and malicious worm. The beneficial worm 

acts as a predator and can terminate the malicious worm (in 

this case, the prey!). The predator vaccinates and patches 

infected hosts and susceptible hosts to prevent infection 

and re-infections from malicious worm. 

Our main contributions in this paper is our proposed 

new Worm Interaction Model focusing on node 

characteristics in encounter-based networks. We also use 

new metrics to quantify the effectiveness of worm 

interactions, and are applicable to study any worm 

response mechanism. We also provide the first study of 

worm propagation based on real mobile measurements. 

Following is an outline of the rest of the paper. We 

discuss related work in Section 2. Then, in Section 3, we 

explain the basic worm interaction model, node-

characteristics model, and proposed metrics. Then we 

analyze worm interactions in both uniform and realistic 

encounter networks. In Section 4, we conclude our work 

and discuss the future work. 

 

2. Related work 

 

Worm-like message propagation or epidemic routing 

has been studied for delay tolerant network applications 

[18, 22]. As in worm propagation, a sender in this routing 

protocol spreads messages to all nodes in close proximity, 

and those nodes repeatedly spread the copies of messages 

until the messages reach a destination, similarly to generic 

flooding but without producing redundant messages. 

Performance modeling for epidemic routing in delay 

tolerant networks [22] based on ODEs is proposed to 

evaluate the delivery delay, loss probability and power 

consumption. Also the concept of anti-packet is proposed 

to stop unnecessary overhead from forwarding extra 

packets copies after the destination has received the 

packets. This can be considered as a special case of non-

zero delay of aggressive one-sided interaction which we 

consider in our model. 

Epidemic models, a set of ordinary differential 

equations, were used to describe the contagious disease 

spread including SI, SIS, SIR SIRS, SEIR and SEIRS 

models [3, 9, 17] in which S, I, E, R stand for Susceptible, 

Infected, Exposed and Recovered states, respectively. 

There’s an analogy between computer worm infection and 

disease spread in that both depend on node’s state and 

encounter pattern. For Internet worms, several worm 

propagation models have been investigated in earlier work 

[4, 7, 11]. Few works [8, 12, 14, 15] consider worm 

interaction among different worm types. Our work, by 

contrast, focuses on understanding of how we can 

systemically categorize and model worm propagation 

based on node characteristics in encounter-based networks.  

In [1], the authors suggest modifying existing worms 

such as Code Red, Slammer and Blaster to terminate the 

original worm types. The modified code retains portion of 

the attacking method so it would choose and attack the 

same set of susceptible hosts. In this paper, we model this 

as aggressive one-sided worm interaction. Other active 

defenses, such as automatic patching, are also investigated 

in [19]. Their work assumes a patch server and overlay 

network architecture for Internet defense. We provide a 

mathematical model that can explain the behavior of 

automatically-generated beneficial worm and automatic 

patch distribution using one-sided worm interaction in 

encounter-based networks. Our work aims to understand 

and evaluate automated worm (with patch) generation but 

we do not address details of vulnerabilities nor related 

software engineering techniques to generate patches or 

worms. Active defense using beneficial worms is also 

mathematically modeled in [12] which focused on delay-

limited worm defense in the Internet. 

Effect of Immunization on Internet worms was 

modeled in [10] based on the SIR model. 

 

3. Worm Interaction Models and Metrics 

Worm interaction arises in scenario where one worm 

terminates other worms. To understand worm interaction, 

we start by examining the concept of the predator-prey 

relationships in Section A. Then, in Section B, we 

introduce the basic concept of worm interaction model and 

finally we propose new metrics in Section C. In Section D, 

we provide basic worm interaction model analysis. Then 

we introduce concept of node characteristics and node-

characteristic-based worm interaction model in Section E. 

Then, in Section F, we analyze and compare simulation 
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results between uniform and non-uniform (trace-based) 

worm interactions. 

A. Predator-Prey Relationships 

 
For every worm interaction type, there are two basic 

characters: Predator and Prey. The Predator, in our case 
the beneficial worm, is a worm that terminates and patches 
against another worm. The Prey, in our case the malicious 
worm, is a worm that is terminated or patched by another 
worm

1
.  

