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ABSTRACT
In [33, 34] two methods have been presented to scale down
the topology of the Internet, while preserving important per-
formance metrics. In partcular, based on the observation
that only the congested links along the path of each flow
introduce sizable queueing delays and dependencies among
flows two methods have been proposed that can infer the
performance of the larger Internet by creating and observing
a suitably scaled-down replica, consisting of the congested
links only. It has been demonstrated that these techniques
can be used in practice to greatly simplify and expedite per-
formance prediction.

While a main requirement for topology downscaling is
that uncongested links are known in advance, the question
of whether one can identify them, in an efficient and scal-
able way, has not been addressed yet. However, this is quite
important, as it is directly related to the practicability of
topological downscaling.

In this paper we provide simple rules that can be used to
identify uncongested links. In particular, we first identify
scenarios under which one can easily deduce whether a link
is uncongested by inspecting the network topology. Then,
we identify scenarios in which this is not possible and show
how one can efficiently use known results, based on the large
deviations theory, to approximate the queue length distri-
bution. While our main motivation in this paper is to com-
plement the work on topology downscaling, our approach is
quite general and can be used beyond this context, e.g. for
traffic engineering and capacity planning.

Categories and Subject Descriptors
C.2.5 [Local and Wide-Area Networks]: Internet; C.4
[Performance of Systems]: Measurement techniques, Mod-
eling techniques; G.3 [Probability and Statistics]: Queue-
ing theory, stochastic processes; C.2.1 [Network Architec-
ture and Design]: Network topology

General Terms
Performance, Measurement, Theory

Keywords
Topology downscaling, uncongested link identification

1. INTRODUCTION
Understanding the behavior of the Internet and predicting

its performance are important research problems. These

problems are made difficult because of the Internet’s large
size, heterogeneity and high speed of operation.

Researchers use various techniques to deal with these prob-
lems: modeling, e.g. [23, 6, 16, 29], measurement-based per-
formance characterizations, e.g. [14, 35, 22, 37, 24], and
simulation studies, e.g. [2, 26, 43, 21]. However, these tech-
niques have their limitations.

First, the heterogeneity and complexity of the Internet
makes it very difficult and time consuming to devise realis-
tic traffic and network models. Second, due to the increas-
ingly large bandwidths in the Internet core, it is very hard
to obtain accurate and representative measurements. And
further, even when such data are available it is very expen-
sive and inefficient to run realistic simulations at meaningful
scales.

To sidestep some of these problems, Psounis et al. [38, 30,
31] have introduced a method called SHRiNK, that predicts
network performance by creating and observing a slower
downscaled version of the original network.1 In particu-
lar, SHRiNK downscales link capacities such that, when a
sample of the original set of TCP flows is run on the down-
scaled network, a variety of performance metrics, e.g. the
end-to-end flow delay distributions, are preserved.

This technique has two main benefits. First, by relying
only on a sample of the original set of flows, it reduces the
amount of data we need to work with. Second, by using
actual traffic, it short-cuts the traffic characterization and
model-building process. These in turn, expedite simulations
and experiments with testbeds, while ensuring the relevance
of the results. However, this technique did not solve the very
important problem of having to deal with large and complex
network topologies, like the Internet topology.

With the above problem in mind, two methods have pro-
posed in [33, 34] that can be used to scale down the topol-
ogy of the Internet, while preserving the same performance
metrics and having the same benefits with SHRiNK. 2 In
particular, by defining a link to be congested if the link
imposes packet drops or significant queueing delays, it has
been shown that it is possible to infer the performance of the
larger Internet by creating and observing a suitably scaled-
down replica, consisting of the congested links only. Further,
based on the observation that the majority of backbone links
are uncongested [4, 5, 15, 13] it has been demonstrated that
these techniques can be used in practice, to dramatically

1SHRiNK: Small-scale Hi-fidelity Reproduction of Network
Kinetics.
2The methods are called DSCALEd (Downscale using de-
lays), and DSCALEs (Downscale using sampling).



simplify and expedite performance prediction.
A main requirement of this approach is that uncongested

links are known in advance. However, while links that cause
packet drops can be easily detected by a monitoring tool,
measuring the queueing delays on every other link to deter-
mine whether these are negligible, is clearly a not scalable
procedure. Further, it becomes critical in high-speed back-
bone routers [35, 36, 4]. Hence, for this kind of topological
downscaling to be practical, we need ways to identify un-
congested links, without having to explicitly measure their
delays. This is the main contribution of this paper.

In particular, in this paper we present an efficient and scal-
able procedure to identify which of the links of a network
topology that do not impose packet drops are uncongested,
i.e. they do not impose significant delays either. Our pro-
cedure consists of rules under which one can easily identify
uncongested links by inspecting the network topology, and
whenever this is not possible, by efficiently using a known
model from the large deviations theory (based on Fractional
Brownian Motion (FBM)), to approximate the queue length
distribution.

The large-deviations model we use requires knowledge of
packet-level statistics at the link of interest. In particular,
it requires knowledge of the average packet arrival rate λ,
of its variance σ2, as well as of the Hurst parameter H ,
an index of long-range dependence in the arrival process
[17]. However, as with the queueing delays, it is difficult
and not scalable to estimate these parameters by monitoring
packets on every link of interest. In our approach, we make
efficient use of this model in the sense that we choose to
infer these parameters from flow-level information at the
link of interest. We have chosen to do this based on the
observation that it is much easier to monitor flows on a
router, instead of packets [4, 5]. This argument is further
strengthened by the fact that information on flows can be
either collected on the link we want to study or at the edges
of a backbone network. Collecting flow information at the
edge routers and combined with their routing information,
can give us information on each link of the network [4, 5].
This alleviates the burden of having to monitor many links
and makes the measuring procedure scalable. 3

However, while simple expressions connecting λ and H
to flow-level statistics exist, e.g. [4, 41], inferring σ2 from
flow-level information is much more involved. Another con-
tribution of this paper is that we derive a new expression
for σ2. What distinguishes our expression from earlier ones
[4, 5, 19] is that it requires less flow-level information, and
it has been derived without any assumptions, by explicitly
taking into consideration the TCP feedback mechanism and
long-range dependence.

