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Abstract—BitTorrent is the most successful peer-to-peer sys-
tem and has attracted a lot of attention from the research
community. Researchers have studied a number of aspects of
the system, including its scalability, performance, efficiency and
fairness. However, the complexity of the system has forced most
researchers to make a number of simplifying assumptions, e.g.
user homogeneity, or even ignore some aspects of the protocol
altogether, e.g. the Tit-for-Tat (TFT) unchoking scheme, in order
to keep the analysis tractable.

Motivated by this, in this paper we propose two analytical
models that accurately predict the performance of the system
without compromising on the realism of the modeling methodol-
ogy. Our first model is a steady-state one, in the sense that itis
valid during periods of time where the number of users remains
fixed. Freed by the complications of time-dynamics, we account
for all the details of the BitTorrent protocol, including TF T
and optimistic unchoking, and predict a number of performance
metrics including upload and download rates, as well as file
download delays. Our second model builds upon prior work on
fluid models for BitTorrent. Using our first model, we extend
the fluid-based methodology to capture the transient behavior as
new users join or old users leave, while fully modelling central
properties of the BitTorrent system, e.g. TFT. Finally, as an
example of how to use our analytical models to study variations
of the basic BitTorrent scheme and make design decisions, we
propose a flexible token-based scheme for BitTorrent that can
be used to tradeoff between overall system performance and
fairness, and evaluate the scheme’s parameters that achieve a
target operational point.

Index Terms—Heterogeneous P2P networks, BitTorrent, per-
formance analysis, token based scheme, fairness/delay tradeoff.

I. I NTRODUCTION

Peer-to-peer (P2P) systems have provided a powerful in-
frastructure for large scale distributed applications, such as
file sharing. As a result, they have become very popular. For
example, 43% of the Internet traffic is P2P traffic [1]. Among
all P2P systems, BitTorrent seems to be the most prevalent one.
In particular, more than 50% of all P2P traffic is BitTorrent
traffic [2].

The BitTorrent system is designed for efficient large scale
content distribution. The complete BitTorrent protocol can
be found in [3]. We summarize the main functionality here.
BitTorrent groups users by the file that they are interested
in. In each group there exists at least one user, called seed,
who has the complete file of interest. The seed is in charge
of disseminating the file to other users, called leechers, who
do not have the file. When disseminating the file, BitTorrent
partitions the whole file into a large number of blocks and then

the seed starts uploading blocks to its neighbors. Meanwhile,
users of the group exchange the blocks they have with their
neighbors. As a result, the service capacity of the system is
enlarged. When a user has all the blocks of the file, he/she
finishes the download process and becomes a potential seed.

There are several features making BitTorrent successful. An
important one is the rate based TFT (Tit-for-Tat) unchoking
scheme. In the rate based TFT unchoking scheme, a user
will provide uploads to some of his/her neighbors (default is
4) who provide him/her the highest download rates and to
one more, randomly selected neighbor, via a process called
optimistic unchoking. This scheme discourages freeridersin
the BitTorrent system because freeriders will keep getting
choked if they do not provide uploads to other users.

Because of the prevalence and the success of BitTorrent,
there is a large body of work that studies how it performs
[4], [5], [6], [7], [8], [9], [10], [11], designs more incentive
schemes for it [12], [13], collects traffic measurements [2],
[14], [15], [16], and investigates fairness issues associated
with it [17], [18], [19]. However, despite this large body of
research, there have been very few attempts to mathematically
model, in a heterogeneous and hence realistic environment,
what is perhaps the most important performance metric from
an end user’s point of view: the average file download delay.
Further, these attempts either make unnecessary simplifying
assumptions, or completely ignore important aspects of the
BitTorrent protocol that significantly affect performance.

In this paper we consider a heterogeneous BitTorrent-like
system, where users may have different upload/download
capacities, and propose two mathematical models that can
accurately predict the user file download rates, and hence the
download delays. Our first model is derived by considering the
system performance in steady state, where the number of users
in the system remains constant. This model accounts forall the
details of the BitTorrent protocol and it is remarkably accurate.
We demonstrate that it can be used to accurately predict the
user file download delay for one of the most common scenarios
in BitTorrent: the flash crowd scenario, where users join the
system in a short time period just after a new file has been
released [15], [17].

Although the aforementioned model is very detailed and
accurate (for predicting performance in steady state), it does
not capture the system’s time dynamics (e.g., such as the peer
population evolution, etc.). Further, it becomes complicated
when the network is “very heterogeneous”, that is, when there
is a large diversity in the upload/download capacities of users.



With the above in mind we propose a second model,
which is derived along the same lines as the first model, but
with some approximations that keep the analysis tractable.
This second model comprises afluid modelthat can predict
not only the users’ file download delays in a heterogeneous
system, but also the system’s time dynamics. This model is
slightly less accurate than the first model (for steady state
scenarios), however it is much simpler and general. Further, we
demonstrate that it is quite accurate for predicting performance
in non flash-crowd scenarios, where users will keep joining the
system for a long time period after a file has been released.

Finally, we propose a token based TFT scheme, which is
very simple and flexible. In the proposed scheme, which is
inspired by our prior work on incentive schemes for P2P
systems [20], [21], users use tokens as a means to trade file
blocks. Each user maintains a token table which keeps track
of the amount of tokens his/her neighbors possess. A user
increases his/her neighbor’s tokens byKup for every byte
he/she downloads from the neighbor. On the other hand, the
user decreases a neighbor’s tokens byKdown for every byte
he/she uploads to the neighbor under study. A user would
upload a block to his/her neighbor only if the neighbor has
sufficient tokens to perform the download.

We show that the proposed scheme can be used to tradeoff
between high overall system performance and fairness to high
bandwidth users, by properly setting its parametersKdown

and Kup. In particular, we show that under the appropriate
parameter tuning high bandwidth users will provide more
uploads than usual to low bandwidth users, which tends to
reduce the overall download delay. This however comes at the
expense of making high bandwidth users download at a slower
rate than they usually do. We extend our mathematical models
to predict the average file download delays in this system,
and demonstrate how the models can be used to decide on
the values ofKdown and Kup that achieve a target system
performance/fairness.

The rest of this paper is organized as follows: In Section
II we briefly discuss related work. In Section III we review
the current BitTorrent implementation in more detail, and
provide a detailed description of the proposed token based
scheme. In Section IV we present our first mathematical
model, which accurately predicts the performance of a het-
erogeneous BitTorrent-like system in steady state, and then
extend this model to predict performance when the token
based scheme is used. In Section V we present our second
model, which predicts performance in a heterogeneous and
dynamic BitTorrent-like system, with and without the token
based scheme. In Section VI we present extensive simulation
results in order to validate the accuracy of our models. In
Section VII we compare our models with some of the most
representative models in the literature. Conclusions and future
work directions follow in Section VIII.

II. RELATED WORK

B. Cohen, the author of BitTorrent, gives a thorough intro-
duction to the BitTorrent system in [22]. The paper describes
the BitTorrent protocol, the system architecture and the in-
centive scheme built in the BitTorrent system. In addition,

there is a large body of work reporting the efficiency and the
popularity of BitTorrent [11], [12], [15]. Although there are
some studies,e.g. [12], [13], indicating that skillful freeriders
can still benefit from the system against the built-in incentive
scheme, BitTorrent in general has successfully motivated users
to share their resources.

To our best knowledge, [4] is the first published work
providing a mathematical model for the BitTorrent system. The
paper proposes a fluid model to describe how the population
of seeds and leechers evolves in the BitTorrent system. The
studies in [6], [7], [9] extend the above model to study
BitTorrent’s performance under different user behaviors and
different arrival processes. Further, [5] and [8] extend this
model to study BitTorrent’s performance under heterogeneous
environments. In [10], the authors propose a model to study the
peer distribution in BitTorrent and they use a dying process
to study the file availability. Further, [23] uses a branching
process to study the capacity of generic P2P systems, which
havesomesimilar characteristics to BitTorrent (partitioning of
files into blocks, and multiple user upload connections), and
the study in [24] proposes a fluid model to study such systems
and verifies it numerically.

Despite the large body of work on modeling BitTorrent’s
performance, the majority of the studies make a number
of simplifying assumptions in order to keep the analysis
tractable. For example, the studies in [4], [6], [7], [9] con-
sider homogeneous network environments only, where users
have the same link capacities. This is clearly an unrealistic
assumption given Internet’s heterogeneity. Further, while as
we have mentioned above, the studies in [5] and [8] consider
network heterogeneity, the study in [5] completely ignores
BitTorrent’s TFT scheme. And, the study in [8] attempts
to model only some aspects of it under some simplifying
assumptions. (See Section VII for these assumptions.) Further,
these last two studies ([5] and [8]) are mostly theoretical
and do not provide any simulation or experimental results to
verify the validity of their model (instead, they only solvethe
derived equations numerically). However, as we have stressed
earlier, BitTorrent’s TFT scheme is one of the main features
responsible for the system’s great success.

Motivated by this, in this paper we propose two analytical
models that accurately predict the performance of the BitTor-
rent system in both steady state and dynamic scenarios, under
minimal assumptions, without compromising on the realism of
the modeling methodology. In particular, we consider ahet-
erogeneous(and hence realistic) BitTorrent-like system, where
users are grouped into different classes according to theirlink
capacities, and attempt tofully model many important aspects
of the system,includingits TFT scheme. Interestingly enough,
despite the protocol’s complexity, we show that it is possible
to accomplish this, even if the network environment consists
of an arbitrarily large number of user classes, while keeping
the analysis simple and the performance prediction accurate.

The work in [17] proposes a block based TFT scheme. Our
proposed token based TFT scheme, which is inspired by our
prior work on incentive schemes for P2P systems [20], [21],
degenerates to the scheme in [17] whenKup = Kdown. Hence,
our scheme is much more general and flexible. Further, the



work in [17] studies the performance of the block based TFT
scheme only via simulations. Here, we extend our mathemat-
ical models to predict the performance of the token based
scheme for a generalKup

Kdown
ratio. Finally, we show how our

models can be used to decide on the scheme parameters that
achieve a target tradeoff between overall system performance
and fairness to high bandwidth users.