A predator can also be a prey at the same time for 
some other type of worm. Predator can vaccinate a 
susceptible host, i.e., infect the susceptible host (vaccinated 
hosts become predator-infected hosts or predator 
infectives) and apply a patch afterwards to prevent the 
hosts from prey infection. Manual vaccination, however, is 
performed by a user or an administrator by applying 
patches to susceptible hosts. 

A termination refers to the removal of prey from 
infected hosts by predator; and such action causes prey 
infectives to become predator infectives. The removal by a 
user or an administrator, however, is referred to as manual 
removal. For brevity and clarity, manual vaccination and 
removal are not considered in this paper. 

We choose to use two generic types of interacting 
worms, A and B, as our basis throughout the paper. A and B 

can assume the role of predator or prey depending on the 
type of interactions.   

B.   Worm Interaction Model 

 

Let S be the number of vulnerable hosts that are not 
yet infected by any worm, i.e. susceptible at time t.  Let 

AI and BI be the number of infected hosts by prey and 
predator at time t, respectively. Assume that each user 
encounters another random user with constant pair-wise 
contact rate β (probability per unit of time of encounter 
between any pair) and uniform encounter (every node has 
equal chance to encounter any other node)

2
. We also 

assume that node’s characteristic including cooperation, 
immunization and on-off behavior does not change after 
infection from prey or predator. We start with the simple 
case where every node is cooperative, susceptible and 
always on.  The state transition diagram in fig.1 and the 
susceptible rate and infection rates of prey and predator are 
given by: 

 

)( BA IIS
dt

dS
+−= β         (1-a) 

)( BA
A ISI

dt

dI
−= β          (1-b) 

)( BAB
B IISI
dt

dI
+= β .         (1-c) 

                                                 
1 Note that in other models the malicious worm may also be a 

predator, and can be studied similarly. We do not present such 

study for the lack of space. 
2 This assumption is relaxed later in the paper in the trace-

based encounter simulations. 

ASIβ BAIIβ

BSIβ

 
Figure 1: Aggressive one-sided interaction  

 

We call this set of equations “aggressive one-sided 

interaction model” where a predator is able to terminate its 

prey and vaccinate susceptible hosts. We shall vary this 

model later to capture various node characteristics. 

 

C. Metrics 

 

To gain insight and better quantify the effectiveness of 

aggressive one-sided worm interaction, we propose to use 

the following metrics:  

 

(1) Total Infectives (TI): the number of hosts ever 

infected by prey. 

(2) Maximum Infectives (MI): the peak of 

instantaneous number of prey-infected hosts 

where TIMII A ≤≤)0( .  

(3) Total Life Span (TL): the sum of time of individual 

nodes ever infected by prey. It can be interpreted as 

the total damage by prey. 

(4) Average Individual Life Span (AL): the average 

life span of individual prey-infected hosts 

where TLAL ≤ . 

(5) Time to Infect All (TA): the time required for 

predator to infect all susceptible and prey hosts. Its 

inverse can be interpreted as average predator 

infection rate. 

(6) Time to Remove All (TR): the time required for 

predator to terminate all preys where TATR ≤ . Its 

inverse can be interpreted as prey termination rate. 

 

Our goal is to find the conditions to minimize these 

metrics based on node characteristics. We discuss details 

of node characteristics in Section E. 

Next we examine the basic worm interaction model 

and its relationships with above metrics. 

 

D.   Basic Model Analysis 

If we want to suppress the initial infection (
dt

dI A =0 at 

t=0), from (1-b), then the required condition for this is 

 

BI (0) = S (0)           (2) 

where BI (0) and S (0) are the number of prey-infected 

hosts and susceptible hosts at t=0 respectively. 

We obtain from this condition that  

 

T I = MI = AI (0), )(∞AI = 0  (3) 

         Susceptible                    Infected with                     Infected with 
                                                 Worm A, Prey                Worm B, Predator,              

                                                                                       Immune to Worm A 
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where  )(∞AI is the number of prey-infected hosts at t=∞ . 