While our main motivation in this paper is to complement
the work on topology downscaling, by efficiently identifying
the uncongested links that can be ignored, our approach is
quite general and can be used beyond this context, e.g. by
network operators and managers for traffic engineering and
capacity planning.

The rest of the paper is organized as follows. In Sec-
tion 2 we briefly review the main concept of performance-
preserving topological downscaling. In the Section 3 we
identify the scenarios under which one can easily deduce
whether a link imposes negligible queueing, by inspecting

3Tools such as NetFlow can be easily used to provide flow-
level information in Cisco routers [1].

the topology. Whenever this is not possible, we review in
Section 4 the large-deviations model that we will be using
to approximate the queue length distribution. In Section
5 we explicitly identify the conditions that should hold in
the context of TCP networks for this model to be valid.
In Section 6 we infer the packet-level information required
to use the model, from flow-level information. In Section
7 we validate the model and our theoretical arguments us-
ing simulations with TCP traffic. In the same section we
also present experiments using the CENIC backbone [7], to
demonstrate how the model can be used in practice to iden-
tify uncongested links, and to decide of whether a link can
be ignored when performing downscaling. Comparison with
earlier work follows in Section 8, and we conclude in Section
9.

2. PERFORMANCE-PRESERVING TOPO-
LOGICAL DOWNSCALING

In this section we briefly review the main concept of down-
scaling TCP networks. For more details, the interested
reader is referred to [34, 33].

Before proceeding, let’s first review the definition of an
“uncongested” link in the context of downscaling. An un-
congested link is a link which: (i) does not impose any packet
drops, and (ii) its queueing delays are negligible compared
to the total end-to-end delays of the packets that traverse
it, e.g. one order of magnitude smaller. The majority of
backbone links have both of these properties. In particu-
lar, it is well documented that the end-to-end delay inside
a backbone network is dominated by the propagation delay,
and that most of the backbone links never impose packet
drops [15, 13, 36, 4, 5, 35, 14]. 4 The main idea in down-
scaling is to reduce the topology of the network by ignoring
uncongested links.

As an illustrative example, let’s consider the topology
shown in Figure 1. In this topology we can see two con-
gested links, and two groups of flows, Grp1 and Grp2. 5

Observe that Grp1 traverses only the one congested link,
whereas Grp2 traverses both.

Figure 1: Original network.

In [33, 34] two methods have been proposed (DSCALEd
and DSCALEs) that build scaled replicas consisting of the
congested links only, along with the groups of flows that

4Congested links usually exist at access points and public
exchange points.
5A group of flows consists of those flows that follow the same
network path.



traverse them. 6 For the example shown in Figure 1, the
resulting scaled replica is shown in Figure 2. Then, the
methods adjust the round-trip times in the scaled replica
appropriately, such that the performance of the replica can
be extrapolated to that of the original network.

Figure 2: Scaled replica.

A main requirement of topology downscaling is that we
know in advance which links of the original network are un-
congested. However, as mentioned earlier, while links that
cause packet drops can be easily detected by a monitor-
ing tool, measuring queueing delays on every other link to
determine whether these are negligible, is clearly a not scal-
able procedure, and becomes quite difficult in high-speed
backbone routers [35, 36, 4]. Hence, for downscaling to be
practical, we need efficient ways to identify links with neg-
ligible queueing, without having to explicitly measure their
delays.

3. IDENTIFICATION OF UNCONGESTED
LINKS BY TOPOLOGY INSPECTION

In this Section we identify the conditions under which one
can decide whether a link is uncongested by just inspecting
the network topology.

Our starting point is based on the observation that each
link that belongs to the path of a group of flows of interest
(e.g. the path of Grp1 in Figure 1), can be considered as be-
ing part of sub-topologies similar to those shown in Figures
3(i) ... 3(iii). For example, as if it is link Q2 in Figure 3(i),
or link Q2 in Figure 3(ii), or link Q1 in Figure 3(iii). (The
arrows in these figures correspond to groups of flows, the
C’s are capacities, Src1...SrcN correspond to sources, and
Dst1...DstN to destinations.)

Now, let’s study the conditions under which the afore-
mentioned links impose insignificant queueing. Let’s first
concentrate on the topology shown in Figure 3(i). Clearly
if C1 ≤ C2 there is not going to be any queueing at Q2,
whereas if C1 > C2 significant queueing at Q2 is possi-
ble. Let’s move to the topology shown in Figure 3(ii). If
PN

j=1 C1j ≤ C2 there is not going to be any queueing at

Q2, but if
PN

j=1 C1j > C2 significant queueing at Q2 is

possible. Finally, for the topology shown in Figure 3(iii),

if C1 ≤
PN

j=1 C2j we can have significant queueing at Q1.

But, if C1 >
PN

j=1 C2j , the C2j ’s will regulate the arrivals

at Q1 (through the TCP feedback mechanism) and queue-
ing, which is caused only by the first few packets of new
unregulated flow arrivals, will be negligible.

