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Abstract— We develop approximate closed-form expressions of has no clue where the target resides, it resorts to seardh for
expected minimum search energy costs for data-centric witess  plindly, which often is led to some sort of flooding. We call
sensor networks showing the search performance with respec {na network which adopts the former scheme the structured
to the network size N and the number of randomly placed .
copies of the target eventr. We consider both unstructured network and the latter scheme the unstructured networklé/Ahi
sensor networks, which use blind sequential search for quging, ~the structured network has smaller search energy cost at the
and structured sensor networks, which use efficient hash-ts#d cost of maintaining the location information of all everttse
querying. We also consider two kinds of deployments: a fixed ynstructured network doesn't need the overhead of mainte-
transmit power (FTP) model and the geometric random graph 5 ce.

(GRG) model. We find that the search cost of unstructured . . .
networks under the FTP deployment is proportional to N In this work, we focus on deriving closed-form expressions

and inversely proportional to (r + 1) regardless of the spatial for the expected minimum search energy cost considering
dimension d in which nodes are deployed, while that of the structured and unstructured sensor networks deployeddin a

GRG is proportional to M where 7 is the path-loss dimensional area. Since the energy is one of the most preciou
exponent. The search cost of structured networks under the P resources and searching is one of fundamental operations
deployment is found to be proportional to /N /{/r, while that in the data-centric sensor network, it can be very useful to
of the GRG deployment is proportional to di\“\’“(’fw In all derive the closed-form expressions of such costs in theesens
cases, we also provide bounds on the coefficient of proportiality.  that they can be basis of other analytical modelings with
tractable optimization. We have focused on analyzing $earc
performance with respect to two key parameters - the size of
the network and the number of copies of the event information
There are two popular ways in which the wireless sensorin our analysis we consider two types of deployment mod-
network can be operated. One way is to be operated inel. In both cases we assume that the spatial density is fixed,
continuous data gathering mode, and the other way is 4o that the network deployment region grows proportiortally
consider the wireless sensor network as a decentralized déte number of nodes in the network. In the first model, called
centric storage system. While the network in the continuotlse fixed transmission power (FTP) model, the deployment
data-gathering mode is popular, mainly because it is e&sieris organized in such a way as to ensure that the network is
analyze and simpler to implement, continuous data gathericonnected despite each node operating with a fixed radi@rang
from all sensors is generally very inefficient if most of théregardless of network size). In the second case, the nades a
sensed information is not essential, or if there are mualtiptleployed uniformly and independently at random; however, i
sinks that may need different subsets of the sensed infamatthis case, referred to as the geometric random graph (GRG)
at different times. In this case, however, the data-centmeodel, ensuring connectivity with high probability reqesr
network might be more suitable for the energy efficiency. lthat the radio range be scaled with the network size to ensure
such a data-centric approach, the sensed data can be stthatl each node has a logarithmic number of neighbors on
either locally or at one or more remote locations withimverage [3], [4], [5].
the network. Event information is obtained by sinks through There are several related works as follows. For the struc-
queries that are issued on an on-demand basis. tured network, the minimum search cost is related with the
When a sink knows where the nearest copy of the targstortest path between a sink and a source. For the unsedctur
event information is stored (e.g. using hash-based dat@icennetwork, we use the expanding ring search mechanism in
storage techniques such as GHT [1], DIM [2], etc.), thehich the sink sends a series of controlled floodings until it
search cost is the energy expenditure to send a query fimds the event information. Chang and Liu [6] have found the
the event to the target node and bring the information baakay how to construct the series of controlled floodings ireord
through the shortest path. On the other hand, when a silokminimize the expected search cost given the distribution
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of the event's location. And in our previous work [7], we In this paper]'(-) is the Gamma function. Then, the number
had derived the approximate closed-form expression for tbénodes at mosk hop away from the sink is given by,
minimum search cost under 2-dimensional FTP node deploy- d d

ment (a special case of the more general results presented Na(h) = p f(d) - (hR)" = 7(d) - @
here). In [11], we have applied these search cost expressigfhere

to analyze the fundamental scaling behavior of data-aentri 7(d) = p f(d) R ()