However, we can see from (2) that the threshold can 

only be obtained by requiring the initial number of 

predator to be at least equal to number of susceptible hosts 

(a trivial condition). If that condition cannot be met, 

i.e., )0()0( SI B < , then we can only have certain 

acceptable level of infection and TI can be derived from 

∫
∞

=

=
0t

AdtSITI β                         (4) 

MI can be found where 
dt

dI A =0 at t > 0, in which  

BI (t) = S (t)   (5) 

 

Let Y be the initial infected host ratio which is a ratio 

of predator initial infected hosts to prey initial infected 

hosts, i.e.,
)0(

)0(

A

B

I

I
Y =  where )0(0 SNY −<< and N is the 

total number of nodes in the network.  
In figures 2, 3 and 4, we show the metrics 

characteristics based on Y and validate our models through 

the encounter-level simulations. We simulate and model 

1,000 mobile nodes with β = 6x10
-6
 sec

-1
, 1)0( =AI , and 

998),0(1 ≤≤ SI B . Each simulation runs at least 1,000 

rounds and we plot the mean values for each Y.  
We assume uniform and constant β  as well as )0(AI . 

We adjust Y to find the optimal range to minimize our 

proposed metrics where Ymin = 1 and Ymax = 998. 

In Fig.2, we show the relationships of TI and MI as the 

function of Y.  TI and MI decrease exponentially as Y 

increases. The reason we still keep )0(AI  small is to have 

wider range of Y with the same size of N. MI (as a fraction 
of N) is more accurately predicted by the model. The ratio 

of TI to MI is constant but it gets smaller towards the 

largest Y. We also find that if )0(:)0(:)0( AB IIS  is 

constant then NMI : and NTI : are also constant even N 

changes. 

10
0

10
1

10
2

10
3

10
-3

10
-2

10
-1

10
0

Y

N
 (

F
ra

c
ti
o
n
)

TI sim
MI sim
TI model
MI model

 
Figure 2: Relationships of TI and MI with Y  

 

Because TL is the accumulated life of individual prey 

until the last prey has been removed by predator whose 

duration indicated by TR. we can simply derive TL based 

on the numerical solutions from (1-b) as follows: 

tITL

ot

tA
∆=∑

∞

=

                    (6) 

Since AL is the average life span for each node that 

has been terminated by predator which is equal to the 

number of nodes that are ever infected, AL can be derived 

from 

TI

TL

dtSI

TL

dtII

TL
AL

t

A

t

BA

===

∫∫
∞

=

∞

= 00

ββ

             (7) 

TL and AL trends are mostly accurately predicted by 

the model. The AL errors are due to the errors of estimated 

TL. 
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Figure 3: Relationships of TL and AL with Y 

 

From Fig.3, TL decreases exponentially as Y 

increases. AL, on the other hand, is almost constant for all 

Y. It is interesting to see that TL and AL are merging at 

their minimum when Y = Ymax. As we can see that TLmin 

and ALmin do not reach zero at Ymax because the next 

encounter time of a prey-infected host with any of 

predator-infected host ( )0(BI ) requires average of 

β)0(
1

BI
. Furthermore, from (7), TLmin = TIminALmin, TLmin 

and ALmin merge to each other because TImin = )0(AI  = 1. 
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Figure 4: Relationships of TA and TR with Y 

 

From the observation in Fig.4, TR reduces much faster 

than TA with the increase of Y. TR decreases exponentially 

as Y increases. TA starts to be reduced rapidly when Y ≈  
Ymax. At Ymax, we can see that TAmin=TRmin=ALmin, 

Note that TA is also similar to the average time for 

every node to receive a copy of a message from a random 

source in an encounter-based network which can be 

derived as βNN /)5772.0ln2( +  [24].  

 

E.   Node characteristics 

 

Earlier we assume that all nodes are fully cooperative, 

susceptible to both prey and predator and “always-on” in 

Section B., and hence each encounter guarantees a 

successful message (worm) transfer.  
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Figure 5: Aggressive one-sided interaction with node characteristics 

 

In this section, we investigate the scenarios that do not 

follow above assumptions regarding these three important 

node characteristics. We assume these characteristics are 

consistent through out its life time of the networks. 