Therefore, in summary, the only case where one can de-
cide by inspecting the network topology, that a link imposes

6The scaled replica may also include uncongested links of
interest and the groups of flows that traverse them.

negligible queueing, is the case where the link carries traffic
from/to links for which the sum of their capacities is smaller
than the capacity of the link.

For the rest of the cases, we will make efficient use of a
model from the theory of large deviations to approximate
the queue distribution. We review this model in the next
section.

4. USING LARGE-DEVIATIONS THEORY
TO APPROXIMATE THE QUEUE DISTRI-
BUTION

Consider a link/queue, and let A(t) = A(0, t) denote the
total traffic that has arrived at the queue (e.g. in units of
packets or bits) in the interval (0, t], with t ∈ R

+ or t ∈ Z.
Further, let λ denote average input (arrival) rate, and C
denote the queue’s service rate (link capacity). To ensure
stability, we assume that λ < C.

We are now interested in the steady-state probability P (Q >
δB) of the buffer content Q exceeding some prespecified level
δB > 0, where 0 < δ ≤ 1. Assuming an infinite buffer
size, this probability can be expressed in terms of the ar-
rival process A(t), as follows (e.g. see [17]): P (Q > δB) =
P

`

supt≥0[A(t) − Ct] > δB
´

. 7

Now, let’s assume that the input process can be well de-
scribed by a Fractional Brownian Motion (FBM) process.
That is, let’s assume that A(t) is a Gaussian process with
mean E[A(t)] = λt and variance Var[A(t)] = σ2t2H , where

H ∈ [0.5, 1). 8 Finally, let I(H) = (C−λ)2H (δB)2−2H

2σ2K2(H)
, where

K(H) = HH(1 − H)1−H . Then, using large-deviations the-
ory, it can be shown that the following relationship holds for
P (Q > δB) [17, 39]:

P (Q > δB) ≤ exp (−I(H)). (1)

The above relation is known in the literature as the large-
buffer asymptotic upper bound and the function I(H) is
called the large-deviations rate function. If B is sufficiently
large, Equation (1) is often used to approximate the queue
distribution. When δ ≥ 1

B
a better approximation is [25]:

P (Q > δB) ≤
1

(δB)γ
exp (−I(H)), (2)

where γ = (1−H)(2H−1)
H

. Hence, for better approximating
the queue distribution for any δ, one can take the minimum
of Equations (1) and (2).

The effectiveness of this model has been demonstrated in
the context of open-loop networks, e.g. [11, 27, 17], and has
been used several times in the context of TCP networks,
e.g. [9, 42, 10, 44]. Next, we clearly identify the conditions
under which the model is valid in this latter context. Then,
we show how to use it efficiently, by inferring its parameters
from flow-level information.

5. APPLICATION TO TCP NETWORKS
As we can see from the previous section there are two re-

quirements for the model described there to be accurate: (i)

7Note that this probability is often used to approximate
the corresponding probability in a system with finite buffer
equal to B, when B is large [8].
8The constant H is the Hurst parameter. For H = 0.5 the
process has independent increments, whereas for H > 0.5
the increments of the process are long-range dependent.



(i) (ii) (iii)

Figure 3: Toy network topologies used to illustrate when a link can be considered as uncongested by topology
inspection.

the buffer size B should be large enough, and (ii) the input
process should be well-described by a Gaussian process. We
now briefly explain why both of these conditions hold true
in the context of TCP backbone networks.

First, Internet routers today are still sized according to the
rule-of-thumb, where the buffer size equals the bandwidth-
delay product [18]. Since capacities in backbone links are
quite large, to be able to support a large number of flows,
the buffer size B is also large.

Further, while it is well known that if multiple TCP flows
share a bottleneck link can get synchronized with each other
[46, 12, 45], flows are not synchronized in a backbone router
that carries a large number of them, with various round-trip,
processing and startup times. These variations are sufficient
to prevent synchronization, and this has been demonstrated
in real networks [3, 15, 20].

Under the assumption of a large number of desynchronized
TCP flows, the evolution of the flow window sizes becomes
loosely correlated, and the distribution of their sum can be
well approximated by a Gaussian distribution. This is justi-
fied by the Central Limit Theorem (CLT), it is supported by
empirical measurements, and it has been argued in several
recent studies [3, 10, 19].

Hence, requirements (i) and (ii) hold true in the case of
Internet backbone networks. Finally, notice that the model
of the previous section also accounts for long-range depen-
dence in the increments of the aggregate Gaussian input
traffic, which is another well-known characteristic of traffic
in the Internet [44, 37, 41].

6. PARAMETER INFERENCE
Using the model of Section 4 requires knowledge of the

packet-level statistics λ, σ2, and of the parameter H . As
mentioned earlier, it is difficult and not scalable to estimate
these parameters by monitoring packets on every link that
we want to study. As we have said, we prefer to monitor
flows, which is much easier [4, 5]. Therefore, in this section
we show how to infer these parameters from flow-level infor-
mation. Before proceeding, recall that it is easy to detect
links that impose packet drops, and thus we are interested
in detecting which of the other links (that do not impose
packet drops) impose significant queueing delays.

To be able to infer the packet-level statistics λ, σ2 and the
parameter H at the link we want to study, it is necessary
(and sufficient) to have the following flow-level information:
(i) the flow size distribution F (s) of the flows traversing
the link, (ii) the average flow arrival rate at the link, which
we denote by r, and (iii) the average and the variance of

the number of active flows on the link, which we denote by
E[A] and Var(A) respectively. 9 In practice, this flow-level
information can be easily extracted from a router, e.g. using
NetFlow [1].