III. PRELIMINARIES

A. Original BitTorrent

We now describe in detail the main functionality of the
BitTorrent system. Recall that BitTorrent groups users by the
file that they are interested in. When a user is interested in
joining a group, he/she first contacts the tracker, a specifichost
that keeps track of all the users currently participating inthe
group. The tracker responds to the user with a list containing
the contact information ofL randomly selected peers. (Typical
values forL are40−60 [3].) After receiving the list, the user
establishes a TCP connection to each of theseL peers, which
we refer to as the user’sneighbors.

As mentioned earlier, when disseminating the file, BitTor-
rent partitions the whole file into a number of blocks. Neigh-
bors exchange block availability information and messages
indicating interest in blocks. The BitTorrent protocol uses a
rate based TFT scheme to determine to which neighbors a user
should upload blocks to. The rate based TFT scheme proceeds
as follows: time is slotted into10 second intervals and each
such time-interval is called anunchoking period. At the end of
each unchoking period a user makes achoking/unchokingde-
cision. The choking/unchoking decision proceeds as follows:
First, the user computes for each of the neighbors that are
interested in downloading a block from him/her, the average
download rate that he/she receives during the last20 seconds.
Then, he/she selects to provide uploads to, i.e. tounchoke,
a numberX of his/her neighbors who provided him/her the
best download rates, with ties broken arbitrarily. (By default,
X = 4. ) Similarly, if the user chooses not to provide uploads
to a neighbor, we say that the neighbor is choked. Finally, the
user also randomly selects another neighbor to provide uploads
to. This last (random) selection process is calledoptimistic
unchoking. Hence, at any time instance a user is concurrently
uploading toZ = X + 1 neighbors. (Therefore, by default
Z = 5.) The following rules are also adopted by the scheme.

Let’s call the neighbor that was selected at the last optimistic
unchoking, anoptimistic unchoking neighbor, and suppose that
the last optimistic unchoking (and hence the end of the last
unchoking period) took place at timet1 seconds. Now, suppose
that the end of another unchoking period occurs at some time
t2 seconds. (Clearly,t2 ≥ t1 + 10 seconds). Then, if at time
t2 the optimistic unchoking neighbor belongs to the set of the
X neighbors who provide the user the best download rates
(and hence they will be unchoked), the user performs a new
optimistic unchoking. Otherwise: (i) ift2 < t1 + 30 seconds,
the user does not choke the optimistic unchoking neighbor
and does not perform a new optimistic unchoking, and (ii) if
t2 ≥ t1+30 seconds, the user chokes the optimistic unchoking
neighbor and performs a new optimistic unchoking. We call
this 30 second time-interval anoptimistic unchoking period.

This TFT scheme discourages free-riders because they will
keep getting choked if they do not provide uploads to their
neighbors. Further, it gives the opportunity to new users to
start downloading from the system even if they do not have
enough blocks to exchange, in which case the download rate
they provide is low. Finally, notice that the scheme allows a
user to discover good neighbors, i.e. neighbors who provide
him/her with high download rates, and exchange data with
them. Therefore, users who have high upload link capacities
tend to exchange data with a larger number of high capacity
users. And users with low upload link capacities tend to
exchange data with a larger number of low capacity users.
Hence, in a sense the system is designed to be fair to each
class of users.

B. Token-enhanced BitTorrent

The process by which a new user discovers neighbors in the
proposed token-based system (which we also refer to asToken-
enhancedBitTorrent) is exactly the same as in the original
BitTorrent system. Further, again, the file is partitioned into
blocks and neighbors exchange block availability information
and messages indicating interest in blocks.

As mentioned earlier, in the token-based scheme users use
tokens as a means to trade blocks. In particular, each user
maintains a token table which keeps track of the amount of
tokens his/her neighbors possess. When the user uploadsXup

bytes to a neighbor, he/she decreases the neighbor’s tokensby
KdownXup. On the other hand, the user increases a neighbor’s
tokens byKupXdown if he/she downloadsXdown bytes from
the neighbor under study. Notice that a user does not have
access to his/her amount of tokens since this is maintained by
his/her neighbors.

Under the proposed scheme each user decides to which (of
the interested) neighbors he/she will upload blocks to, every 10
seconds. This is equal to the unchoking period in the original
BitTorrent system. In particular, every10 seconds the user
first checks which of his/her neighbors have enough tokens
to perform the download of a block. If there are more than
Z neighbors having enough tokens, then the user randomly
selectsZ of them to upload to. IfZ or fewer neighbors have
enough tokens the user provides uploads only to them. If a
neighbor runs out of tokens while downloading from the user,
then the user stops uploading to the neighbor immediately after
the current block transfer is complete, and randomly selects to
upload to some other neighbor who has enough tokens. Finally,
we initialize the token table of each user with an amount of
tokens that suffices to download one block. The reason of
giving initial tokens is to allow users download data when
they first join the system.

Note thatKup and Kdown are relative values. Therefore,
the proposed scheme actually has only one design parameter.
We will show that forKup = Kdown the token-based system
has approximately the same performance, and it is as fair,
as the original BitTorrent system. Finally, we will also show
that asKup increases the overall system performance of the
token-based system can get significantly better than that of
the original BitTorrent system, by sacrificing some fairness



towards high capacity users. In particular, high capacity users
will end up providing uploads to the system at a faster rate
than the download rate they receive.

IV. STEADY STATE ANALYSIS

In this section we propose a mathematical model to study
the performance of a BitTorrent-like system in steady state,
where the number of leechers and seeds in the system is
assumed to remain constant over a relatively long period of
time. Such an assumption is not unrealistic in flash crowd
scenarios [15], [17]. (However, note that we will relax it in
the next section.)

We first study the user download rate and then proceed
with the file download delay, which is defined as the time
difference between the moment that a user (leecher) joins
the system and the moment that the user downloads the
complete file. As mentioned earlier, in real P2P systems users
have heterogeneous capacities. We incorporate this fact inour
analysis in order to make it more realistic and general. Further,
we also consider all details of the BitTorrent protocol. For
ease of exposition, assume that there exist two classes of users
(leechers): (i) high bandwidth (H-BW ) users, who have a high
upload link capacity, and (ii) low bandwidth (L-BW ) users,
who have a low upload link capacity. We will show in IV-D
that the model can be extended along the same lines for more
classes of users, in accordance with recent trace-based studies
[17], [25] that divide the users of a real P2P system into four
classes. (Also, in the next section we present a second model
that can easily account for arbitrarily many classes of users,
however by sacrificing some accuracy.) We denote byN the
total number of leechers in the system and byα the percentage
of L-BW leechers. We start our analysis with the original
BitTorrent system and then proceed with the token-enhanced
system.

A. Computing the User Download Rates in the Original
BitTorrent System

Consider a H-BW leecher and denote bynd
HH andnd

HL the
steady state average number of H-BW and L-BW neighbors
respectively that this leecher is downloading from, and by
DHH and DHL the corresponding average download rates.
Similarly, consider a L-BW leecher and denote bynd

LH and
nd

LL the steady state average number of H-BW and L-BW
neighbors respectively that this leecher is downloading from,
and byDLH and DLL the corresponding average download
rates. Further, letDS be the average download rate that a
leecher can receive from the seed(s). Now, letRdownH and
RdownL be the aggregate download rate of a H-BW and a
L-BW leecher respectively. It is easy to see that:

RdownH = nd
HHDHH + nd

HLDHL + DS , (1)

RdownL = nd
LHDLH + nd

LLDLL + DS . (2)

Because all leechers in the system are equally likely to be
downloading file blocks from the seeds, we can writeDS =
CupS

N
, whereCupS is the aggregate upload link capacity of the

seeds.

Now, denote bynu
HH and nu

HL the steady state average
number of H-BW and L-BW neighbors respectively that a H-
BW leecher is uploading to, and letUHH and UHL be the
corresponding average upload rates. Similarly, denote bynu

LH

andnu
LL the steady state average number of H-BW and L-BW

neighbors respectively that a L-BW leecher is uploading to,
and byULH andULL the corresponding average upload rates.
Further, letRupH and RupL be the aggregate upload rate of
a H-BW and a L-BW leecher respectively. As before, we can
write:

RupH = nu
HHUHH + nu

HLUHL, (3)

RupL = nu
LHULH + nu

LLULL. (4)

In order to be able to predict the download delays we first
need to compute the download ratesRdownH and RdownL.
Hence, we need to calculate the values of the parametersnd

HH ,
nd

HL, nd
LH , nd

LL, DHH , DHL, DLH , and DLL. To do so,
we first compute the values ofnu

HH , nu
HL, nu

LH , nu
LL, UHH ,

UHL, ULH , andULL (that comprise Equations (3) and (4)) and
then relate them to the aforementioned parameters. Notice that
computing these parameters first is easier. This is because,it
is the rules according to which a user chooses a neighbor to
provideuploads to, that are explicitly defined in the BitTorrent
protocol. However, in order to compute them we first need to
find, in addition to Equations (3) and (4), six more relations. In
this way we will have a system comprising of eight equations
and eight unknowns.1 For this, we proceed as follows.

Let Z be the number of neighbors that a user in BitTorrent
is uploading to at any time instance. (This is a system
configuration parameter; by defaultZ = 5.) Hence:

nu
HH + nu

HL = Z, (5)

nu
LH + nu

LL = Z. (6)

Now let CupH /CdownH and CupL/CdownL be the up-
load/download link capacity of H-BW and L-BW leechers
respectively. Further, assume that a leecher’s download link
capacity is larger than or equal to his/her upload link capacity.
Therefore, the system’s bottlenecks are the upload links and
we can assume that these are fully utilized.2 This means that
RupH = CupH and thatRupL = CupL.