sensor networks. o .
which is the average number of neighbors of a node. Hence,

1. ASSUMPTIONS the total number of noded can be expressed as follows:

The following are the key assumptions in our work. N = Ng(L) =7(d) - L¢ (4)

o N nodes are deployed with a constant density id-a

dimensional ballB? space. The constant density implieyow we recall that there are number of copies of an event

that if the network size is increased, the deploymeﬁi{'st_ributed uniformly randomlyir_1 the network. Let the ramal
area grows proportionally. Initially, we consider the FTIya”ableXmi” denot_e the hop d!sta_nce_ to _the nearest .copy of
model in which the radio rang® is kept fixed, but the them from the querier. Its tail distribution is as follows:
deployment is such that the network remains connected. p{Xx, ., > z}

Later, we consider the GRG model in section V, in which

the radio rangeR is scaled proportionally witi/Tog N to = HP{z‘—th copy is not inz hop neighborks
ensure connectivity of the network with high probability. i=1

 The distribution of events is assumed to be uniform in Na(z)\" "
the deployment area. - (1 - T) - (1 - ﬁ) )

o A total of » copies of an event are maintained with the
uniform distribution in the network by creating — 1
additional replicas when the event is first sensed.

o Each query is a one-shot query (i.e. requires a sin
response, not a continuous stream), and is satisfied

In the structured network, the search cost is related tola pat
of the lowest cost from a querier to the nearest node which has
qpe of the copies. We assume the shortest path routing scheme

g% that the path would be their shortest path. Hence, thelsear

locating a single copy of the corresponding event. cost is equal to the hop count from the querier to the nearest

« We assume that the links over which transmissions tak8"Y through the shortest path, which is denotedXyiy,

place are lossless (e.g., using blacklisting) and present%us the cost back to the querier. Hence, the expected search

interference due to concurrent transmissions (e.g., duecfg)St of the network deployed i dimension is as follow:

low traffic conditions or due to the use of a scheduled Cs(f?t =2 E[Xmin] (6)
MAC protocol). _ S o _ _

« For the FTP deployment model, the total energy cost f&fSing the tail distribution given in Equation (5) and approx
searching is assumed to be proportional to the total nuffating summation to integration, we have

ber of transmissions. For the GRG deployment model, we L L NG
shall assume that the energy expenditure per transmissio[X,,,;,] = Z P{Xin > 1} = / (1 - —d) dx
scales as”, wheren is the path-loss exponent. =0 0 L
o We assume that the boundary effect is negligible. L- 1“(5) L(r+1) @)
= . 1
[1l. STRUCTURED NETWORKS UNDER THEFTP MODEL d Pr+g+1)

. . H 1
We first consider structured networks where nodes areUsing Lemma 1 stated below and the equatios: 7@

deployed with constant node densjtyin the d-dimensional /7 (from Equation (4)), we can calculate the lower and upper
ball. We further assume that the network is sufficiently @ngounds of the search cost:
so that all nodes within a distandeR of the sink can be

d

reached ink hops. The nodes in the network are all located Cé_ds)t(N7 )y > 1(d)- {N (8)
within L hops of the sink. When modeling the search cost ' Jr
we assume that the sink is located in the center of the region. (@ (N,r) < u(d)- VN )
In our previous work [7], we have shown that relaxing this 8,58 r
assumption does not provide big differences by simulatio\wlhere
Let V4(x) denote the volume of d-ball of radiusz, N4(h) sain
the number of nodes at mokthop away from the sink. The ) = 2 L'(3)exp (%) ( d ) 5
volume of the ball is known to be expressed as follows: - d {/7(d) d+1

Va(z) = f(d) - 2 (1) r(4) eap (4 + ity )

27_‘,«1/2

Wheref(d) = m d \d/ e T(d)
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Fig. 1. Structured Average Search Cost

investigated extensively in [7] and [8], which also agre¢hwi

1(d) 0.0961058 0.410714 0.68273 the above. .
Lemma 1. Forr > 1 andl < d < 12, the following double

inequality holds:

u (d) 0.208858 0.577974 0.849538 2i3d
d \ " exp(}) L(r+1)
TABLE | <d+1> 7 ° T(r+3+1)
THE COEFFICIENTS OF LOWER AND UPPER BOUNDS OF THE SEARCH COST L 1od
FOR THE STRUCTURED NETWORKTHE NUMBER OF NEIGHBORST(d) OF erp (E + m) 1
A NODE IS SET TO10. < d '