6.1 Estimating λ

Let S be the random variable representing the size of a
flow. Since we know F (s) we can easily compute the average
flow size E[S]. Assuming no drops at the link of interest, an
intuitive and well-known expression for λ (e.g. see [4]) is: 10

λ = rE[S]. (3)

The relation above states that the average packet arrival
rate is equal to the average arrival rate of flows times the
average amount of load brought by each flow. Note, that
for a system to be stable (in the sense that the number
of active flows never grows to infinity) it is required that
λ = rE[S] < C [16]. We assume this to be the case here.
(Recall that this condition is required in order to be able to
invoke the model of Section 4.) Next, we use another known
result to show how one can estimate the Hurst parameter
H .

6.2 Estimating H
It is well-accepted that traffic in the Internet is long-range

dependent, e.g. see [44, 37, 41]. This long-range dependence
has been shown to be the result of a heavy-tailed flow size
distribution [41, 15]. A heavy-tailed distribution is one in
which P (S > s) ∼ s−α, 1 < α < 2, as s → ∞.

At large time-scales, e.g. greater than the round-trip time,
the Hurst parameter H is directly related to the parameter
α (called the shape parameter) of the size distribution. Ac-
cording to [41]:

H =
3 − α

2
. (4)

Since we know the flow-size distribution F (s) (and hence its
shape parameter α), we can use Equation (4) to approximate

9We say that a flow is “active” on a link, if the link belongs
to the path of the flow, and the flow has more data packets
to send.

10Of course, drops may occur on other links along the path
of a group of flows that traverses the link under study. How-
ever, since we are interested in links that multiplex a large
number of flows (backbone links), and given that the num-
ber of concurrent congested links in real networks is usually
small, e.g. [34], we can make the assumption that none of
the flows sharing the link under study experiences drops. In-
deed, as we shall see in Section 7, when we study the CENIC
backbone [7], this assumption does not affect the results.



H .

6.3 Estimating σ2

To date, only few studies exist that relate σ2 to flow-
level information [4, 5, 19]. However, these studies either
make unnecessary simplifying assumptions [19], or give fairly
complicated expressions that require more information and
measurements [4, 5], than we actually need.

Since we are interested in links with not drops, it turns
out that we can derive new simple expression for σ2, assum-
ing knowledge of only the flow-level information mentioned
earlier, and without making any other assumptions. (For
a detailed comparison with prior work see Section 8.) The
expression is given in the following Theorem:

Theorem 1.

σ2 =
E[A]Var(W ) + (E[W ])2Var(A)

(E[RTT ])2H
, (5)

where E[W ] is the average congestion window size of a flow
that traverses the link and Var(W ) its variance, E[RTT ] is
the average round-trip time of a flow, and E[A], Var(A) are
respectively the average and variance of the number of active
flows on the link.

Proof. Assume that time is slotted with the duration of
slot i be equal to the current round-trip time. Further, for
simplicity, let the current round-trip time be the same for all
flows traversing the link. Now, denote by P the total number
of packets that arrive to the link/queue within some time-

slot. Then, P =
PA

j=1 Wj, where A is the random variable
representing the number of active flows in a time-slot, and
Wj is the random variable representing the congestion win-
dow size of flow j, j ∈ {1...A}. By the conditional variance
formula [40] we have:

Var(P ) = E[Var(P |A)] + Var(E[P |A]). (6)

Since there are no drops, the Wj’s (j ∈ 1...A) are indepen-
dent of the random variable A. It is then easy to see that:

E[Var(P |A)] = E[A]Var(W ), (7)

and:

Var(E[P |A]) = (E[W ])2Var(A). (8)

Now, recall from Section 4 that σ2t2H is the variance of
the amount of traffic that arrives at the queue in the interval
(0, t]. As in Section 4 denote this amount of traffic by A(t),
and let N(t) be the number of time-slots elapsed by time t.

We can write A(t) =
PN(t)

i=1 P (i), where P (i) is the random
variable representing the number of packets arriving at the
queue within slot i.

In steady-state the P (i)’s are identically distributed. Ac-
counting for long-range dependence in the sequence {P (i), i =
1, 2, ..., N(t)}, we can write Var(A(t)) = (N(t))2HVar(P ) =
σ2t2H . Now, for t large enough N(t) = t

E[RTT ]
, and hence:

σ2 =
Var(P )

(E[RTT ])2H
. (9)

From Equations (6)...(9) we get Equation (5).

Note, that while in the proof of Theorem 1 we have assumed
that flows have the same round-trip times, we will see in
Section 7 that Equation (5) is remarkably accurate even if
this is not the case.

Recall that E[A] and Var(A) in Equation (5) are known
quantities. Hence, what remains to complete the calculation
of σ2 is to compute E[W ], Var(W ) = E[W 2]−(E[W ])2, and
E[RTT ].

We begin by E[RTT ]. Let E[D] be the average number
of round-trips that a flow needs in order to complete. Using
Little’s Law we can write:

E[RTT ] =
E[A]

rE[D]
. (10)

Since E[A] and r are known quantities, we only need to find
E[D].

