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Abstract— We develop approximate closed-form expressions of
expected minimum search energy costs for data-centric wireless
sensor networks showing the search performance with respect
to the network size N and the number of randomly placed
copies of the target eventr. We consider both unstructured
sensor networks, which use blind sequential search for querying,
and structured sensor networks, which use efficient hash-based
querying. We also consider two kinds of deployments: a fixed
transmit power (FTP) model and the geometric random graph
(GRG) model. We find that the search cost of unstructured
networks under the FTP deployment is proportional to N
and inversely proportional to (r + 1) regardless of the spatial
dimension d in which nodes are deployed, while that of the

GRG is proportional to N(log N)
η
d

r+1
where η is the path-loss

exponent. The search cost of structured networks under the FTP
deployment is found to be proportional to d

√

N/ d
√

r, while that

of the GRG deployment is proportional to
d
√

N(log N)η−1

d√
r

. In all
cases, we also provide bounds on the coefficient of proportionality.

I. I NTRODUCTION

There are two popular ways in which the wireless sensor
network can be operated. One way is to be operated in a
continuous data gathering mode, and the other way is to
consider the wireless sensor network as a decentralized data-
centric storage system. While the network in the continuous
data-gathering mode is popular, mainly because it is easierto
analyze and simpler to implement, continuous data gathering
from all sensors is generally very inefficient if most of the
sensed information is not essential, or if there are multiple
sinks that may need different subsets of the sensed information
at different times. In this case, however, the data-centric
network might be more suitable for the energy efficiency. In
such a data-centric approach, the sensed data can be stored
either locally or at one or more remote locations within
the network. Event information is obtained by sinks through
queries that are issued on an on-demand basis.

When a sink knows where the nearest copy of the target
event information is stored (e.g. using hash-based data centric
storage techniques such as GHT [1], DIM [2], etc.), the
search cost is the energy expenditure to send a query for
the event to the target node and bring the information back
through the shortest path. On the other hand, when a sink

has no clue where the target resides, it resorts to search forit
blindly, which often is led to some sort of flooding. We call
the network which adopts the former scheme the structured
network and the latter scheme the unstructured network. While
the structured network has smaller search energy cost at the
cost of maintaining the location information of all events,the
unstructured network doesn’t need the overhead of mainte-
nance.

In this work, we focus on deriving closed-form expressions
for the expected minimum search energy cost considering
structured and unstructured sensor networks deployed in ad-
dimensional area. Since the energy is one of the most precious
resources and searching is one of fundamental operations
in the data-centric sensor network, it can be very useful to
derive the closed-form expressions of such costs in the sense
that they can be basis of other analytical modelings with
tractable optimization. We have focused on analyzing search
performance with respect to two key parameters - the size of
the network and the number of copies of the event information.

In our analysis we consider two types of deployment mod-
els. In both cases we assume that the spatial density is fixed,
so that the network deployment region grows proportionallyto
the number of nodes in the network. In the first model, called
the fixed transmission power (FTP) model, the deployment
is organized in such a way as to ensure that the network is
connected despite each node operating with a fixed radio range
(regardless of network size). In the second case, the nodes are
deployed uniformly and independently at random; however, in
this case, referred to as the geometric random graph (GRG)
model, ensuring connectivity with high probability requires
that the radio range be scaled with the network size to ensure
that each node has a logarithmic number of neighbors on
average [3], [4], [5].

There are several related works as follows. For the struc-
tured network, the minimum search cost is related with the
shortest path between a sink and a source. For the unstructured
network, we use the expanding ring search mechanism in
which the sink sends a series of controlled floodings until it
finds the event information. Chang and Liu [6] have found the
way how to construct the series of controlled floodings in order
to minimize the expected search cost given the distribution



of the event’s location. And in our previous work [7], we
had derived the approximate closed-form expression for the
minimum search cost under 2-dimensional FTP node deploy-
ment (a special case of the more general results presented
here). In [11], we have applied these search cost expressions
to analyze the fundamental scaling behavior of data-centric
sensor networks.