3|

[& T
Proof: From Robbins 1955 [10], St%g’s approximation

can be extended to the following double inequality:

P R

Table | shows the numerically calculated values!@f) Pr+1) > vamr +?e +1f”1 (11)
and u(d) when the average number of one-hop neighbor L(r+1) < Vomr'tze o (12)
7(d) is 10 for 1, 2, and 3 dimensional deployments. As th@sing Equation (12),
table illustrates, the lower and upper bound are close and 1 1 ) .,
proportional tov/N/{/r from the above double inequalities. T(r+-+41) < 2x(r+ a)”%*% e "t T2

Hence, we can approximate with good accuracy the searlgh he ab . 411
cost as follows: rom the above equation and (11),

2rd+d+-2
= Lﬁ (10) ‘r(r(i—f i)n > (k) T elbrmte)
’ r T+ 3 r
3d+42

wherel(d) <ap < u(d) (We_ can achieve the more accurate - s <L> 5 (e )
value ofa using the curve fitting.) - Yr\d+1

Figure 1 verifies the accuracy of our model in various cases; 1 d \%
(a) and (b) illustrate how the search cost varies as the numbe > == <—> ed
of nodes increases in 1D and 3D deployment, respectively. Th Yr\d+1
number of copies of the event is 1 and 100 for (a) and (g a2

v i ; incerd
respectively. (c) and (d) show the search cost vs. the nupfber ote that the second inequality holds Smérdﬂ

copies in 1D and 3D deployment, respectively. The number ¢ INcréasing with respect te for » > 1 so that it has its
nodes is10® and 108 x 10° for (c) and (d), respectively. The mmm;g_n; value atr = 1. And the third inequality holds since
bounds of the search cost are evaluated using Equation 2r4rr]1)(rdﬁr1) ﬁ()éor T.Z 1 F'];mdd Eb'u.’ double i lity |
and (9), and the search cost is evaluated numerically usirp1 n the other han ,dusmgt € Rg f'n"S _ou. € inequality in
Equation (6) with (7). All the four plots agrees that the shar (M€ other way around produces the following:

cost is almost proportional to the bounds in both relatively T'(r + 1) 1 ( O\ (A rorrriiz o)

large and small networks, both 1D and 3D networks, and whenr (- + T+1) < r 7~d+1) €

r is small or large. As for 2-dimensional deployment, we have (13)




2rd+d+2

Let p(r) = (52 T andg(r) = (3t mmiirs)  density function ofX,;, is given by,
Then, let’s calculate the supremum of each of them. d pd\
Fxp (k) = k41 (1- 2 (17)
1 rd41\ 4 d -1 Komin L L
i‘;‘f” r) = rlinr}o <<1 Cord+ 1) ) <rd+ 1> Then, thed-th moment is given by,
(. p (r) is increasing w.r.t for » > 1) vd [T !
d _ 2d—1
- 1 1 A li rd )7 Pl = 7 0 " <1 - ﬁ) an
= dm 7)) i o
(.- substitutingt = rd + 1) 7’;' 1 N
_1 - ] .
= e 4 (14) - T(d) r+1 ( (4)) (18)
1 d+12 Substituting Equation (18) into Equation (16) we have the
supg(r) = exp| -+ followi .
> d " 12r(12rd+d+12) )|, _, ollowing expression:
" the exponent is decreasing wur.for r > 1 N
( p g ) oD (19)

o (14 22 )
d  12(13d +12) Now, let us consider the upper bound of the optimal

Hence, the RHS of inequality (13) can be further uppeexpected search cost. We note that any expected search cost
bounded using the above supremums resulting in the followith a specific search sequence vector (SSV) is the upper

ing: bound. We consider two search sequence strategies to achiev
) oid two upper bounds, from which we obtain a tighter upper bound
L(r+1) eTp (3 + Wilgd)) 1 in terms of order notation. Let us first consider the step-by-

T(r+ é 1) e T step expanding ring search (ERS) strategy where the SSV is

{1,2,3,..., L}. The expected cost of this strategy is given by,
[ ]