Recall that S is the random variable that represents the
size of a flow. Now, suppose that the maximum window size
of a flow is Wmax. We divide flows into two categories: (i)
short flows, whose size is less than or equal to 2Wmax, and
(ii) long flows whose size is larger than 2Wmax. Given TCP’s
AIMD (Additive-Increase-Multiplicative-Decrease) mechanism,
this separation implies that a short flow spends its lifetime
in slow start, and may send Wmax packets at most once
during its lifetime. We can write:

E[D | short flow] =

E[⌊log2 S⌋ + 1
[S−

P⌊log2 S⌋−1
i=0 2i>0]

| S ≤ 2Wmax], (11)

where 1[.] = 1 if the condition in the brackets is satis-
fied, and 0 otherwise. Now, long flows spend approximately
log2 2Wmax round-trip times in slow-start and then send
Wmax packets per round-trip for the rest of their lifetime.
Hence:

E[D | long flow] =

E[⌊log2 2Wmax⌋ + ⌊
S −

P⌊log2 2Wmax⌋−1
i=0 2i

Wmax

⌋ + 1[R(S)>0]],

where:

R(S) = S−

»

P⌊log2 2Wmax⌋−1
i=0 2i + ⌊

S−
P⌊log2 2Wmax⌋−1

i=0 2i

Wmax
⌋Wmax

–

.

Since we know F (s), we can compute and uncondition the
expectations above and find E[D]. Thus, we can now com-
pute E[RTT ] using Equation (10).

Since we know the expected flow size and the expected
number of rounds a flow needs to complete, it is easy to see
that the average window size of a flow is: 11

E[W ] =
E[S]

E[D]
. (12)

What remains is to compute the mean square window
size of a flow E[W 2]. For this, we first need to find an
expression for the expectation, of the sum of the squares of
the window sizes that a flow reaches during its lifetime. We
denote this expectation by E[S∗]. Considering TCP’s AIMD
mechanism as we did before, and distinguishing again short
and long flows we can write:

E[S∗ | short flow] =

E[

⌊log2 S⌋−1
X

i=0

(2i)2 + (S −

⌊log2 S⌋−1
X

i=0

2i)2 | S ≤ 2Wmax], (13)

11A formal proof for this relation goes along the same lines
with the proof of Lemma 1, which we will state shortly.



E[S∗ | long flow] =

E[

⌊log2 2Wmax⌋−1
X

i=0

(2i)2 + ⌊
S −

P⌊log2 2Wmax⌋−1
i=0 2i

Wmax

⌋(Wmax)2

+ (R(S))2 | S > 2Wmax], (14)

where R(S) as defined earlier. As before, knowing F (s),
we can uncondition these expectations and find E[S∗]. The
relation for E[W 2] is given in the following lemma:

Lemma 1.

E[W 2] =
E[S∗]

E[D]
, (15)

where E[S∗] and E[D] as defined earlier.

Proof. Assume again that the time is slotted with the
duration of the current slot equal to the current round-trip
time. Now, let Y be the sum of the squares of the window
sizes of all active flows, i.e. Y =

PA

j=1 W 2
j . As before, since

there are no drops the Wj’s (j ∈ 1...A) are independent of
the random variable A. We can write:

E[Y ] = E[W 2]E[A]. (16)

Let N(t) be the number of time-slots elapsed by time t as
before, and denote by F (t) the total number of flows that
have completed service within N(t) slots. The average num-
ber of rounds for a flow to complete can be also expressed as

E[D] = limt→∞

PN(t)
i=1 A(i)

F (t)
, where A(i) is the number of ac-

tive flows in slot i. Also, the average number of active flows

in a slot can be written as E[A] = limt→∞

PN(t)
i=1 A(i)

N(t)
. From

the last two equations we get that limt→∞
N(t)
F (t)

= E[D]
E[A]

. Fur-

ther, it is easy to see that E[S∗] = limt→∞

PN(t)
i=1

PA(i)
j=1 (W i

j )2

F (t)
,

where W i
j is the congestion window size of flow j (j ∈ 1...A(i)).

Since E[Y ] can be also written as E[Y ] = limt→∞

PN(t)
i=1

PA(i)
j=1 (W i

j )2

N(t)
,

we can conclude (from the last three relations) that:

E[Y ] =
E[S∗]

E[D]
E[A]. (17)

Combining Equations (17) and (16) we get the result.

We have now computed all the parameters required to esti-
mate σ2.

7. EXPERIMENTS
In this section we use the ns-2 simulator [28] to validate

our theoretical arguments and to demonstrate the procedure
for efficiently identifying uncongested links when performing
topology downscaling. In particular, we present two sets of
experiments. In the first set we consider a single link shared
by TCP flows, in order to verify the accuracy of the model
of Section 4 and of our parameter estimation (Section 6), as
well as to give insights on the queueing behavior of Internet
links that are shared by a large number of flows. In the sec-
ond set, we use the topology of the CENIC backbone [7], to
demonstrate the procedure for identifying uncogested links
when performing topology downscaling on real networks.

7.1 Single Link Experiments
We consider a single link/queue like the one shown in Fig-

ure 4, having capacity NC, propagation delay Tprop, and
buffer size B = 2NCTprop (i.e. equal to the bandwidth-
delay product). TCP flows arrive at the link at random
times, according to a Poisson process, with rate Nr = N95flows/sec. 12

The number of data packets S in each flow follows a bounded
Pareto distribution with average E[S] = 11.5packets, max-
imum 106packets, and shape parameter α = 1.34. The size
of an IP data packet is 1040 bytes, Tprop = 50ms, and C =
10Mbps. Finally, Wmax = 20packets and the simulation
time is 10000sec. We study the queueing dynamics of the
link as N increases, i.e. as if this was a backbone link. (No-

tice that the offered load is ρ = NrE[S]
NC

= rE[S]
C

= 0.91 < 1,
and does not change as we vary N .)

Figure 4: Single link topology.