Since peer-to-peer traffic is transferred via TCP connections,
we can further assume that the upload capacity of a user will
be fairly shared among concurrent upload connections,if the
maximum possible download rate ofeachconnection is larger
or equal to the fair share. (This is a working assumption, also
made in many other studies of P2P systems,e.g.see [26].) For
L-BW leechers this is always the case sinceCdownH > CupL,

1In general, if there aren classes of users, one would need to solve a system
of (n + n) · n = 2n2 equations. This is because each classC ∈ {1...n}
is characterized byn variables dictating the number of users from each class
that a member of classC is uploading to on average, andn corresponding
upload rates.

2This is not an unrealistic assumption. Common Internet access tech-
nologies, such as Dial-up, DSL, cable-modem, and Ethernet,satisfy this
assumption [25]. Further, this assumption has been also made in many other
studies on peer-to-peer networks,e.g.see [9] and references therein. And, it is
in accordance with measurement studies of BitTorrent systems, e.g.see [11],
[15].



and CdownL ≥ CupL, and hence we can write the following
equation:

ULL = ULH =
CupL

Z
. (7)

We now turn our attention to the upload rate that a H-
BW leecher provides to a L-BW leecher (UHL). At any time
instance a L-BW leecher is downloading on average fromnd

LL

L-BW neighbors. We define thesparedownload capacity of
this leecher asCdownL − nd

LLDLL − DS. Then, the upload
rate that a H-BW leecher can provide to a L-BW leecher is
given by the following lemma:3

Lemma1:

UHL = min

(

CupH

Z
, CdownL − nu

LLULL − DS

)

. (8)

Proof: If the spare capacity of the L-BW leecher is larger
than his fair share (CupH

Z
), the leecher will be downloading

from the H-BW leecher at an average rate equal to his/her
fair share. Otherwise, the leecher will be downloading at
an average rate equal to his/her spare capacity (CdownL −
nd

LLDLL−DS). However, notice thatnd
LLDLL = nu

LLULL, as
the total download rate from L-BW leechers to L-BW leechers
equals the total upload rate from L-BW leechers to L-BW
leechers.

Now, note that once we have an expression for one of
nu

HH or nu
HL (and hence for the other by Equation (5)), the

expression forUHH will result from Equation (3). We proceed
with nu

HL (the average number of L-BW leechers that a H-BW
leecher provides uploads to). LetL be the total number of a
leecher’s neighbors and assume that all of these neighbors are
interested in a block that the leecher under study possesses. 4

Further, denote byBinomial(N, p, k) the probability mass
function of a Binomial random variable with parametersN

andp, that is,Binomial(N, p, k) ≡

(

N

k

)

pk(1− p)(N−k).

Then,nu
HL is given by the following lemma:

Lemma2:

nu
HL =

L
∑

k=0

n(k)P{havek H-BW neighbors out ofL}, (9)

where:

n(k) =

{

L−k
L−Z+1 if k ≥ Z,

Z − k otherwise.

and:

P{havek H-BW neighbors out of L} = Binomial(L, 1−α, k).

Proof: First recall thatα is the percentage of L-BW
leechers in the system. Since the neighbors’ list consists
of a random selection of H-BW and L-BW leechers, it
is easy to see thatP{havek H-BW neighbors out of L} =
Binomial(L, 1 − α, k). Now let’s consider a H-BW leecher,

3Note that because of BitTorrent’s TFT strategy (see SectionIII), the
probability that thesameL-BW leecher is concurrently downloading from
two or more H-BW leechers is quite small.

4It has been demonstrated that file sharing in BitTorrent is very effective,
i.e., there is a high likelihood that a node holds a block thatis useful to its
peers,e.g.see [17]. This is partially due to the local rarest first (LRF)block
selection algorithm that BitTorrent uses to disseminate blocks.

say leecherj, and letk ≤ L be the number ofj’s H-BW
neighbors. Sincej provides uploads toZ of his/her neighbors,
we distinguish two cases: (i)k ≥ Z, and (ii) k < Z. First,
consider case (i) and recall how BitTorrent’s TFT scheme
works (see Section III). It is easy to see that in this case
j may be uploading to at most one L-BW leecher at any
time instance. This L-BW leecher is randomly selected (via
optimistic unchoking) with probability L−k

L−Z+1 . Now consider
case (ii). In this casej is uploading to exactlyZ − k L-BW
leechers at any time instance, as he/she does not have any
other H-BW neighbor that he/she could provide uploads to. It
is now easy to see thatnu

HL is given by Equation (9).
Finally, we also need to find an expression for one ofnu

LH

or nu
LL. (The other will result from Equation (6)). To compute

nu
LH (the average number of H-BW leechers that a L-BW

leecher provides uploads to), we proceed as follows. First,
recall from Section III that the optimistic unchoking period is
30 seconds, the rate observation window is20 seconds, and
users make their choking decision every10 seconds. Suppose
that H-BW leecherj selects L-BW leecheri via optimistic
unchoking at timet0, as shown in Figure 1. According to
BitTorrent’s TFT scheme, at timet0 +30 leecherj will choke
i, becausei did not provide him/her with a high download
rate.

t0 t0+10 t0+20 t0+30 t0+40 t0+50

t1 t1+10 t1+20 t1+30 t1+40 t1+50

j chokes ij optimistic unchokesi

i makes first choking decision i chokes j

Fig. 1. Time line of optimistic unchoking and choking decision making.

Now, let’s study the outcome of the choking decisions of
L-BW leecheri. Suppose that this leecher makes his/her first
choking decision at timet1. Clearly, useri will not choke
leecherj at t1, t1 + 10, and t1 + 20 becausej provides
him/her with a higher download rate compared toULL (the
rate by whichi is downloading from a L-BW neighbor).5

Further, leecheri will choke j at time t1 + 50 because the
rate observation window is20 seconds and leecherj did not
provide anything toi during the period(t1 +30, t1+50]. How
aboutt1 + 30 andt1 + 40? At t1 + 30, the average download
rate thati observes fromj is UHL(20+t0−t1)

20 . If this rate is
larger thanULL, i will not chokej. Similarly, at t1 + 40, the
average download rate thati observes fromj is UHL(10+t0−t1)

20 .
If this rate is larger thanULL, i will not chokej. Therefore,
if Nunchoke denotes the number of times thati did not choke
j in the time-interval [t1, t1 + 50], we can write:

Nunchoke =











3 if UHL
(20+t0−t1)

20 < ULL,

5 if UHL
(10+t0−t1)

20 ≥ ULL,

4 otherwise.

5Recall that the probability that two or more H-BW leechers uploading to
the same L-BW leecher at the same time-instance is small. Therefore, i will
be always downloading from at least one L-BW neighbor.



Because users are not synchronized (and the choking decisions
are taking place every10 seconds) it makes sense to assume
thatt1 is uniformly distributed betweent0 andt0+10. Hence,
we can compute the average number of timesNunchoke that i
did not chokej. This corresponds to a duration of 10Nunchoke

seconds.
Recall that a H-BW leecher is uploading tonu

HL L-BW
leechers on average. Therefore, considering the above scenario
only, it is easy to see that at any time instance a H-BW leecher
on average downloads fromnu

HL
10Nunchoke

30 L-BW leechers.
And hence, the average number of H-BW leechers that a L-
BW leecher provides uploads to (due to the above scenario
only) is

(

1−α
α

)

nu
HL

10Nunchoke

30 . We refer to this scenario, as
the optimistic unchoking reward scenario.

nu
LH is now given by the following lemma:

Lemma3:

nu
LH =

L
∑

w=0

n(w)P1(w) +

(

1 − α

α

)

nu
HL

Nunchoke

3
, (10)

where:

n(w) =

{

L−w
L−Z+1 if w ≥ Z,

Z − w otherwise.

and:

P1(w) = P{havew L-BW neighbors out of L}

= Binomial(L, α, w).

Proof: As before, sinceα is the percentage of L-BW users
in the system and the neighbors’ list consists of a random
selection of H-BW and L-BW users, the probability of having
w L-BW neighbors out ofL is Binomial(L, α, w). Further,
the second term on the right hand side of Equation (10)
corresponds to the optimistic unchoking reward scenario. What
about the first term? This term accounts for the number of H-
BW users that a L-BW user has chosen to upload to, just like
in the proof of Lemma 2.

In particular, consider L-BW useri, and let w ≤ L be
the number ofi’s L-BW neighbors. As before, we distinguish
two cases: (i)w ≥ Z, and (ii) w < Z. In case (i)i may be
uploading to at most one H-BW user at any time instance. This
H-BW user has been selected via optimistic unchoking, with
probability L−w

L−Z+1 , and will be choked after the optimistic
unchoking period elapses. This is because the H-BW user, who
prefers other H-BW users to upload to, won’t be uploading to
this L-BW user. In case (ii),i has selected to upload to exactly
Z −w H-BW users, as he/she does not have any other L-BW
neighbor to provide uploads to.

Notice that in Lemma 2 we have not considered the opti-
mistic unchoking reward scenario. This is because, if a L-BW
leecher selects via optimistic unchoking a H-BW leecher to
provide uploads to, the H-BW leecher will choke this L-BW
leecher on his/her first choking decision, because the L-BW
leecher does not provide him/her with a high download rate.
Therefore, H-BW leechers do not provide uploads to L-BW
leechers in this case (i.e., L-BW leechers are not getting any
reward for optimistically unchoking H-BW leechers.)

Given Equations (3)...(10) (and the fact thatRupH = CupH ,
RupL = CupL), we can now computenu

HH , nu
HL, nu

LH , nu
LL,

UHH , UHL, ULH , andULL. We proceed to relate these param-
eters tond

HH , nd
HL, nd

LH , nd
LL, DHH , DHL, DLH , andDLL.

First, clearly DHH = UHH , DHL = ULH , DLH = UHL,
and DLL = ULL. Further, notice that in any system the
total number of upload connections equals the total number
of download connections. For example, the total number of
upload connections provided by H-BW leechers to L-BW
leechers equals the total number of download connections that
L-BW leechers receive from H-BW leechers. Therefore, we
can write nd

LHα = nu
HL(1 − α). Similarly, we can easily

relate nd
HH , nd

HL, nd
LL to nu

HH , nu
LH , nu

LL, as follows:
nd

HH = nu
HH , nd

HL(1−α) = nu
LHα, andnd

LL = nu
LL. Hence,

we can now compute the average download rate of a H-BW
leecher and a L-BW leecher using Equations (1) and (2), and
of course the average download rate across all users.