 

(1) Cooperation:  
 

Cooperation is the willingness of node to forward the 

message (worm) for other nodes. The opposite 

characteristic is known as selfishness. Intuitively, 

cooperation may seem to make the network more 

vulnerable. However, unlike immunization, cooperation is 

expected to equally slow down both prey and predator 

propagations. Hence, the effect of cooperation is hard to 

anticipate. 

 

(2) Immunization:  
 

 Not all nodes are susceptible to the prey either 

because of their heterogeneous operating systems and their 

differences of promptness to remove the vulnerability from 

their machines. Hence partial of nodes can be immune to 

prey and will slow down the overall prey infection. It is 

expected to improve the overall targeted metrics that we 

mention earlier. Because even some nodes are immune to 

the prey but they still help forwarding the predator to other 

nodes and it is expected to have no positive impact on AL, 

TA but reduce TL and TR simply because of less number of 

nodes to be removed. 

 

(3) On-off behavior: 

 

A node is able to accept or forward the packet based 

on the on-off characteristics. In reality, devices are “on” or 

active only a fraction of the time. Activity may be related 

to mobility. For instance, a mobile phone is usually on, 

while lap top is unlikely to be mobile while on
3
. We model 

the transition from on to off, and vice versa, 

probabilistically. The probability is determined at the 

beginning of each time interval. Hence the contact rate is 

expected to be proportionally reduced according to the 

probability that the node cannot forward or accept the 

packets because of on-off status.  

Let c be the fraction of N that are willing to be 

cooperative where 10 ≤≤ c and N is the total number of 

nodes in the networks. Let i be the fraction of cooperative 

                                                 
3 This is observed from measurements [25, 26] and is captured 

in our study using trace-driven simulations. 

nodes that are immune to prey where 10 ≤≤ i . We assume 

that initial predator and prey hosts are cooperative then the 

number of susceptible hosts for both prey and predator is 

S* where )0()1()0(* AINicS −−=  and number of 

susceptible hosts for predator only is S’, where 

)0()0(' BIciNS −= . Note that BA IISSN +++= '*  and 

'* SSS += . We define the probability of “on” behavior as 

p and “off” behavior as 1-p where 10 ≤≤ p . Hence contact 

rate for both predator and prey is βp .  

Based on these definitions, the node-characteristic-

based aggressive one-sided model can be shown as 

follows: 

)(*
*

BA IISp
dt

dS
+−= β                      (8-a) 

BISp
dt

dS
'

'
β−=                             (8-b) 

)*( BA
A ISIp

dt

dI
−= β                         (8-c) 

))'*(( BAB
B IIISSp
dt

dI
++= β               (8-d) 

Similarly to Section D, We use this model to derive 

metrics that we are interested. The differences between the 

conditions of this model and that of basic model to 

minimize the metrics are investigated here. 

If we want to suppress the prey initial infection, then 

we need 

)0(*)0( SIB =                               (9) 

 

Assume small )0(AI  and )0(BI  when compared with 

N, hence )0()1()0(* SicS −≈ ; required )0(BI  to stop prey 

initial infection is therefore also reduced approximately by 

the factor of )1( ic − when compared with (2). TI, similarly 

derived to (4), is 

               ∫
∞

=

=
0

*

t

AdtISpTI β                            (10) 

As contact rate is changed due to on-off behavior, TA 

which 1=Y , can be derived as follows: 

TA= βpNN /)5772.0ln2( +                (11) 

Our model can also be used to model node-

characteristic-based one-worm-type propagation which 

equivalent to epidemic routing by 

assigning 0)0( =BI or 0)0( =AI  in (8-a) to (8-d). 