We start by verifying that the aggregate packet arrival
process at the link can be approximated by a Gaussian dis-
tribution. Figures 5(i) and 5(ii) show that this is indeed the
case, even for N ’s as small as 1 and 6 respectively. Note
that for N = 1 the average number of active flows is ap-
proximately E[A] = 40, and the packet drop ratio is around
1.2%. This implies that the Gaussian approximation is accu-
rate even when the number of multiplexed flows is relatively
small and there are packet drops. This is in agreement with
the observations in [3]. 13 For N = 6, the average number
of active flows is E[A] = 162, and the percentage of dropped
packets 0.02%. In this case, because there are more flows
active in the system, the Gaussian approximation is more
accurate. This is evident from Figure 5(ii). Also, notice
that the drop ratio is smaller than the case where N = 1.
This is in agreement with the model of Section 4, which im-
plies that for any level δ > 0, as N , and hence B, increases,
the probability that the buffer content exceeds δB decreases.

We now test the accuracy of the model of Section 4 and
of the expressions derived in Section 6. Recall, that for
the purposes of downscaling we are interested in identify-
ing which of the links that do not impose packet drops are
uncongested, i.e. impose negligible queueing delays. As we
have observed from the simulator, drops stop occurring for
N > 10. Thus, we show results for N = 11, 16, and 32.

We estimate λ, σ2 and H , using the formulas of Section
6. Recall, that in order to compute σ2 we also need esti-
mates for E[A] and Var(A). These are extracted from the

12Of course, while flow arrivals are Poisson, packet arrivals
are dictated by the TCP dynamics. Further, similar results
hold for any other flow arrival process.

13The study in [3] verified the Gaussian approximation as-
sumption for the case of a single link that is shared by
long-lived persistent TCP flows having unbounded window
sizes. Here, we verify this for the more realistic case where
TCP flows arrive at random times, have random sizes and
bounded windows.



0 100 200 300 400
0

0.2

0.4

0.6

0.8

1

Packets

P
ro

ba
bi

lit
y

CDF of Normal (148, 62)
CDF of Aggregate Number of Arrivals

300 400 500 600 700 800 900 1000 1100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Packets

P
ro

ba
bi

lit
y

CDF of Normal (684, 99.8)
CDF of Aggregate Number of Arrivals

(i) (ii)

Figure 5: The commulative distribution function
(CDF) of the sum of the aggregate number of ar-
rivals passing through the router during a round-
trip time, and its approximation with a Gaussion
CDF with the same parameters: (i) N=1, and (ii)
N=6.

simulator. We compute the rest of the required parame-
ters, and their values are: E[D] = 2.65rounds (which gives
E[W ] = 4.3packets), and E[S∗] = 127.5packets (which gives
E[W 2] = 48packets). (E[RTT ] is computed by Equation
(10) given the corresponding value for E[A] and the flow
arrival rate, which is 95Nflows/sec.)

Table 1 gives the values for λ, E[A], Var(A) and the result-
ing σ2, as we vary N . In all cases H = 0.83 (as the shape
parameter of the flow-size distribution remains the same).

N λ(pkts/sec) E[A] Var(A) σ2 (pkts/sec)
11 12018 281 578 858148
16 17480 404 644 1093018
32 34960 807 929 1864839

Table 1: Flow- and packet- level statistics at the
link.

Figure 6 shows that the model is quite accurate for ap-
proximating the queue length distribution, especially for
large N , as expected, and also verifies that our parame-
ter estimation is correct. (The latter has been also verified
by comparing the derived theoretical values with the corre-
sponding simulation values.) The plots also validate the ar-
gument that in backbone links, where N is sufficiently large,
queueing delays can be ignored, and the model of Section 4
gives the theoretical justification. Indeed, for N = 32 the
average queueing delay is approximately T = 1ms, which is
two orders of magnitude smaller than the two-way end-to-
end propagation delay of a packet (which is 100ms). Inter-
estingly enough, this is case even for links working at above
90% utilization, like the one in this example.

This last observation motivates us to study the amount of
multiplexing (value for N) required at different offered loads
ρ, such that for the majority of time, the queuing delay T
remains below a sufficiently small fraction of the end-to-end
propagation delay. This is important for topology down-
scaling, where we can ignore links with negligible queueing
delay (compared to the end-to-end delay).

Figure 7 shows the value for N such that the queueing
delay is one order of magnitude smaller than the end-to-end
propagation delay for at least 90% of the time, for different
values of ρ. From the figure we observe that at small offered
loads, a small value for N is sufficient. In particular, for

0.2 0.4 0.6 0.8 1
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20

ρ

N

Figure 7: The value for N such that P (T < 0.1 ×
2Tprop) > 0.9, as a function of the offered load ρ.

ρ ≤ 60% N = 1 is sufficient, whereas as ρ increases, N also
increases as expected, with the increase being faster than
exponential as ρ → 1. For example, for ρ = 90%, we need
N = 15. Even in this case however, this corresponds to
a flow arrival rate of 95N = 1425flows/sec, a capacity of
10N = 150Mbps, and a buffer size of 120N = 1920packets,
all of which are not unrealistic for backbone links, e.g. see
[3].