B. Computing the User Download Rates in the Token-
enhanced BitTorrent system

The model for the token-enhanced system is similar to the
model for the original BitTorrent system. In particular, itis
easy to see that Equations (1)...(6) hold for the token-enhanced
system as well.

As before, we assume again that the download capacity
of a user is larger than or equal to his/her upload capacity.
Now, recall that a user earnsKup tokens for each byte
he/she uploads and spendsKdown tokens for each byte he/she
downloads. For a L-BW leecher, his/her L-BW neighbors
may earn tokens by uploading to him/her at a rateKupULL,
and they spend tokens by downloading from him/her at a
rate KdownDLL. Clearly, to make the token based system
operate properly, we need to haveKup ≥ Kdown. Hence,
KupULL ≥ KdownDLL (sinceDLL = ULL). Now, consider
a H-BW leecher. The rate that a H-BW leecher gains tokens
by providing uploads to a L-BW leecher (KupUHL) is larger
than the rate that the leecher spends tokens by downloading
from the L-BW leecher (KdownDHL), since KupUHL ≥
KdownUHL > KdownULH = KdownDHL. Therefore, all
users will always have enough tokens to download from a
L-BW leecher. Hence, the upload capacity of a L-BW leecher
is fully utilized and Equation (7) holds true in this system as
well.

Now, let’s see what relations change compared to the
original BitTorrent system. Recall that according to the token
based scheme a user randomly selects to upload to those
neighbors who have enough tokens to perform the download.
Consider a L-BW leecher. SinceKupULL ≥ KdownDLL

(as Kup ≥ Kdown and ULL = DLL), and KupUHL ≥
KdownUHL > KdownULH = KdownDHL (asKup ≥ Kdown,
UHL > ULH , and ULH = DHL), both L-BW and H-BW
leechers always have enough tokens to download from a L-
BW leecher. Therefore, the L-BW leecher will equally select
every peer to provide uploads to. Since the total number of
upload connections isZ, the percentage of H-BW leechers in
the system is1−α, and the neighbor’s list consists of a random
selection of H-BW and L-BW leechers, in this system:

nu
LH = Z(1 − α). (11)



Now let’s consider a H-BW leecher and first concentrate on
the the rate by which this leecher provides uploads to a L-BW
leecher. First assume thatKupULH ≥ KdownUHL. Under this
condition a L-BW leecher earns tokens by uploading to a H-
BW leecher at a faster rate than the rate that he/she spends
tokens by downloading from the H-BW leecher. This means
that a L-BW leecher always has enough tokens to download
from a H-BW leecher. Since a H-BW leecher always has
enough tokens to download from a H-BW leecher as well
(since KupUHH ≥ KdownDHH , as Kup ≥ Kdown and
UHH = DHH ), the H-BW leecher cannot distinguish H-BW
neighbors from L-BW neighbors, and thus he/she provides
uploads to all of his/her neighbors with the same probability.
Hence:

nu
HL = Zα. (12)

Further,UHL in this scenario is given in the following lemma:
Lemma4:

UHL =

L
∑

i=0

i
∑

k=0

min

(

CupH

Z
, RHL(k)

)

P1(k|i)P2(i), (13)

where:

RHL(k) =

{

CdownL−nd
LLULL−DS

k
if k > 0,

0 otherwise.

and:

P1(k|i) =P{download fromk out of i H-BW neighbors}

=Binomial(i,
Z

L
, k),

P2(i) =P{havei H-BW neighbors out of L}

=Binomial(L, 1− α, i).

Proof: First, as we have said, now a L-BW user always
has enough tokens to download from a H-BW neighbor.
Hence, her/her download rate is not constrained by the amount
of tokens he/she possesses. If a L-BW user is downloading
from k > 0 H-BW users, the average download rate from
each H-BW user is equal toRHL(k) =

CdownL−nd
LLULL−DS

k
,

where CdownL − nd
LLULL is the spare capacity of the L-

BW user. However, this rate cannot exceed the maximum
average rate that a L-BW user can download from a H-BW
user, which isCupH

Z
. Further, the probability that the L-BW

user is downloading from a H-BW neighbor isZ
L

because
each user randomly selectsZ out of L neighbors to provide
uploads to (as every neighbor always has enough tokens).
Therefore, given that a L-BW user hasi H-BW neighbors,
the probability that he/she is downloading fromk ≤ i of them
is Binomial(i, Z

L
, k). And finally, the probability that the L-

BW user hasi H-BW neighbors isBinomial(L, 1 − α, i).

Notice that under the aforementioned condition
(KupULH ≥ KdownUHL) the upload link capacity of a
H-BW leecher may not be fully utilized. This is because,
since every neighbor seems identical, a H-BW leecher may
select to provide uploads toseveral L-BW leechers who
cannot download fast. Hence, it is no longer the case that
RupH = CupH , and therefore, we cannot use Equations (3),

(5), (12) and (13) to computeUHH . Instead,UHH is given
below:

Lemma5:

UHH =

Z
∑

w=0

RHH(w)P{upload tow L-BW neighbors},

(14)
where:

RHH(w) =

{

CupH−wUHL−DS

Z−w
if w < Z,

0 otherwise.

and:

P{upload tow L-BW neighbors} = Binomial(Z, α, w).

Proof: The average rate by which a H-BW leecher is
uploading to a L-BW leecher isUHL. If a H-BW leecher is
uploading tow L-BW leechers, then the average upload rate to
each H-BW leecher is equal toRHH(w) =

CupH−wUHL−DS

Z−w
,

where CupH − wUHL − DS is the spare upload capacity
of the H-BW leecher. Further, a H-BW leecher randomly
selectsZ neighbors to provide uploads to because they always
have tokens. Hence,P{upload tow L-BW neighbors} =
Binomial(Z, α, w).

From Equations (3)...(7) and (11)...(14) (as well as the fact
that RupL = CupL), we can now computenu

HH , nu
HL, nu

LH ,
nu

LL, UHH , UHL, ULH and ULL. And, we can relate these
parameters tond

HH , nd
HL, nd

LH , nd
LL, DHH , DHL, DLH and

DLL, exactly as we did in the original BitTorrent system.
Therefore, we can now compute the average download rates
using Equations (1) and (2).

Note that in order to check whether conditionKupULH ≥
KdownUHL is satisfied, after solving the system of equa-
tions under this assumption, as described above, we then
need to check if the resultingUHL satisfies this condition
(KupULH ≥ KdownUHL). If the condition is not satisfied
Equations (12)...(14) do not hold. This means that we need to
find new expressions, and resolve a system of Equations with
these new expressions. This is because, if the condition is not
satisfied, it means that L-BW leechers will not have sufficient
tokens to download from H-BW leechers, and therefore, H-
BW leechers will rarely pick L-BW leechers to upload to. The
resulting relation forUHL in this case is similar to Equation
(8) and it is given in the following lemma:

Lemma6:

UHL = min

(

CupH

Z
, CdownL − nd

LLULL − DS,
KupULH

Kdown

)

.

(15)
Proof: First, the token earning rate of a L-BW user from

a H-BW user isKupULH . Hence, the download rate of a L-
BW user from a H-BW user cannot exceedKupULH

Kdown
. (Recall

that each user keeps track of the amount of tokens that his/her
neighbor possesses.) Now,CdownL − nd

LLULL − DS is the
spare download capacity of the L-BW user. Clearly, he/she
cannot download at a rate faster than this. Finally, as with
the proof of Lemma 1, if the spare capacity of the L-BW
user is larger than his/her fair share (CupH

Z
), the user will be

downloading from the H-BW user at an average rate equal to
his/her fair share. Combining these facts, gives the result.



For nu
HL, by observing that in the long run the token

earning rate of all L-BW leechers from H-BW leechers
(nu

LHKupULHNα) equals the token spending rate of all L-
BW leechers to H-BW leechers (nu

HLKdownUHLN(1 − α)),
we can write:

nu
HL =

nu
LHKupULHα

KdownUHL(1 − α)
, (16)

where ULH is given as before by Equation (7),nu
LH by

Equation (11), andUHL by Equation (15).
Finally, since H-BW leechers will rarely pick L-BW leech-

ers to upload to, we can now use the fact thatRupH = CupH ,
and therefore, we do not have to find an explicit formula
for UHH . As with the rest of the unknowns, its value will
result by solving the system comprising of Equations (3)...(7)
and (11), (15), (16) (using the facts thatRupL = CupL and
RupH = CupH ). And, we can now compute the download
rates as before.

C. Estimating the Average Download Delay

So far, we have seen how one can compute the download
rates in a heterogeneous BitTorrent-like system with and with-
out the token based scheme, under steady state assumptions.
Now, we show how one can compute the file download delays
from the corresponding rates.

As mentioned earlier, the steady state assumption makes
sense in flash crowd scenarios [15], [17]. In such scenarios
leechers will join the system in a short time period. As a con-
sequence, the total number of leechers present in the system
will stabilize quickly, and will remain constant for a relatively
long time-period, until leechers finish their downloads andstart
departing the system (or becoming seeds). Figure 2 shows how
the total number of leechers in a system with H-BW and L-
BW leechers will evolve as a function of time. During the time
period (t0, t1], leechers join the system. Fromt1 to t2, both
H-BW leechers and L-BW leechers are present in the system.
Since H-BW leechers have higher capacities, they depart
earlier, by timet3. Afterward, only L-BW leechers are present
in the system. Our model computes the download rates for
each class of leechers during the time interval(t1, t2]. Further,
the download rate of L-BW leechers during the interval(t3, t4]
is just equal to the sum of their upload link capacity, since
this is fully utilized as explained earlier, and the download
rate they receive from seeds. Notice that our earlier analysis
does not model the transient periods(t0, t1] and (t2, t3]. To
compute the delays we make the assumption thatt0 ≈ t1 and
t2 ≈ t3. 6

Now, let S be the file size and letTH and TL be the
average file download delay of a H-BW and a L-BW leecher
respectively. It is easy to see that:TH = S

RdownH
.