II. A SSUMPTIONS

The following are the key assumptions in our work.

• N nodes are deployed with a constant density in ad-
dimensional ballBd space. The constant density implies
that if the network size is increased, the deployment
area grows proportionally. Initially, we consider the FTP
model in which the radio rangeR is kept fixed, but the
deployment is such that the network remains connected.
Later, we consider the GRG model in section V, in which
the radio rangeR is scaled proportionally withd

√
log N to

ensure connectivity of the network with high probability.
• The distribution of events is assumed to be uniform in

the deployment area.
• A total of r copies of an event are maintained with the

uniform distribution in the network by creatingr − 1
additional replicas when the event is first sensed.

• Each query is a one-shot query (i.e. requires a single
response, not a continuous stream), and is satisfied by
locating a single copy of the corresponding event.

• We assume that the links over which transmissions take
place are lossless (e.g., using blacklisting) and present no
interference due to concurrent transmissions (e.g., due to
low traffic conditions or due to the use of a scheduled
MAC protocol).

• For the FTP deployment model, the total energy cost for
searching is assumed to be proportional to the total num-
ber of transmissions. For the GRG deployment model, we
shall assume that the energy expenditure per transmission
scales asRη, whereη is the path-loss exponent.

• We assume that the boundary effect is negligible.

III. STRUCTURED NETWORKS UNDER THEFTP MODEL

We first consider structured networks where nodes are
deployed with constant node densityρ in the d-dimensional
ball. We further assume that the network is sufficiently dense
so that all nodes within a distancekR of the sink can be
reached ink hops. The nodes in the network are all located
within L hops of the sink. When modeling the search cost
we assume that the sink is located in the center of the region.
In our previous work [7], we have shown that relaxing this
assumption does not provide big differences by simulation.
Let Vd(x) denote the volume of ad-ball of radiusx, Nd(h)
the number of nodes at mosth hop away from the sink. The
volume of the ball is known to be expressed as follows:

Vd(x) = f(d) · xd (1)

wheref(d) = 2πd/2

d·Γ(d/2) .

In this paper,Γ(·) is the Gamma function. Then, the number
of nodes at mosth hop away from the sink is given by,

Nd(h) = ρ f(d) · (hR)d = τ(d) · hd (2)

where
τ(d)

.
= ρ f(d) Rd (3)

which is the average number of neighbors of a node. Hence,
the total number of nodesN can be expressed as follows:

N = Nd(L) = τ(d) · Ld (4)

Now we recall that there arer number of copies of an event
distributed uniformly randomly in the network. Let the random
variableXmin denote the hop distance to the nearest copy of
them from the querier. Its tail distribution is as follows:

P{Xmin > x}

=

r
∏

i=1

P{i-th copy is not inx hop neighbors}

=

(

1 − Nd(x)

N

)r

=

(

1 − xd

Ld

)r

(5)

In the structured network, the search cost is related to a path
of the lowest cost from a querier to the nearest node which has
one of the copies. We assume the shortest path routing scheme
so that the path would be their shortest path. Hence, the search
cost is equal to the hop count from the querier to the nearest
copy through the shortest path, which is denoted byXmin,
plus the cost back to the querier. Hence, the expected search
cost of the network deployed ind dimension is as follow:

C
(d)
s,st = 2 E[Xmin] (6)

Using the tail distribution given in Equation (5) and approxi-
mating summation to integration, we have

E[Xmin] =

L
∑

x=0

P{Xmin > x} ≈
∫ L

0

(

1 − xd

Ld

)r

dx

=
L · Γ( 1

d)

d
· Γ(r + 1)

Γ(r + 1
d + 1)

(7)

Using Lemma 1 stated below and the equationL = 1
d
√

τ(d)
·

d
√

N (from Equation (4)), we can calculate the lower and upper
bounds of the search cost:

C
(d)
s,st(N, r) > l(d) ·

d
√

N
d
√

r
(8)

C
(d)
s,st(N, r) < u(d) ·

d
√

N
d
√

r
(9)

where

l(d) = 2
Γ( 1

d ) exp
(

1
d

)

d d
√

τ(d)

(

d

d + 1

)
3d+2
2d

u(d) = 2
Γ( 1

d ) exp
(

1
d + 12+d

12(12+13d)

)

d d
√

e τ(d)
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Fig. 1. Structured Average Search Cost

d = 1 d = 2 d = 3

l (d) 0.0961058 0.410714 0.68273

u (d) 0.208858 0.577974 0.849538

TABLE I

THE COEFFICIENTS OF LOWER AND UPPER BOUNDS OF THE SEARCH COST

FOR THE STRUCTURED NETWORK. THE NUMBER OF NEIGHBORSτ(d) OF

A NODE IS SET TO10.

Table I shows the numerically calculated values ofl(d)
and u(d) when the average number of one-hop neighbor
τ(d) is 10 for 1, 2, and 3 dimensional deployments. As the
table illustrates, the lower and upper bound are close and
proportional to d

√
N/ d

√
r from the above double inequalities.

Hence, we can approximate with good accuracy the search
cost as follows:

C
(d)
s,st = α1 ·

d
√

N
d
√

r
(10)

where l(d) < α1 < u(d) (we can achieve the more accurate
value ofα using the curve fitting.)

Figure 1 verifies the accuracy of our model in various cases;
(a) and (b) illustrate how the search cost varies as the number
of nodes increases in 1D and 3D deployment, respectively. The
number of copies of the event is 1 and 100 for (a) and (b),
respectively. (c) and (d) show the search cost vs. the numberof
copies in 1D and 3D deployment, respectively. The number of
nodes is103 and108× 103 for (c) and (d), respectively. The
bounds of the search cost are evaluated using Equation (8)
and (9), and the search cost is evaluated numerically using
Equation (6) with (7). All the four plots agrees that the search
cost is almost proportional to the bounds in both relatively
large and small networks, both 1D and 3D networks, and when
r is small or large. As for 2-dimensional deployment, we have

investigated extensively in [7] and [8], which also agree with
the above.

Lemma 1: For r ≥ 1 and1 ≤ d ≤ 12, the following double
inequality holds:
(

d

d + 1

)
2+3d
2d exp ( 1

d)
d
√

r
<

Γ(r + 1)

Γ(r + 1
d + 1)

<
exp

(

1
d + 12+d

12(12+13d)

)

d
√

e
· 1

d
√

r
Proof: From Robbins 1955 [10], Stirling’s approximation

can be extended to the following double inequality:

Γ(r + 1) >
√

2πrr+ 1
2 e−r+ 1

12r+1 (11)

Γ(r + 1) <
√

2πrr+ 1
2 e−r+ 1

12r (12)

Using Equation (12),

Γ(r +
1

d
+ 1) <

√
2π(r +

1

d
)r+ 1

d + 1
2 e−r− 1

d + d
12rd+12

From the above equation and (11),

Γ(r + 1)

Γ(r + 1
d + 1)

>
1

d
√

r

(

rd
rd+1

)

2rd+d+2
2d

e(
1
d + 12−d

12(12r+1)(rd+1) )

≥ 1
d
√

r

(

d

d + 1

)

3d+2
2d

e(
1
d + 12−d

12(12r+1)(rd+1) )

≥ 1
d
√

r

(

d

d + 1

)

3d+2
2d

e
1
d

Note that the second inequality holds since
(

rd
rd+1

)

2rd+d+2
2d

is increasing with respect tor for r ≥ 1 so that it has its
minimum value atr = 1. And the third inequality holds since

12−d
12(12r+1)(rd+1) ≥ 0 for r ≥ 1 andd ≤ 12.