Figures 8...12 show how accurately the model can predict
the queue distribution at other offered loads, for various val-
ues of N where there are no drops. First, from the plots we
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Figure 8: Queue exceedance probability P (Q > δB)
against the buffer level δ for ρ = 0.4: (i) N = 1, and
(ii) N = 6.
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Figure 9: Queue exceedance probability P (Q > δB)
against the buffer level δ for ρ = 0.6: (i) N = 1, and
(ii) N = 6.

observe that the approximation is not accurate when δ → 0.
This is expected, since as we have said in Section 4 we re-
quire that δ > 0. Further, we observe that the model is quite
applicable for all link utilizations above 70%. At smaller
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Figure 6: Queue exceedance probability P (Q > δB) against the buffer level δ: (i) N = 11, (ii) N = 16, and (iii)
N = 32.
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Figure 10: Queue exceedance probability P (Q > δB)
against the buffer level δ for ρ = 0.7: (i) N = 2, and
(ii) N = 4.
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Figure 11: Queue exceedance probability P (Q > δB)
against the buffer level δ for ρ = 0.8: (i) N = 2, and
(ii) N = 4.

utilizations we see that it underestimates the true queue oc-
cupancy. This agrees with the experimental observations in
[36]. However, for the purposes of downscaling such discrep-
ancies do not affect our decisions of whether to keep or ignore
a link, since we are making order-of-magnidute comparisons
between queueing delays and end-to-end delays. In addition,
one can also argue that backbone links at utilizations below
50% impose insignificant queueing, and it is always safe to
consider them as uncongested [13, 36], without the need of
using the model to approximate their queue distribution.

7.2 Cenic Backbone Experiments
We now consider the topology of the CENIC backbone

[7], which is shown along with link information in Figure
13. Note that the CENIC maps do not include informa-
tion about the propagation delays of the links and the paths
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Figure 12: Queue exceedance probability P (Q > δB)
against the buffer level δ for ρ = 0.85: (i) N = 4, and
(ii) N = 6.

of the packets that traverse them. We estimate the prop-
agation delay of a link by dividing the length of the link
over the propagation velocity of the signal (taken as 133000
miles/sec). The propagation delay for all the links that be-
long to the same geographic area is taken as 0.1ms and for
the rest of the links is shown in Figure 13 (appended next
to each link). Further, the buffer size of each link equals the
bandwidth-delay product, where the delay factor is taken
equal to the maximum end-to-end propagation delay of a
flow, which is 10ms.

Figure 13: The CENIC Backbone.

We let each possible source-destination pair in the topol-
ogy to correspond to a group of flows. (Notice that links
are bidirectional.) Hence, in total there are 600 groups
of flows. The flow arrival rate for all groups of flows is
100flows/sec, except from the group that enters SVL(dc1)
and exits SVL(hpr), whose rate is 5200flows/sec, and from



the group that enters SVL(hpr) and exits LAX(hpr), whose
rate is 90000flows/sec.

Link SVL(dc1)-SVL(hpr) imposes packet drops, and hence
is congested. No other link in the topology imposes packet
drops. We are interested in studying the performance of the
congested link and of the groups of flows that traverse it,
which we call groups of interest. According to [33, 34] one
can build a scaled replica consisting of this link along with
the groups of interest and all other congested links in the
topology that these groups traverse. Since we know that no
other link imposes drops, our task is to identify if there are
links traversed by groups of interest that have significant
delays, and if so, include them in the scaled replica. Be-
fore proceeding, we summarize the general procedure that
we follow.

Procedure for identification of uncongested links:
(i) From the network topology and routing information, we
identify and ignore every link for which the traffic it car-
ries is being forwarded from/to links for which the sum of
their capacities is smaller that the capacity of the link. (See
Section 2). (ii) For all other links we use a flow-level mea-
surement tool, e.g. such as NetFlow [1], to estimate: (a)
The flow-size distribution, (b) the flow arrival rate, and (c)
the average, and the variance of the number of active flows.
(iii) For each of these links, we use Equations (3)...(5) to
compute λ, H , and σ2. (iv) We use the model of Section 4
(Equations (1) and (2)) to approximate the queue distribu-
tion on each of these links. (v) From the network topology
and traffic matrix we calculate for each of these links the
average two-way end-to-end propagation delay among the
groups of flows that traverse them, and (vi) As in [33, 34]
we ignore all those links for which their average queueing de-
lay is one order of magnitude smaller than the corresponding
two-way end-to-end propagation delay.

Note, that a heuristic rule-of-thumb to expedite the above
procedure is to measure, after step (i), the offered load (ρ =
rE[S]

C
) on all remaining backbone links and directly ignore

all links for which this load is quite low, e.g. ρ ≤ 50%. As
mentioned before, this is based on the observation that such
links always impose negligible queueing [13, 36], and hence
can be ignored.

In our simulation setup, the offered load on link SVL(hpr)-
LAX(hpr), which is traversed by a total of 102 groups of
flows out of which 37 are groups of interest, is approximately
95%, whereas on all other links that are traversed by groups
of interest is below 40%. Following our procedure, and us-
ing the aforementioned rule-of-thumb, the only link that we
need to approximate the queue length distribution to decide
whether it is congested, is link SVL(hpr)-LAX(hpr). The
average flow arrival rate at this link is r = 95150flows/sec,
the flow characteristics are the same as before (except that
E[S] = 12packets), the average number of active flows on
the link is E[A] = 1482 and its variance is Var(A) = 2464.
As before, we can compute λ = 1141800packets/sec, σ2 =
629752212packets/sec, and H = 0.83. Figure 14 shows how
accurately we can approximate the queue length distribu-
tion.

Our approximation yields an average queueing delay of
T = 0.26ms and the actual is T = 0.17ms. In both cases this
is one order of magnitude smaller than the average end-to-
end propagation delay of flows that traverse the link under
study, which is 6.33ms. Therefore we ignore this link.

To validate the whole procedure we use DSCALEd (which
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Figure 14: Queue exceedance probability P (Q >
δB) against the buffer level δ for link SVL(hpr)-
LAX(hpr).

accounts for the missing uncongested links by imposing ap-
propriate delays at the sources of the packets) [33, 34], to
build a scaled replica consisting of the congested link SVL(dc1)-
SVL(hpr) only. In Figure 15 we present some of the most
important performance metrics that we can predict using the
scaled replica, and we compare them to that of the original
system (Figure 13). In particular, we show the distribution
of the number of active flows on link SVL(dc1)-SVL(hpr),
and the end-to-end flow delay histograms of two (out of the
71) groups of interest. (grp2 also traverses link SVL(hpr)-
LAX(hpr) that we previously decided to ignore.)