O (k)P { Xinin > k — 1}

M) =

d
IV. UNSTRUCTUREDNETWORKS UNDER THEFTP MODEL CiyﬁbS =

b
Il
—

We now consider unstructured networks. The search cost
consists of the cost to locate the nearest copy and the cost
to bring the data back to the querier using the shortest path.
Since the latter cost is much smaller than the former, we here
ignore the latter cost, which is equal 8] X,,;,] given in (7).
Hence, we derive the search cost expression using the dptima
expanding ring-based flooding query [6], [7]. We consider th LTG0 +1)
samed-Ball as a network deployment space as in section IIl. P2 T(r+ é +2)
We first consider the lower bound of the optimal expected 7(d) -F(é) LT D(r +1)
search cost. Suppose a querying node happens to know the < 7 T +2)
hop distanceX,,;,, to the nearest copy of the desired event 1
before disseminating queries. Then, the flooding cost up to (.Tr+2)<T(r+-=+2)

—1)2\"
(1ot (e 1y7) (1= B0

E4\"
7(d) - k¢ (1—ﬁ) dk

[
M=

X
N\T
N =

3

(d)

X,in hops away is certainly the lower bound. The distribution d L

o . . . re) Nita
of X,.in IS given in section Ill. Under our assumption the — d . (. (4) (20)
expression for the flooding cost up tohops away is given d? Yr(d) r+1

by, As a next step, let us consider the flooding strategy which

(d) _
Gy (h) =1+ Nag(h—1) (15)  can be considered as the one step ERS with $&Y. The
whereN,(h) is the number of nodes up tohops away given €XPected cost of this strategy is given by,

in section 111, d d d
The lower bound of the expected search cost is given by, Cﬁ»led - CJ(" )(L) =1+7(n)(L—1)
< 7(n)L¢=N (21)
Cii)ower = E[Cj(‘d) (szn)]
' 7(d) - E[X%, ] (16) If we apply Lemma 2 gsing Equation (20) and (21.) we

can conclude that the optimal expected search Cégﬁn is

In order to obtain thed-th moment of X,,;,, we make O(N/r). With the result of the lower bound of the optimal cost

an approximation thatX,,;, is continuous. The probability in Equation (19) we reasonably approximate that the optimal

Q
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Fig. 2.

Unstructured Average Search Cost

search cost is proportional to its corresponding lower ldourfor sufficiently largex due to the archimedean property.

Hence, we have
N

r +1
whereas is constant w.r.t- and NV, but a function ofd.

i), = (22)

Figure 2 has similar plots as in Figure 1. The lower bound
in Equation (19), the upper bound is using

is using o

s,lower
305(‘112)ww, and the search costyynamic is evaluated numeri-

cally using the dynamic programming algorithm proposed

Chang and Liu [6]. We can see that our approximation of the

proportionality is quite close as for the structured seamst.

Lemma 2: Suppose:;(z) > 0, ha(x) > 0 for everyz > 0,
g1(y) > 0, g2(y) > 0 for everyy > 0, and f(z,y) > 0 for
everyz > 0, y > 0. And suppose

1) flz,y) < Zj;;”)) for everyz > 0,y > 0

2) f(z,y) < ZE(Z)) for everyz >0,y > 0

3) hi(xz) = O(z™) andhy(z) = O(z™), wheren > m > 0

4) g1(y) = Qy*) andg2(y) = Q(y"), wherea > b > 0
Then,

Im

flz,y) =0 — (23)
Proof: From 3) and 4), there exist > 0 andcs > 0 such
that

ho(z) <e¢p-2™, for Va (24)

g1(y) > co-y®, forVy (25)

Supposef(z,y) = O(z™*P . y~4T4) wherep, q € R. Then,
there exists: > 0 such that

f(z,y) > c-a™P .y~ for Va,Vy (26)

If p> 0, then for everyy > 0,
C1

> —
cy=Tigs(y)

crz™ - ho(z)
92(y) ~ 92(y)
which is contradiction to 2). Hence, < 0.
If ¢ > 0, then for everyz > 0,

hi(z)

ceox™tP

= f(x,y) > ca™ Py~ ot >

(. (24)

7>

5’9r sufficiently largey due to the archimedean property.