Further, letSd be the amount of data that a L-BW leecher
has downloaded when all H-BW leechers were present in the
system. It is easy to see thatSd = THRdownL, and therefore,
that the average file download delay of a L-BW leecher can

6The assumption thatt0 ≈ t1 can be justified in a flash crowd scenario.
Further, as we shall see in Section VI, the approximationt2 ≈ t3 does not
significantly affect the accuracy of the model.

N
um

be
r 

of
 U

se
rs

Time
t4t2 t3t1t0

Users join the system
All users present in the system
H-BW users depart the system
Only L-BW users present in the system

Fig. 2. Evolution of the number of leechers.

be expressed as follows:TL = TH + S−Sd

CupL+D′

S

, whereD′
S =

C′

upS

αN
is the average download rate from seeds. Notice that the

aggeragate seed capacityC′
upS may not be the same as before,

since some H-BW leechers might had become seeds instead
of leaving the system. In other words,C′

upS = CupS +pH(1−
α)NCupH , wherepH is the percentage of H-BW leechers that
become seeds.

D. Extension for More Classes of Users

In this section we show, along the same framework, how to
extend our analysis for more classes of users. Now, in addition
to L-BW and H-BW leechers, lets consider the third class of
leechers: Medium Bandwidth (M-BW) leechers. Further, let
α, β, and ζ be the proportion of L-BW, M-BW, and H-BW
leechers in the system respectively. Now, it is easy to see that:

RdownH = nd
HHDHH + nd

HMDHM + nd
HLDHL + Ds, (17)

RdownM = nd
MHDMH + nd

MMDMM + nd
MLDML + Ds, (18)

RdownL = nd
LHDLH + +nd

LMDLM + nd
LLDLL + Ds. (19)

And

RupH = nu
HHUHH + nu

HMUHM + nu
HLUHL, (20)

RupM = nu
MHUMH + nu

MMUMM + nu
MLUML, (21)

RupL = nu
LHULH + nu

LMULM + nu
LLULL. (22)

Again, to compute the leecher download rates, we first com-
pute the values of upload variables and then relate them to the
corresponding download parameters as follows:DLL = ULL,
DLM = UML, DLH = UHL, DML = ULM , DMM = UMM ,
DMH = UHM , DHL = ULH , DHM = UMH , DHH = UHH ,
nd

LL = nu
LL, αnd

LM = βnu
ML, αnd

LH = ζnu
HL, βnd

ML =
αnu

LM , nd
MM = nu

MM , βnd
MH = ζnu

HM , ζnd
HL = αnu

LH ,
ζnd

HM = βnu
MH , andnd

HH = nu
HH .

To compute the values of upload variables, first, recall that
Z is the number of neighbors that a leecher in BitTorrent is
uploading to at any time instance. Hence:

nu
HH + nu

HM + nu
HL = Z, (23)

nu
MH + nu

MM + nu
ML = Z, (24)

nu
LH + nu

LM + nu
LL = Z. (25)

Further, under the assumption that a leecher’s download link
capacity is larger than or equal to his/her upload link capacity,
we know that the system’s bottlenecks are the upload links



and we can assume that these are fully utilized. This means
that RupH = CupH , RupM = CupM , and RupL = CupL.
Additionally, as explained earlier, we assume that the upload
capacity of a leecher will be fairly shared among concurrent
upload connections. Therefore we can write:

ULL = ULM , (26)

ULL = ULH , (27)

UMM = UMH . (28)

Because at any time instance a L-BW leecher is download-
ing on average fromnd

LL L-BW neighbors, we can again
compute thespare download capacity of this leecher as
CdownL −nd

LLDLL −DS .And then, the upload rate that a H-
BW/M-BW leecher can provide to a L-BW leecher are given
by the following two equations:

UHL = min

(

CupH

Z
, CdownL − nu

LLULL − DS

)

,(29)

UML = min

(

CupM

Z
, CdownL − nu

LLULL − DS

)

.(30)

Similarly, we can again compute thesparedownload capacity
of a M-BW leecherCM

spare = CdownM − nd
MLDML −

nd
MMDMM − DS and the upload rate that a H-BW leecher

can provides to a M-BW leecher is:

UHM = min

(

CupH

Z
, CM

spare

)

. (31)

Denote byTrinomial(N, p, k) the probability mass func-
tion of a Trinomial random variable with parameters
N , p1, and p2 that is, Trinomial(N, p1, p2, k1, k2) ≡
(

N

k1

)(

N − k1

k2

)

pk1

1 pk2

2 (1 − p1 − p2)
(N−k1−k2). Recall

that H-BW and M-BW leechers will provide uploads to L-BW
leechers when they choose a L-BW leecher as the optimistic
unchoking neighbor or when they do not sufficient H-BW/M-
BW leechers to upload to. Therefore,nu

HL and nu
ML can be

computed by Equations (32) and (33) respectively.

nu
HL =

L
∑

k=0

L−k
∑

j=0

n(j, k)P1(j, k), (32)

where:

n(j, k) =

{

L−j−k
L−Z+1 if j + k ≥ Z,

Z − k − j otherwise.

and:

P1(j, k) =P{havej M-BW and k H-BW neighbors out of L}

=Trinomial(L, β, ζ, j, k).

nu
ML =

L
∑

i=0

L−i
∑

j=0

n(i, j)P2(i, j), (33)

where:

n(i, j) =

{

i
L−Z+1 if j ≥ Z,
(Z−j)i

L−j
otherwise.

and:

P2(i, j) =P{havei L-BW and j M-BW neighbors out of L}

=Trinomial(L, α, β, i, j).

Notice that H-BW leechers will prefer M-BW to L-BW
leechers when they do not have sufficient H-BW neighbors
to exchange file. Thereforenu

HM is given by the following
equation:

nu
HM =

L
∑

k=0

L−k
∑

j=0

n(j, k)P1(j, k), (34)

where:

n(j, k) =











j
L−Z+1 if k ≥ Z,

Z − k − 1 if k < Z andj ≥ Z − k − 1,

j otherwise.

and:

P1(j, k) =P{havej M-BW and k H-BW neighbors out of L}

=Trinomial(L, β, ζ, j, k).

Along the same line of analysis in the previous section,
we now can compute the TFT rewards for H-BW and M-
BW leechers and letN

LH

unchoke, N
LM

unchoke, and N
MH

unchoke

be the average number of times that L-BW, L-BW and M-
BW leechers reward H-BW, M-BW, and H-BW leechers
respectively. And then, we can computenu

LH , nu
LM , andnu

MH

using Equations (35), (36), and (37) respectively.

nu
LH =

L
∑

i=0

L−i
∑

k=0

n(i, k)P3(i, k) +

(

ζ

α

)

nu
HL

N
LH

unchoke

3
, (35)

where:

n(i, k) =

{

k
L−Z+1 if i ≥ Z,
(Z−i)k

L−i
otherwise.

and:

P3(i, k) =P{havei L-BW and k H-BW neighbors out of L}

=Trinomial(L, α, ζ, i, k).

nu
LM =

L
∑

i=0

L−i
∑

j=0

n(i, j)P2(i, j)+

(

β

α

)

nu
ML

N
LM

unchoke

3
, (36)

where:

n(i, j) =

{

j
L−Z+1 if i ≥ Z,
(Z−i)j

L−i
otherwise.

and:

P2(i, j) =P{havei L-BW and j M-BW neighbors out of L}

=Trinomial(L, α, β, i, j).

nu
MH =

L
∑

j=0

L−j
∑

k=0

n(j, k)P1(j, k) +

(

ζ

β

)

nu
HM

N
MH

unchoke

3
,

(37)
where:

n(j, k) =

{

j
L−Z+1 if k ≥ Z,
(Z−k)j

L−k
otherwise.



and:

P1(j, k) =P{havej M-BW and k H-BW neighbors out of L}

=Trinomial(L, β, ζ, j, k).

V. SYSTEM TIME DYNAMICS

In the previous section we have analyzed the performance
of heterogeneous BitTorrent-like systems in steady state.In
particular, we have derived a mathematical model that accounts
for all the detailsof the BitTorrent protocol and predicts the
download rates, and hence the delays, of different classes
of users. However, as mentioned before, this model is only
applicable in practical cases where the steady state assumption
makes sense,e.g., such as in flash crowd scenarios. Further,
it does not scale well when there exist many classes of users.
(Recall that one needs2n2 equations to characterize a system
consisting ofn classes of users.)

With the above in mind we now propose a second model–in
particular a fluid model. This model can be used to model a
more dynamic system where users may arrive and depart at any
time instance,e.g.such as in non-flash crowd scenarios. Fur-
ther, it can be easily used to describe a large number of classes
of users without becoming complex. It is inspired by the
model in [4] (see Section VII for a concrete comparison) and
derived along the same lines as our first model, but under the
following simplifying approximation/assumption that renders
analysis tractable: We assume that leechers of a particularclass
provide uploads to leechers of other classes, only via optimistic
unchoking. This implies the following: (i) We assume that a
leecher of a specific class always has enough neighbors of the
same class to which he/she can connect to. (This is not an
unrealistic assumption since the list of neighbors (L) returned
by the tracker is usually large.) And, (ii) we do not consider
the optimistic unchoking reward scenario we saw earlier.

As we shall see in Section VI, the aforementioned ap-
proximations do not significantly affect the model’s accuracy.
However, in steady state scenarios, they render the model
slightly less accurate than our first model, which is more
detailed (but also more complex). (A detailed comparison
between our two models is performed in Section VI.)

As before, we first consider the original BitTorrent system
and then proceed with the token-enhanced system.