 

F.   Simulation results 

 

    In this section, we start by validating our models with 

uniform-encounter simulation. Then, we compare the 

relationships of node characteristic with our proposed 

metrics in uniform and non-uniform (trace-based) 

encounter networks. 
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(1) Uniform Encounters 
 

We use encounter-level simulations to simulate 

uniform encounter of 1,000 mobile nodes with β  = 6x10
-6
 

sec
-1
, and 1)0()0( == BA II . Each simulation runs 10,000 

rounds and we plot the median values for each i. The lag 

time between predator and prey initial infection is 0 sec. 

We vary cooperation (c) from 20% to 100%, immunization 

(i) from 0% to 90% with 100% “on” time for the first part 

of experiments (Fig. 6(a)-(f)) and we vary “on” time from 

10% to 90% with 90% cooperation and 10% 

immunization, for the second part (Fig.6(g)-(h)). The first 

part aims to analyze the impact of cooperation and 

immunization on worm interaction whereas the second part 

aims to analyze the on-off behavior.  

From fig. 6 (a)-(f) we find that increase of 

cooperation, surprisingly, reduces malicious worm 

infection for all the metrics. (Note that increase of 

cooperation actually increases absolute TI and absolute MI, 

but relative TI (or TI/ *N ) and relative MI (or MI/ *N ) 
are reduced where number of cooperative-susceptible 

nodes NicN )1(* −= ). 

 Similarly, for immunization fig. 6 (a)-(f) shows that 

immunization reduces all categories of metrics except AL. 

With the increase of immunization, TI is reduced much 

faster than TL, thus increase of immunization increases AL. 

Furthermore, increase of immunization, as expected, 

reduces TR because of less number of possible prey-

infected hosts. 
Cooperation reduces AL and TR significantly than it 

does to other metrics. Immunization, however, reduces 

relative TI, relative MI and TL more significantly than it 

does other metrics. With equal increase (20% to 80%), 

immunization at cooperation = 100% reduces relative TI, 

relative MI and TL approximately 8.8 times, 2.7 times, and 

10.6 times ,respectively, more than cooperation does at 

immunization = 0%. On the other hand, cooperation 

reduces TR approximately 3.3 times more than 

immunization does. As shown in fig. 6(e), unlike 

immunization, only cooperation can reduce TA. 

The impact of on-off behavior (p) is clear in fig. 6 (g) 

and (h). As expected, with variant of “on” time, there is no 

difference in relative TI and relative MI. The ratio of 

contact rate between predator and prey is an indicator of 

the fraction of infected hosts irrespective of the contact 

rate. In this case, the ratio of contact rate is always 1.0, and 

hence the constant of relative TI and relative MI.  

TL, AL TA and TR exponentially decrease with the 

increase of “on” time causing reduction of inter-encounter 

time. Our model shows a good agreement with simulation 

results for most of the scenarios based on node 

characteristics. 
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Figure 6: Effects of cooperation (c), immunization (i) and on-off behavior (p) on uniform-encounter worm interactions 
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Fig. 7 Trace-based statistics and simulation results:  histograms of  (a) total encounter/node and (b) unique encounter/node, and effects on 

cooperation (c), immunization (i) and on-off behavior (p) on (c)TI and MI (d) TL and AL and (e) TR  in non-uniform-encounter worm 

interaction (U: Uniform, NU: Non-uniform, *: contact rate of initial prey is higher, **: contact rate of initial predator is higher) 

(2) Non-uniform Encounters 

 