In the other hand, using the Robbins’ double inequality in
the other way around produces the following:

Γ(r + 1)

Γ(r + 1
d + 1)

<
1

d
√

r

(

rd
rd+1

)
2rd+d+2

2d

e(
1
d
+ d+12

12r(12rd+d+12) )

(13)



Let p(r) =
(

rd
rd+1

)
2rd+d+2

2d

and q(r) = e(
1
d + d+12

12r(12rd+d+12) ).
Then, let’s calculate the supremum of each of them.

sup
r≥1

p (r) = lim
r→∞

(

(

1 − 1

rd + 1

)rd+1
)

1
d (

rd

rd + 1

)− 1
d

(∵ p (r) is increasing w.r.tr for r ≥ 1)

= lim
t→∞

(

(

1 − 1

t

)t
)

1
d

· lim
r→∞

(

rd

rd + 1

)− 1
d

(∵ substitutingt
.
= rd + 1)

= e−
1
d (14)

sup
r≥1

q (r) = exp

(

1

d
+

d + 12

12r(12rd + d + 12)

)∣

∣

∣

∣

r=1

(∵ the exponent is decreasing w.r.tr for r ≥ 1)

= exp

(

1

d
+

d + 12

12(13d + 12)

)

Hence, the RHS of inequality (13) can be further upper-
bounded using the above supremums resulting in the follow-
ing:

Γ(r + 1)

Γ(r + 1
d + 1)

<
exp

(

1
d + 12+d

12(12+13d)

)

d
√

e
· 1

d
√

r

�

IV. U NSTRUCTUREDNETWORKS UNDER THEFTP MODEL

We now consider unstructured networks. The search cost
consists of the cost to locate the nearest copy and the cost
to bring the data back to the querier using the shortest path.
Since the latter cost is much smaller than the former, we here
ignore the latter cost, which is equal toE[Xmin] given in (7).
Hence, we derive the search cost expression using the optimal
expanding ring-based flooding query [6], [7]. We consider the
samed-Ball as a network deployment space as in section III.
We first consider the lower bound of the optimal expected
search cost. Suppose a querying node happens to know the
hop distanceXmin to the nearest copy of the desired event
before disseminating queries. Then, the flooding cost up to
Xmin hops away is certainly the lower bound. The distribution
of Xmin is given in section III. Under our assumption the
expression for the flooding cost up toh hops away is given
by,

C
(d)
f (h) = 1 + Nd(h − 1) (15)

whereNd(h) is the number of nodes up toh hops away given
in section III.

The lower bound of the expected search cost is given by,

C
(d)
s,lower = E[C

(d)
f (Xmin)]

≈ τ(d) · E[Xd
min] (16)

In order to obtain thed-th moment of Xmin, we make
an approximation thatXmin is continuous. The probability

density function ofXmin is given by,

fXmin(k) =
rd

Ld
kd−1

(

1 − kd

Ld

)r−1

(17)

Then, thed-th moment is given by,

E[Xd
min] =

rd

Ld

∫ L

0

k2d−1

(

1 − kd

Ld

)r−1

dk

=
Ld

r + 1

=
1

τ(d)
· N

r + 1
(∵ (4)) (18)

Substituting Equation (18) into Equation (16) we have the
following expression:

C
(d)
s,lower =

N

r + 1
(19)

Now, let us consider the upper bound of the optimal
expected search cost. We note that any expected search cost
with a specific search sequence vector (SSV) is the upper
bound. We consider two search sequence strategies to achieve
two upper bounds, from which we obtain a tighter upper bound
in terms of order notation. Let us first consider the step-by-
step expanding ring search (ERS) strategy where the SSV is
{1, 2, 3, . . . , L}. The expected cost of this strategy is given by,

C
(d)
s,sbs =

L
∑

k=1

C
(d)
f (k)P {Xmin > k − 1}

=

L
∑

k=1

(

1 + τ(d) · (k − 1)d
)