A. The Original BitTorrent System

In the previous section, we have assumed that there are only
two classes of users in the system. However, under our above
approximation, we can now consider more classes of users
while keeping things simple. We say that two users, which
can be either leechers or seeds, are in the same class if they
have the same link capacity, and we letG = {1, . . . , K} be
the set of user classes in the system.

Denote byxl
j(t) andxs

j(t) respectively, the number of class
j leechers and seeds in the system at timet. Let µj be the
service rate of a classj user, which is defined as the rate
by which the user can upload a file to other users. Given
the file size S and the upload link capacity of classj users

Cj
up, µj =

Cj
up

S
. Further, letµs(t) be the aggregate service

rate provided by all seeds in the system at timet. That is,
µs(t) =

∑K

j=1 µjx
s
j(t). Finally, let ǫsi(t) and ǫji(t) be the

proportion of service rate provided by all seeds and classj

leechers respectively, to all classi leechers at timet. And,
denote byRi(t) the aggregate service rate that all classi

leechers receive at timet. Considering the fact that class
i leechers cannot download faster than their download link
capacity,Ci

down, it is easy to see that:

Ri(t) = min





K
∑

j=1

xl
j(t)µjǫji(t) + µs(t)ǫsi(t), x

l
i(t)

Ci
down

S



 .

(38)
Notice that Ri(t) is also the departure rate of classi

leechers. Now letλi(t) be the arrival rate of classi leechers
andpi be the probability that a classi leecher will stay in the
system (become a seed) after he/she downloads the file. Then,
the population of classi leechers and seeds in the system is
described by the following differential equations:

xl
i

′
(t) = λi(t) − Ri(t), (39)

xs
i
′(t) = Ri(t)pi − γix

s
i (t), (40)

whereγi is the rate at which classi seeds leave the system.
As before, since all leechers in the system are equally

likely to be downloading from the seeds, it is easy to see
that ǫsi(t) =

xl
i(t)

P

K
n=1

xl
n(t)

µs(t), ∀i ∈ G. Further, recall from
the previous section that leechers are inclined to exchangefile
blocks with other leechers that belong in their class, due to
the rate-based TFT scheme. Also, by our earlier assumption,
a class i leecher can receive uploads from a leecher of
some other classj, only via optimistic unchoking. Since
users randomly select a neighbor for optimistic unchoking,
the probability that the selected neighbor is of classi equals

xl
i(t)

P

K
n=1

xl
n(t)

. Along the same lines of the derivation of Lemma
1, we know that classj leechers cannot upload to classi

leechers faster than the spare download capacity of classi

leechersCi
spare = Ci

down − ǫii(t)µi −
ǫsi(t)µs(t)

xl
i
(t)

, nor faster
than the fair share that classi leechers can receive, which is
µj

Z
. (Recall thatZ is the configured number of user upload

connections.)
We can now state the following lemma forǫji(t), whose

proof follows immediately from the above arguments:
Lemma7:

ǫji(t) =











xl
i(t)

P

K
n=1

xl
n(t)

min

(

1

Z
,
Ci

spare

µj

)

if i 6= j,

1 −
∑K

i=1,i6=j ǫji(t) otherwise.

(41)

For a system withK classes of users we have2K variables
({xl

i(t)} , {xs
i (t)}, i ∈ G) and 2K differential equations

(two for each class, like Equations (39) and (40)), that dictate
the evolution of these2K variables. Therefore, we can solve
this system of equations to study how the user population
({xl

i(t)} , {xs
i (t)}, i ∈ G) and the leecher departure rates

({Ri(t)}, i ∈ G) evolve with time. And, of course, we can
compute the corresponding download delays of each class of
leechers as a function of time because the user download delay
is the reciprocal of the user departure rate.



B. The Token-enhanced BitTorrent System

It is easy to see that Equations (38)...(40) still hold in the
token-enhanced system. What changes in the token-enhanced
system is the way we compute{ǫji(t)}, i, j ∈ G. (Clearly the
relation for ǫsi(t) remains the same.)

Recall that a user earnsKup tokens for each byte he/she
uploads and spendsKdown tokens for each byte he/she
downloads. Now, sort the user classes in accordance with
their upload link capacity, with class1 be the class with
the lowest capacity. Along the same lines of the analysis
in Section IV-B, if leecherm belongs to class1, we know
that all of his/her neighbors always have sufficient tokens
to download from him/her. Therefore, they equally share
the upload link capacity of leecherm. This suggests that
ǫ1i(t) =

xl
i(t)

P

K
n=1

xl
n(t)

, ∀i ∈ G. Now, when a class1 leecher
exchanges data with a class2 leecher, the token earning rate
of the class1 leecher from the class2 leecher isǫ12(t)µ1Kup,
and the token spending rate of the class1 leecher to the
class2 leecher isǫ21(t)µ2Kdown. Because in the long run
the token earning rate of all class1 leechers from class2
leechers (xl

1(t)ǫ12(t)µ1Kup) equals the token spending rate of
all class1 leechers to class2 leechers (xl

2(t)ǫ21(t)µ2Kdown),

we can writeǫ21(t) =
xl
1
(t)ǫ12(t)µ1Kup

xl
2
(t)µ2Kdown

. However, notice that
ǫ21(t) cannot exceed the amount of the fair share that class
1 leechers can receive (from class2 leechers) when class1
leechers always have enough tokens to download. This amount
is xl

1
(t)

P

K
n=1

xl
n(t)

. 7 Therefore:

ǫ21(t) = min

(

xl
1(t)ǫ12(t)µ1Kup

xl
2(t)µ2Kdown

,
xl

1(t)
∑K

n=1 xl
n(t)

)

. (42)

Now, leechers in other classes share the remaining capacity
of the class 2 leecher (because they all have sufficient tokens
to exchange file blocks with this leecher, as they have larger
upload link capacities). Hence:

ǫ2i(t) =
(1 − ǫ21(t))xl

i(t)
∑K

n=2 xl
n(t)

, i ∈ {2, . . . , K}.

Continuing this way, it is easy to see that a general formula
for ǫji(t) is the following:

Lemma8:

ǫji(t) =







min
(

xl
i(t)ǫij(t)µiKup

xl
j
(t)µjKdown

,
xl

i(t)
P

K
n=1

xl
n(t)

)

if i < j,

(1−
Pj−1

n=1
ǫjn(t))xl

i(t)
P

K
n=j xl

n(t)
otherwise.

(43)
We can now solve the2K differential equations as before, in
order to study how the user population and download delays
evolve over time in the token-enhanced system.

VI. EXPERIMENTS

We use an event driven BitTorrent simulator developed by
[27] to validate our analysis. The detailed simulator description

7It is interesting to point out that this amount is independent of Z because

a class 2 leecher on average uploads toZ
xl
1
(t)

P

K
n=1

xl
n(t)

class 1 leechers with

rate µ2

Z
.

can be found in [17]. In addition, we implement the proposed
token based scheme to study its impact on the system perfor-
mance.

A. Steady State Performance Prediction and Flash Crowd
Scenarios

To validate the model of Section IV, we first simulate a
flash crowd scenario where 200 leechers join the system within
20 seconds. Leechers will leave the system as soon as they
finish their download. We simulate the system until all leechers
depart. Other simulation settings are: (i) there is only oneseed
in the system and the upload link capacity of the seed is
800Kbps, (ii) the file size is 300MB and the block size is
256KB, and (iii) the maximum number of concurrent upload
transfers (Z) is 5 (the default value).

We present simulation results for two scenarios, which, as
we shall see, yield qualitatively different results when the
token based scheme is used. In both scenarios the percentage
of L-BW leechers isα = 0.8, CdownH = 600Kbps, and
CupH = 300Kbps. For Scenario1 we have thatCdownL =
300Kbps, CupL = 100Kbps, and for Scenario2 we have
CdownL = 150Kbps,CupL = 50Kbps.

1) Simulation Results for the Original BitTorrent System:
In Figures 3 and 4 we present both theoretical and simulation
results for Scenarios 1 and 2 respectively. Figures 3(i) and4(i)
show hownu

HL, the average number of L-BW leechers that
are downloading from a H-BW leecher, behaves as the number
of neighbors (L) increases. (These plots will help in gaining
intuition when we explain how the leecher download rates and
delays change as a function ofL.) First, from these plots we
can see that Equation (9) can correctly predictnu

HL. Further,
we can observe thatnu

HL decreases asL increases. This is
because whenL is small H-BW leechers cannot find enough
H-BW peers to upload to, and thus they have to provide
uploads to more L-BW leechers. AsL increases there are
more H-BW leechers to upload to, and thus there is no need
to upload to L-BW leechers.

The download rates for both H-BW and L-BW leechers
with respect toL are shown in Figures 3(ii) and 4(ii). Note
that these results correspond to the period(t1, t2] in Figure
2, where both classes of leechers are present in the system.
(Recall that in the interval(t3, t4], where there are no H-
BW leechers, the download rate of L-BW leechers is just
equal to their upload capacity plus the rate that they can
download from seeds.) Again, we can observe from the plots
that our mathematical model is quite accurate. Notice that the
download rate of H-BW leechers increases and the download
rate of L-BW leechers decreases asL increases. This can
be explained in a similar manner like we did withnu

HL. As
L increases H-BW leechers provide uploads to fewer L-BW
leechers and to more H-BW leechers.

Finally, the results for the average file download delay for
the two scenarios are shown in Figures 3(iii) and 4(iii). We
can observe that our model is quite accurate in predicting
the average file download delay for H-BW leechers, L-BW
leechers, and for the whole system. (The small discrepancies
in the delay prediction are because we are ignoring the short
transient periods, as explained earlier (in Section IV-C).)
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Fig. 3. Scenario 1: (i) Average number of L-BW leechers that aH-BW leecher is uploading to, (ii) Average download rate forH-BW and L-BW leechers,
(iii) Average file download delay for H-BW leechers, L-BW leechers, and for the system. (Original BitTorrent system.)
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Fig. 4. Scenario 2: (i) Average number of L-BW leechers that aH-BW leecher is uploading to, (ii) Average download rate forH-BW and L-BW leechers,
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Fig. 5. Scenario 1: (i) Average download rate for H-BW and L-BW leechers, (ii) Average file download delay for H-BW leechers, L-BW leechers, and for
the system, (iii) Upload-to-download ratio for H-BW and L-BW leechers. (Token-enhanced system.)