We investigate the consistency of the model-based 

results with those generated using measurement-based real 

encounters. We drive our encounter-level simulations 

using the wireless network traces of the University of 

Southern California of 62 days in spring 2006 

semester[25]. We define an encounter as two nodes sharing 

the same access point at the same time. We randomly 

choose 1,000 random nodes from 5,000 most active nodes 

based on their online time from the trace. Their median 

β is 1.2x10
-6 
sec

-1
and median number of unique encounter 

node is 94. We use )0(AI =1 and )(tIB =1 where t is the 

delay between initial predator-infected host and initial 

prey-infected host in the simulation. This delay was 

introduced as the traced delay between the two groups in 

which one group for initial predator-infected host and 

another for initial prey-infected-host. Each group accounts 

for 3% of total population. The first group has average 

contact rate β =2.7x10
-6 
sec

-1
, and the second group has 

average contact rate β =3.6x10
-6 
sec

-1
. When contact rate 

of the initial predator-infected host is higher than that of 

the initial prey-infected host, we call this scenario “Fast 

predator”. On the other hand, when contact rate of initial 

predator-infected host is lower than that of prey, we call 

this scenario “Slow predator”. From the trace, the median 

arrival delay between initial predator-infected host and 

initial prey-infected host is -539,795 sec (6.25 days) for 

“Fast predator”, and 539,795 sec for “Slow predator”. For 

comparison between uniform and non-uniform encounter, 

we directly add the plot of metrics from encounter-level 

simulation of worm interaction in uniform encounter 

networks with the same contact rate ( β =1.2x10
-6 
sec

-1
) 

and the same number of nodes with arrival delay = 0 sec.  

In fig. 7, we find that immunization (i) is still a very 

important factor to reduce relative TI, relative MI, TL, and 

TR.  However, unlike uniform-encounter worm interaction, 

we find that higher cooperation does not necessarily help 

reduce relative TI, relative MI, TL, AL and TR.  

We believe that because of non-uniform encounter 

patterns (as shown in fig. 7(a)-(b)) and significant lag time 

between an initial prey-infected host and an initial 

predator-infected host, there are several differences of the 

metrics with uniform and non-uniform encounter networks. 

The main reasons of non-uniform contact rate and non-

uniform number of unique contact users are non-uniform 

on-off behavior and location preferences. From [23], there 

(a)                                                 (b) 
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were heavy and light users based on their online time, we 

know that only 50% of users were online more than 20% 

of the whole semester. In fig. 7(a)-(b), we find that user’s 

encounter in the trace is highly skewed, i.e., top 20% of 

user’s total encounter account for 72% of all users’ 

encounter and 70% of users encounter less than 20% of 

total unique users. 

Hence, the metrics of worm interaction in non-uniform 

encounter networks in fig. 7 deviate greatly from the 

results from that of uniform encounter networks. In fig. 

7(c)-(d), relative TI and relative MI with “Slow predator” 

is much worse than that of uniform encounter networks. 

On the other hand, the significant improvement of relative 

TI and relative MI are shown with “Fast predator”.  In fig. 

7(e), TL with “Fast predator” is almost two orders of 

magnitude lower than TL with “Slow predator” but still 

much higher than TL of uniform encounter networks. 

However, as shown in fig. 7(e)-(f), AL with “Fast 

predator” has not shown significant differences than AL 

with “Slow predator”.  

 

4. Summary and Future Work 

In this paper, we propose a node-characteristics-based 

model and metrics as a performance evaluation framework 

for worm interactions in encounter-based networks, with 

focus on cooperation, immunization, and "on-off" 

behavior. We find that in uniform encounter networks, 

immunization is the most influential characteristics for 

total infectives, maximum infectives and total life span. 

Cooperation and on-off behaviors greatly affect average 

individual life span, time-to-infect-all and time-to-remove-

all. Our model also shows a very good agreement with 

uniform-encounter simulation results. 

Based on realistic mobile networks measurements, we 

find that the contact rate and the number of unique 

encounters of users are not uniform. This causes worm 

infection behavior to deviate significantly from that of 

uniform encounter networks, even though the general 

trends remain similar to the model. 

In addition, the level of infection is now determined by 

the contact rate of the initial predator and prey-infected 

hosts. A higher contact rate of initial predator (than prey) 

infected hosts significantly reduces the total infectives and 

maximum infectives when compared to those of the 

opposite scenario. 

In such networks, immunization seems to be more 

important factor than cooperation. Hence, enforcing early 

immunization and having mechanism to find a high-

contact-rate node to use as an initial predator-infected host 

is critical to contain worm propagation in encounter-based 

networks. We believe that node-characteristics model for 

uniform encounter networks can be extended with delay 

and cluster behavior to explain effect of node 

characteristics on worm interaction in non-uniform 

encounter networks of the future. 
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