It is visually evident from the plots that performance pre-
diction is quite accurate. (Similar results hold for all the
metrics [34] that the replica can predict.) Further, in ad-
dition, if we use the same statistical measure to quantify
differences between two distributions as in [34], i.e. the His-
togram Similarity Measure (HSM), we find that the average
HSM for these plots is 0.85, which is quite high given the re-
duction in the complexity of the network. (HSM=1, means
that two distributions are identical). Therefore, the pro-
posed procedure can be efficiently applied to identify and
ignore uncongested links.

As another example, we further increase the offered load
on link SVL(hpr)-LAX(hpr) to 98%. Figure 16 shows theo-
retical and simulation results for the queue exceedance prob-
ability as before. Our approximation yields an average queue-
ing delay of T = 1.86ms and the actuall is T = 1.42ms. In
both cases, this is comparable to the average end-to-end
propagation delay, i.e. the one order of magnitude require-
ment is not satisfied, and hence we do not ignore this link.

Figure 17 demonstrates that performance prediction is in-
deed less accurate if we ignore the link, especially for the
groups that were traversing this link in the original system,
e.g. such as grp2, since these groups do not experience the
same delays in the scaled replica. Also, inaccuracies are
notable in the distribution of active flows. However, they
are less notable for groups that traverse the congested link
SVL(dc1)-SVL(hpr) and not the link SVL(hpr)-LAX(hpr).
This is because these groups experience similar delays in
the two systems. The average HSM for these plots is 0.69,
which is quite smaller than before.

8. RELATED WORK
We now review related work on the applicability of the

model of Section 4, and on estimating σ2. For related work
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Figure 15: (i) Distribution of active flows on the congested link SVL(dc1)-SVL(hpr), (ii) grp1 end-to-end flow
delay histogram, and (iii) grp2 end-to-end flow delay histogram. (Scenario 1.)
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Figure 17: (i) Distribution of active flows on the congested link SVL(dc1)-SVL(hpr), (ii) grp1 end-to-end flow
delay histogram, and (iii) grp2 end-to-end flow delay histogram. (Scenario 2)
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Figure 16: Queue exceedance probability P (Q >
δB) against the buffer level δ for link SVL(hpr)-
LAX(hpr).

on network downscaling see [34].
As mentioned earlier, the model presented in Section 4

has been derived in several studies and its effectiveness has
been verified in the context of open-loop networks, e.g. see
[11, 27, 17]. Its applicability has been also demonstrated for
Internet backbone traffic, e.g. see [44]. And, it has been
used in this later context by authors for their theoretical
arguments, e.g. in [42, 10].

In this study we have shown that this model can be also
effectively applied in the context of topology downscaling.
Further, we have clearly identified the necessary conditions

for the model to be applicable, and we have used ns-2 sim-
ulations with TCP traffic to further validate it.

In contrast to earlier studies that have utilized the model
by extracting its parameters from packet-level traces, e.g.
[44, 36], in this study we have chosen to infer this informa-
tion from flow-level statistics. In the process, we derived
a formula that relates the variance σ2 of the packet arrival
process to some flow-level information. The most relevant
to this are the studies in [4, 5, 19]. We now explain the main
differences of our approach.

First, for their formula derivation, all of these studies have
assumed flows that arrive to the system according to a Pois-
son process. In addition, in [19] the author has also as-
sumed a bufferless link model and modeled the number of
active flows as an M/G/∞ queue (which is only accurate
when queueing delays are equal to zero). During our for-
mula derivation, none of these simplifying assumptions have
been made. Further, in [4, 5] the notion of “shots” was in-
troduced to describe how flows transmit their packets. To
accurately estimate the variance requires correct estimates
for the shapes of the shots, which in general requires further
measurements. Also, in [19] it is assumed that the packets of
a flow are spread uniformly in time. In contrast, in our study
we have not made any assumptions on how flows transmit
their packets. We have explicitly taken into consideration
TCP’s AIMD mechanism and long-range dependence.

Finally, the study in [4, 5], which is the most relevant, de-
rives a variance formula that requires (in addition to the flow



arrival rate), knowledge of the expectation E[S2

D
], where S

is the flow size and D the flow duration. This implies that
one needs to keep track of flow sizes and their correspond-
ing durations. In our study, we still require knowledge of
the flow sizes, but we do not need to keep track the corre-
sponding durations. Instead, we only need estimates on the
first two moments of the number of active flows on a router,
which can be easily measured, independently from the flow
sizes.

9. CONCLUSION AND FUTURE WORK
This paper complements recent work on topology down-

scaling of Internet-like networks [33, 34]. In particular, this
paper proposes a procedure to identify links with negligible
queueing delays that can be ignored when building scaled-
down replicas.

Further, this study goes beyond the context of network
downscaling. It demonstrates how a well-known model from
the large-deviations theory can be efficiently utilized in prac-
tice, and it presents a new simple formula that relates the
variance of the packet arrival process to flow-level statistics.

Future work consists of further validating the proposed
procedure using other network topologies, and analytically
quantifying the relationship between the number of uncon-
gested links that are ignored by topology downscaling and
the achieved accuracy in performance prediction. Relevant
to this, another interesting direction is to theoretically estab-
lish the queueing delay threshold below which, the queueing
dynamics of a link can be completely ignored when evaluat-
ing a network’s performance.
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