2) Simulation Results for the Token-enhanced BitTorrent
System: We now letKdown = 1 and study how the token-
enhanced system behaves for different values ofKup in
the two scenarios we described earlier. We fixL = 40,
which is a typical value in BitTorrent [3]. Figures 5 and 6
show theoretical and simulation results for Scenarios 1 and
2 respectively. (We will explain shortly what we mean by
“upload-to-download ratio” in Figures 5(iii) and 6(iii).)

The download rates for both classes of leechers are shown
in Figures 5(i) and 6(i). From the plots we see again that
theoretical and simulation results match. Further, we make
the following interesting observation: The download rate of
H-BW leechers first decreases and the download rate of L-BW
leechers first increases, asKup increases. This is because as
Kup increases L-BW leechers earn tokens at a faster rate and
they can download more data from H-BW leechers. (Hence

their download rate increases.) This however means that H-
BW leechers provide fewer uploads to other H-BW leechers.
Thus, H-BW leechers have to download now from more L-BW
leechers, and hence their download rate decreases. Further, it
is interesting to point out that in the first scenario the two
classes of leechers have the same (constant) download rate
for large Kup, whereas in the second scenario the download
rates of the two classes are never equal. This is because in
the first scenario (for largeKup) both classes of leechers
are downloading from a similar number of H-BW leechers,
and sinceCdownL = CupH and CdownH > CupH , both
classes of leechers can fully utilize the H-BW leechers’ upload
capacity. In contrast, in the second scenario, while both classes
of leechers are downloading from a similar number of H-
BW leechers (for largeKup), since CdownH > CupH but
CdownL < CupH , only H-BW leechers can fully utilize the
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Fig. 6. Scenario 2: (i) Average download rate for H-BW and L-BW leechers, (ii) Average file download delay for H-BW leechers, L-BW leechers, and for
the system, (iii) Upload-to-download ratio for H-BW and L-BW leechers. (Token-enhanced system.)

upload capacity of other H-BW leechers from whom they are
downloading.

Figures 5(ii) and 6(ii) show results for the average file
download delay for H-BW leechers, L-BW leechers, and for
the whole system. For comparison, the plots also show the
corresponding average download delay in the original BitTor-
rent system. As before, we observe that our model predicts
the simulation results quite accurately. Further, we observe
that whenKup = 1 = Kdown, the performance of the token-
enhanced system is almost identical to that of the original
BitTorrent system. However, asKup increases the overall
system performance can be improved compared to the original
BitTorrent system. This is because in the token-enhanced
system L-BW leechers are downloading from more H-BW
leechers ifKup is large, since as we have mentioned earlier,
L-BW leechers can gain tokens fast. However, as mentioned
earlier, we are sacrificing the perceived performance of H-BW
leechers. This motivates us to quantify next how much “unfair”
the token based scheme becomes to H-BW leechers asKup

increases.
3) Impact of the Proposed Token Based Scheme on Fair-

ness: To quantify “fairness” we use the upload-to-download
ratio of a user, which is defined as the user’s upload rate
divided by his/her download rate.8 Figures 5(iii) and 6(iii)
show how the upload-to-download ratio behaves as we vary
Kup, for each class of users.

From these plots we observe that the upload-to-download
ratio is almost the same for both classes of leechers when
Kup = 1 = Kdown. This implies that the system is fair.
However, asKup increases, the corresponding ratio for H-
BW leechers increases and for L-BW decreases, as expected.
(This suggests that the system becomes unfair.)

Looking at Figures 5(ii) (6(ii)) and 5(iii) (6(iii)) we can
conclude that we can tradeoff between overall system perfor-
mance and fairness. Using our analytical model we can predict
how much “fairness” we are sacrificing and what performance
is achieved. For example, one can enforce fairness by setting
Kup = 1 = Kdown, or can minimize the system’s average
download delay by choosing a large value forKup. Further,
one can also operate somewhere between these two extremes
by setting the appropriate value forKup.

8This metric has been also used to quantify fairness in other studies as
well, e.g. [17], [18].

B. Predicting System Time Dynamics and Non-flash Crowd
Scenarios

We now simulate a more dynamic BitTorrent system where
new leechers keep joining the system at random times accord-
ing to a Poisson process, in order to demonstrate how accurate
the fluid model of Section V is.

We consider three classes of users: H-BW, M-BW, and L-
BW users. We consider again two different scenarios in order
to validate the model under different settings. In the first
scenario we haveCdownH = 700Kbps, CupH = 700Kbps,
CdownM = 700Kbps, CupM = 300Kbps, CdownL =
700Kbps, andCupL = 100Kbps. Further, all three classes of
leechers arrive to the system at the same rate, which remains
constant throughout the experiment. In the second scenario, we
haveCdownH = 1000Kbps, CupH = 600Kbps, CdownM =
1000Kbps, CupM = 250Kbps, CdownL = 1000Kbps, and
CupL = 100Kbps. Further, now, the arrival rates of the
three classes of leechers are different and change during
the simulation. This is in order to simulate an even more
dynamic system. The detailed leecher arrival rates for the
two scenarios are shown in Figures 7(i) and 8(i). Finally, we
fix L = 60 (which is also a typical value in BitTorrent),
the file size is100MB, 15% of leechers will stay in the
system for 3000 seconds after they finish their download (i.e.
pL = pM = pH = 0.15 andγL = γM = γH = 1

3000 ), and all
other simulation parameters are the same as before.

1) Simulation Results for the Original BitTorrent System:
Figures 7(ii) and 8(ii) show how the number of users (seeds
and leechers) in the system evolves over time, for Scenarios
1 and2 respectively. From the plots we can observe that the
proposed fluid model can capture in general the simulation
results quite accurately. Further, note that at the beginning
of the simulation the number of leechers in the system is
small and hence the system’s service capacity, which is the
aggregate service rate of all users in the system, is also small.
Therefore, initially the leecher departure rate is smallerthan
the leecher arrival rate and that is why the number of leechers
in the system initially increases. However, as the number of
leechers in the system increases, the system’s service capacity
and hence the leecher departure rate also increase. After some
time elapses, the leecher departure rate catches up with the
leecher arrival rate and the system reaches its steady state,
where the number of leechers in the system stabilizes. Clearly,
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(Original BitTorrent system.)

after leechers stop arriving to the system the number of
leechers starts decreasing. Due to space limitations we do
not present the evolution of seeds. One can make similar
observations from the plots. Before proceeding, note that we
have intentionally stopped the arrivals of L-BW and M-BW
leechers and increased the arrival rate of H-BW leechers at
time30000 in Scenario2, as shown in Figure 8(i). From Figure
8(ii) we can see that our fluid model can also capture this
transition quite accurately.

The discrepancies between theoretical and simulation results
at the beginning of the simulation are because the model does
not consider the fact that leechers initially require a large
amount of time to finish their download, and hence to depart
the system. In particular, Equation (38) does not consider
the fact that initially the leecher departure rate may be zero,
but instead, it always assumes that this is strictly positive.
This, in turn, means that the leecher departure rate is initially
overestimated in the fluid model, and as a consequence, the
rate by which the number of leechers in the system increases
is lower than the one in the simulation.

Finally, Figures 7(iii) and 8(iii) show simulation and theoret-
ical results for the average file download delay for H-BW, M-
BW, and L-BW leechers. We can observe again that our fluid
model is, in general, quite accurate. First, notice that thefile
download delays initially decrease as time increases because
the number of seeds in the system initially increases (and thus
leechers can receive more downloads from seeds). After the
number of seeds in the system stabilizes the file download
delays also stabilize as expected. Further, the discrepancies
between theoretical and simulation results in these plots are

due to the approximations that took place in the fluid model.
In particular, they are due to the fact that the model does
not consider the optimistic unchoking reward scenario. This
implies two things: (i) the download delays of higher band-
width leechers are being overestimated, since we are ignoring
the download rate rewards that these leechers receive when
they optimistically unchoke lower bandwidth leechers, and(ii)
the download delays of lower bandwidth leechers are being
underestimated, since lower bandwidth leechers do no longer
spend portion of their upload capacity for rewarding higher
bandwidth leechers (as occurs in reality), but instead, they use
this portion for uploading to other lower capacity leechers.
However, these discrepancies are relatively small, as we can
deduce by looking at Figures 7(iii) and 8(iii). We believe that
this is a good tradeoff between the achieved accuracy and the
simplicity/generality of the model. (We will shortly discuss
this issue in more detail.)

2) Simulation Results for the Token-enhanced BitTorrent
System: We fix Kdown = 1 and vary Kup to study its
effect on the system dynamics. Figure 9 presents analytical
and simulation results for the peer population in the token-
enhanced system for Scenario1. In the figure we show results
for Kup = 1, Kup = 2, andKup = 15.

Again we observe that our model is quite accurate. Further,
we can see that the token-enhanced system (Figure 9(i)) can
resemble the original BitTorrent system (Figure 7(ii)) when
Kup = 1 = Kdown, in agreement with our earlier arguments.
In addition we can observe that as we increaseKup, the
number of lower bandwidth leechers in the system decreases
and of higher bandwidth leechers increases. The explanation
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Fig. 9. Scenario 1: Number of users in the system. (Token-enhanced system.)

for this is the same as before. AsKup increases, lower capacity
leechers can earn tokens at a faster rate, download faster, and
hence depart the system earlier. On the other hand, higher
bandwidth leechers download slower and hence depart the
system after a longer period of time. Notice that in this
scenario the number of leechers present in the system from
each class, is the same whenKup = 15. This is because,
as explained earlier, for largeKup leechers can download,
and hence depart the system, at the same rate (as long as
they are not constrained by their download capacity). This is
reminiscent of the situation we saw earlier in Figure 5(i).