(

1 − (k − 1)2

L2

)r

≈
∫ L

0

τ(d) · kd

(

1 − kd

Ld

)r

dk

= τ(d) · Ld+1 Γ( 1
d)Γ(r + 1)

d2 Γ(r + 1
d + 2)

<
τ(d) · Γ( 1

d )

d2

Ld+1 · Γ(r + 1)

Γ(r + 2)

(∵ Γ(r + 2) < Γ(r +
1

d
+ 2))

=
Γ( 1

d)

d2 d
√

τ(d)
· N1+ 1

d

r + 1
(∵ (4)) (20)

As a next step, let us consider the flooding strategy which
can be considered as the one step ERS with SSV{L}. The
expected cost of this strategy is given by,

C
(d)
s,fld = C

(d)
f (L) = 1 + τ(n)(L − 1)d

≤ τ(n)Ld = N (21)

If we apply Lemma 2 using Equation (20) and (21) we
can conclude that the optimal expected search costC

(d)
s,un is

O(N/r). With the result of the lower bound of the optimal cost
in Equation (19) we reasonably approximate that the optimal
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Fig. 2. Unstructured Average Search Cost

search cost is proportional to its corresponding lower bound.
Hence, we have

C(d)
s,un = α2 ·

N

r + 1
(22)

whereα2 is constant w.r.tr andN , but a function ofd.
Figure 2 has similar plots as in Figure 1. The lower bound

is usingC
(d)
s,lower in Equation (19), the upper bound is using

3C
(d)
s,lower, and the search costCdynamic is evaluated numeri-

cally using the dynamic programming algorithm proposed by
Chang and Liu [6]. We can see that our approximation of the
proportionality is quite close as for the structured searchcost.

Lemma 2: Supposeh1(x) > 0, h2(x) > 0 for everyx > 0,
g1(y) > 0, g2(y) > 0 for every y > 0, andf(x, y) > 0 for
everyx > 0, y > 0. And suppose

1) f(x, y) ≤ h1(x)
g1(y) for everyx > 0, y > 0

2) f(x, y) ≤ h2(x)
g2(y) for everyx > 0, y > 0

3) h1(x) = O(xn) andh2(x) = O(xm), wheren > m > 0

4) g1(y) = Ω(ya) andg2(y) = Ω(yb), wherea > b > 0

Then,

f(x, y) = O

(

xm

ya

)

(23)

Proof: From 3) and 4), there existc1 > 0 andc2 > 0 such
that

h2(x) ≤ c1 · xm, for ∀x (24)

g1(y) ≥ c2 · ya, for ∀y (25)

Supposef(x, y) = Θ(xm+p · y−a+q) wherep, q ∈ R. Then,
there existsc > 0 such that

f(x, y) ≥ c · xm+p · y−a+q, for ∀x, ∀y (26)

If p > 0, then for everyy > 0,

xp >
c1

cy−a+qg2(y)

for sufficiently largex due to the archimedean property.

⇒ f(x, y) ≥ cxm+py−a+q >
c1x

m

g2(y)
≥ h2(x)

g2(y)
(∵ (24))

which is contradiction to 2). Hence,p ≤ 0.
If q > 0, then for everyx > 0,

yq >
h1(x)

cc2xm+p

for sufficiently largey due to the archimedean property.

⇒ f(x, y) ≥ cxm+py−a+q >
h1(x)

c2ya
≥ h1(x)

g1(y)
(∵ (25))

which is contradiction to 1). Hence,q ≤ 0.
Fromp ≤ 0 andq ≤ 0, we conclude thatf(x, y) = O(xm ·

y−a). �

V. COSTS UNDERUNIFORM RANDOM DEPLOYMENT

(GRG MODEL)

We now consider the uniform random deployment for both
structured and unstructured networks, i.e. the GRG model.
As noted before, in order to maintain the connectivity under
this deployment with high probability, the neighbor density τ
should be logarithmically increasing withN . Hence, letting
τ = ρf(d)Rd = θ1 log N with some constantθ1, the radio
range can be expressed as,

R = d

√

θ1

ρ f(d)
d
√

log N (27)

Note that our analysis in section III and IV is still valid except
that the search costs derived therein are in terms of number of
transmissions and the network radiusL is now also a function
of N . It should be noted that the number of transmissions
is no longer proportional to the energy cost in the uniform
random deployment becauseR is no longer constant with
respect toN . Hence, we shall refer the derived search costs
in the previous sections asHst and Hun for structured and
unstructured networks, respectively, in this section.