cy® — g1(y)

which is contradiction to 1). Hence,< 0.
Fromp < 0 andgq < 0, we conclude thaf (z,y) = O(z™ -

YY) u

V. COSTS UNDERUNIFORM RANDOM DEPLOYMENT
(GRG MODEL)

We now consider the uniform random deployment for both
structured and unstructured networks, i.e. the GRG model.
As noted before, in order to maintain the connectivity under
this deployment with high probability, the neighbor deynsit
should be logarithmically increasing witlv. Hence, letting
7 = pf(d)R? = 6, log N with some constanf;, the radio
range can be expressed as,

= f(z,y) > ca™ Pyt >

(. (25)

d !

= /7@ Ve

Note that our analysis in section Il and IV is still valid et
that the search costs derived therein are in terms of nunfber o
transmissions and the network radiliss now also a function

of N. It should be noted that the number of transmissions
is no longer proportional to the energy cost in the uniform
random deployment becaude is no longer constant with
respect toN. Hence, we shall refer the derived search costs
in the previous sections ad; and H,,, for structured and
unstructured networks, respectively, in this section.

(27)



For structured networks, by substituting Equation (279 int Although we have shown results in this paper assuming
(8) and (9), the bounds dff;; can be expressed as, constant spatial node density and two specific cases of neigh
bor density scaling: constant and logarithmic, the approac

d d
I'(d) - ﬂ < Hs(f) < u'(d) - ﬂ (28) presented here can be easily extended to consider othes kind
Vrlog N Vrlog N of spatial and neighbor density scaling. For example, if we fi
where the network radiud. and the radio rang®& and let the node
. . 3di2 density increase a8 grows, it is easy to obtain that the search
') = 2 I'(3)exp (3) ( d ) * cost of structured networks under the FTP deployment is
d /0, d+1 proportional to% regardless ofV, while that of unstructured
/ F(%) exp (é + #ﬁgd)) networks is kept proportional tg%
u'(d) = 2 One caveat to our models originates from the fact that we

d /et have resolved to approximate summations in both structured
Now we introduce the transmission energy cost over a lirdnd unstructured cases using integrations since the suamsat
of distanceR given by, fail to produce tractable closed-from expressions. When th
radius of the networkl, is small or the number of copies
Ey(R) = SR" (29) s very large compared t&/, the approximations exhibit poor

whereg is the transmit amplifier constant ands the path-loss Performance. The reason for the latter case is that larger
exponent. Generally, there should be a term for the distan@@@kes the curves of the integrands sharper.

independent energy cost of transmitter and receiver eleics, We believe that the results presented here will be useful

but we assume it is negligible because we focus more on fHealytical tools for exploring the general performance atbel

search cost behavior of large netwotks
Because the search cost is given by multiplyilg, and
E:(R), we can approximate it using its double inequalities as

follows: [1
\CV;

t t
Whereﬁ (#@) A'(d) < az <8 (#@)) ~u’(d)_.
With the analogous reasoning, we can obtain the seargh
cost of unstructured networks under the GRG deployment as

follows: 14]
— . 91
s s (pf(d))

[5]

whereas is as same as in section V. (6]

We note that the search cost of unstructured networks under

the GRG deployment turns out to be dependentipmvhile
that of the FTP deployment is independentdof

C(d) —az-

s,st

(30)
[2]

7 N(log N)4
r+1

c@d

s,un

(31)

(7]

V1. DISCUSSIONS ANDCONCLUSIONS

We have derived minimum expected search energy cosi
for several kinds of data-centric wireless sensor networks
In particular, we have considered structured and unstredtu [9]
networks deployed id-dimensional area with a constant node
density. In structured networks, the search cost of the FTP
deployment of nodes is proportional t§N/ ¢/r, while that [10]

d n—
of the GRG deployment is proportional M. N 1
unstructured networks, the search cost of the I[TP deploymen
is proportional to% regardless of the spatial dimensidrof

the network, while that of the GRG deployment is proportiona
to Nlog 11\/)%
r+ '

1For more accurate result for small size networks, we can adanatant
for the electronics energy cost to the transmission eneogy model, which
would lead to the desired result without difficulty.

centric wireless sensor networks.
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