C. Comparison Between the Two Models

As we have seen, our first model (presented in Section IV)
is tailored for steady state performance analysis, accounts for
all details of the BitTorrent protocol, and it is very accurate. It
is now interesting to compare how accurate our fluid model is
in such cases (i.e. for steady state performance analysis) and
compare it with our first model. For this we consider the flash
crowd scenario of Section VI. We then solve our fluid model
equations in steady state (i.e. in the interval[t1, t2) in Figure
2), and compute the corresponding leecher download rates.

The results are depicted in Figure 10. As we observe, our
first model is more accurate as expected, since it captures
more system details than the second model. In particular, it
captures the effect of connecting to a variable number of
neighbors (L), and considers the optimistic unchoking reward
scenario. Our second model is less accurate whenL is small,
because it does not consider the fact that leechers may not
have sufficient neighbors of the same class to connect to.
However, the difference between the two models becomes
small whenL is sufficiently large, as expected. This difference
now is only due to the fact that we do not consider the
optimistic unchoking reward scenario in the second model,
as we explained earlier. It is interesting to point out that
this difference for H-BW leechers never exceeds100

Z
%. This

is explained as follows. First recall that a H-BW leecher
provides uploads toZ − 1 neighbors that provide him/her
the highest download rates, and to one other neighbor via
optimistic unchoking. The maximum rate the H-BW leecher
can provide to the optimistic unchoked neighbor does not
exceed100

Z
% of its upload link capacity (see Equation (8)).

When we consider the optimistic unchoking reward scenario,
we are accounting for the fact that the optimistic unchoked

neighbor will, in turn, reward the H-BW leecher with a
download rate, which is at most equal to the one the optimistic
unchoked neighbor receives from this leecher. Therefore, if
we do not consider the optimistic unchoking reward scenario
we may underestimate the H-BW leecher’s download rate
by at most 100

Z
%. (Recall thatZ = 5 for the scenarios we

considered here, and notice that asZ increases the discrepancy
decreases.) Now, consider that total amount of reward that H-
BW leechers do not receive equals the total amount of extra
download that L-BW leechers receive. Therfore, our second
model overestimate the download rate of L-BW leechers by
(1−α)CupH

Zα
. As a result, our model may overestimate the rate

of L-BW leechers by at most(1−α)CupH100
CupLZα

%.
However, as mentioned earlier, the first model requires2n2

equations to model a system ofn classes of users and does
not model the system time dynamics. In contrast, the second
model captures the system dynamics, and requires only2n

equations to model a system ofn classes of users. In summary,
the two models comprise a tradeoff between accuracy and
simplicity/generality.

VII. COMPARISON WITH OTHER MODELS

To highlight the contributions of this paper we now compare
our models with two of the most representative earlier results
in the literature: [4] and [8]. The reason of choosing these
two results is that [4] presents the first mathematical model
for BitTorrent systems and [8] is one of the most representative
works that considers network heterogeneity. We refer to the
model proposed in [4] as the DR’s model and to the model
proposed in [8] as the FPK’s model. The comparison is
summarized in Table I. (The table also gives a summary of
the differences between our two models, which we discussed
earlier.)

From Table I we see that among all models, our first
model is the most inclusive one. It models all details of a
BitTorrent-like system, except from the system time dynamics.
In particular, it considers the number of concurrent upload
connections a user may have (Z), the number of neighbors to
which a user might be connected (L), network heterogeneity,
the performance effect of BitTorrent’s TFT scheme and of
optimistic unchoking, as well as the optimistic unchoking
reward scenario.

On the other hand, the DR’s and FPK’s models (as well as
our second model), consider the system’s time dynamics but



10 20 30 40 50 60 70 80
100

150

200

250

300

Number of neighbors (L)
A

ve
ra

ge
 D

ow
nl

oa
d 

R
at

e 
(K

bp
s)

Model 1 (H−BW)
Simulation Results (H−BW)
Model 1 (L−BW)
Simulation Results (L−BW)
Model 2 (L−BW)
Model 2 (H−BW)

10 20 30 40 50 60 70 80
50

100

150

200

250

300

Number of neighbors (L)

A
ve

ra
ge

 D
ow

nl
oa

d 
R

at
e 

(K
bp

s)

Model 1 (H−BW)
Simulation Results (H−BW)
Model 1 (L−BW)
Simulation Results (L−BW)
Model 2 (L−BW)
Model 2 (H−BW)

(i) (ii)

Fig. 10. Average download rate of H-BW and L-BW leechers: (i)Scenario1, and (ii) Scenario2. (Comparison between the two models, original BitTorrent.)

System details captured by the Model Model 1 Model 2 FPK’s model DR’s model
number of concurrent uploads (Z) Yes Yes No No

number of neighbors (L) Yes No No No
number of user classes (heterogeneity) many many 2 1

performance effect of the TFT scheme and of optimistic unchoking Yes Yes Partial No
optimistic unchoking reward scenario Yes No No No

time dynamics No Yes Yes Yes

TABLE I
MODEL COMPARISON.

under some approximations/simplifications. The DR’s model
only considers system time dynamics in a homogeneous
BitTorrent system, where all users have the same capacities.
The FPK’s model incorporates network heterogeneity (two
classes of users) into the DR’s model. It also attempts to
model the effect of the optimistic unchoking and of the TFT
scheme. However, it does not correctly capture how these
affect system performance in realistic scenarios. (That iswhy
in the corresponding entry of Table I we write “Partial”.) In
particular, the model assumes that users provide to other users
a static/fixedproportion of their upload link capacity, in the
sense that this proportion remains constant over time. The
actual computation of this proportion is much more involved,
as we have shown in this paper. One must consider, for
example, the exact number of concurrent upload connections
(Z), the peer capacity distribution, the different user arrival
rates and how these might change over time, etc. Among the
three models that capture system time dynamics, our second
model incorporates the most details of a BitTorrent system
and it is the most general one. In particular, it accounts forall
the system details, except from the variability in the number
of neighbors that a user might be connected to (L), and the
optimistic unchoking reward scenario. Finally, to our best
knowledge, this is also the first model that considers an arbi-
trary number of user classes in heterogeneous environments.

VIII. C ONCLUSION AND FUTURE WORK

In this paper we have proposed two mathematical models
to study the performance of heterogeneous BitTorrent-like
systems under different scenarios. The first model can be
used to predict the average file download delay among users
with different capacities in steady state scenarios. The second
model is a fluid model, which can be used to study both
system performance and time dynamics. We have seen that

there is a tradeoff in the two models between accuracy and
simplicity/generality.

Further, we have proposed a flexible token based TFT
scheme that can be used to tradeoff between fairness and
system performance. We have extended our mathematical
models in order to predict the system performance under the
proposed token based scheme and for tuning the scheme’s
parameters. Our results have been verified using extensive
simulations.

There are some interesting directions for future work. First,
we plan to use our models to thoroughly investigate if there
are combinations for the values of the system’s parameters
that achieve optimal download rates/delays. Second, we plan to
further generalize our fluid model to incorporate the optimistic
unchoking reward scenario, the fact that users may leave the
system before finishing their downloads, as well as relaxing
the assumption that users always have sufficient neighbors of
the same class to connect to.

APPENDIX

A. More Results For The Steady State Model

1) Two Classes of Users: In this section, we provide our
extensive simulation results for the model 1. In all simulations,
the link capacity of H-BW leechers are kept the same as
described before. Table II summarizes corresponding link
capacity of L-BW leechers. The results are shown in Figures
11. . .16.

2) Three Classes of Users: Now we present simulation
results to validate the extended model in Section IV-D. We
assume three classes of users: L-BW, M-BW, and H-BW users.
Again we simulate two different scenarios. In both scenario,
the upload/download link capacities of L-BW, M-BW, and
H-BW users are 50Kbps/900Kbps, 200Kbps/900Kbps, and
800Kbps/900Kbps respectively. In the first scenario we have
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Fig. 11. Average number of L-BW leechers that a H-BW leecher is uploading to: (i) Scenario1, (ii) Scenario2, and (iii) Scenario3.
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Fig. 12. Average download rate for H-BW and L-BW leechers: (i) Scenario1, (ii) Scenario2, and (iii) Scenario3.
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Fig. 13. Average file download delay for H-BW leechers, L-BW leechers, and for the system: (i) Scenario1, (ii) Scenario2, and (iii) Scenario3.

Scenario Upload (Kbps) Download (Kbps)
I 50 80
II 100 120
III 100 150

TABLE II
UPLOAD AND DOWNLOAD BANDWIDTH USED IN THE SIMULATION.

α = β = 0.4, ζ = 0.2 and α0.4, β = ζ = 0.3 in the second
scenario. All other simulation parameters are the same as
before. Figure 17 shows that our model can accurately predict
the simulation results.

B. More Results for The Fluid Model

We now present more results to validate our fluid model. We
again consider three classes of leechers: H-BW, M-BW, and L-
BW leechers, and present two more different scenarios. In the

first scenario we haveCdownH = 700Kbps,CupH = 700Kbps,
CdownM = 700Kbps, CupM = 300Kbps, CdownL =
700Kbps, andCupL = 100Kbps. In the second scenario, we
have CdownH = 900Kbps, CupH = 800Kbps, CdownM =
900Kbps, CupM = 200Kbps, CdownL = 900Kbps, and
CupL = 50Kbps. Finally, leechers will leave the system after
they finish their download (i.e.pL = pM = pH = 0), and all
other simulation parameters are the same as before. Figures
18 and 19 show the results for Scenarios 1 and 2 respectively.
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Fig. 17. Download rates for H-BW, M-BW, and L-BW leechers: (i) Scenario1 and (ii) Scenario2.
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Fig. 18. Scenario 1: (i) Leecher arrival rate, (ii) Number ofleechers in the system, and (iii) Average file download delayfor H-BW, M-BW, and L-BW
leechers. (Original BitTorrent system.)
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Fig. 19. Scenario 2: (i) Leecher arrival rate, (ii) Number ofleechers in the system, and (iii) Average file download delayfor H-BW, M-BW, and L-BW
leechers. (Original BitTorrent system.)
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