For structured networks, by substituting Equation (27) into
(8) and (9), the bounds ofHst can be expressed as,

l′(d) ·
d
√

N
d
√

r log N
< H

(d)
st < u′(d) ·

d
√

N
d
√

r log N
(28)

where

l′(d) = 2
Γ( 1

d ) exp
(

1
d

)

d d
√

θ1

(

d

d + 1

)
3d+2
2d

u′(d) = 2
Γ( 1

d ) exp
(

1
d + 12+d

12(12+13d)

)

d d
√

e θ1

Now we introduce the transmission energy cost over a link
of distanceR given by,

Et(R) = βRη (29)

whereβ is the transmit amplifier constant andη is the path-loss
exponent. Generally, there should be a term for the distance-
independent energy cost of transmitter and receiver electronics,
but we assume it is negligible because we focus more on the
search cost behavior of large networks1.

Because the search cost is given by multiplyingHst and
Et(R), we can approximate it using its double inequalities as
follows:

C
(d)
s,st = α3 ·

d
√

N(log N)η−1

d
√

r
(30)

whereβ
(

θ1

ρf(d)

)

η
d · l′(d) < α3 < β

(

θ1

ρf(d)

)

η
d · u′(d).

With the analogous reasoning, we can obtain the search
cost of unstructured networks under the GRG deployment as
follows:

C(d)
s,un = α2 · β

(

θ1

ρf(d)

)

η
d

· N(log N)
η
d

r + 1
(31)

whereα2 is as same as in section IV.
We note that the search cost of unstructured networks under

the GRG deployment turns out to be dependent ond, while
that of the FTP deployment is independent ofd.

VI. D ISCUSSIONS ANDCONCLUSIONS

We have derived minimum expected search energy costs
for several kinds of data-centric wireless sensor networks.
In particular, we have considered structured and unstructured
networks deployed ind-dimensional area with a constant node
density. In structured networks, the search cost of the FTP
deployment of nodes is proportional tod

√
N/ d

√
r, while that

of the GRG deployment is proportional to
d
√

N(log N)η−1

d
√

r
. In

unstructured networks, the search cost of the FTP deployment
is proportional to N

r+1 regardless of the spatial dimensiond of
the network, while that of the GRG deployment is proportional

to N(log N)
η
d

r+1 .

1For more accurate result for small size networks, we can add aconstant
for the electronics energy cost to the transmission energy cost model, which
would lead to the desired result without difficulty.

Although we have shown results in this paper assuming
constant spatial node density and two specific cases of neigh-
bor density scaling: constant and logarithmic, the approach
presented here can be easily extended to consider other kinds
of spatial and neighbor density scaling. For example, if we fix
the network radiusL and the radio rangeR and let the node
density increase asN grows, it is easy to obtain that the search
cost of structured networks under the FTP deployment is
proportional to L

d
√

r
regardless ofN , while that of unstructured

networks is kept proportional toN
r+1 .

One caveat to our models originates from the fact that we
have resolved to approximate summations in both structured
and unstructured cases using integrations since the summations
fail to produce tractable closed-from expressions. When the
radius of the networkL is small or the number of copiesr
is very large compared toN , the approximations exhibit poor
performance. The reason for the latter case is that largerr
makes the curves of the integrands sharper.

We believe that the results presented here will be useful
analytical tools for exploring the general performance of data-
centric wireless sensor networks.
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