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An Analytical Study of Fundamental Mobility
Properties for Encounter-based Protocols

Thrasyvoulos Spyropoulos, Apoorva Jindal, and Konstantinos Psounis

Abstract— Traditionally, mobility in ad hoc networks was consid-
ered a necessary evil that hinders node communication. However,
it has recently been recognized that mobility can be turned into
a useful ally, by making nodes carry data between disconnected
parts. Yet, this model of routing requires new theoretical tools
to analyse its performance. A mobility-assisted or encounter-based
protocol forwards data only when appropriate relays encounter each
other. To be able to evaluate the performance of mobility-assisted
routing schemes, it is necessary to know the statistics of various
quantities related to node encounters.

In this paper, we present an analytical methodology to calculate
a number of useful encounter-related statistics for a general class
of mobility models. We apply our methodology to derive accurate
closed form expressions for popular mobility models like Random
Direction and Random Waypoint, as well as for a more sophisticated
mobility model that better captures behaviors observed in real
traces. Finally, we show how these results can be used to analyze the
performance of mobility-assisted routing schemes or other processes
based on node encounters. We demonstrate that derivative results
concerning the delay of various routing schemes are very accurate,
under all mobility models examined.

I. INTRODUCTION

Traditionally, ad hoc networks have been viewed as a con-
nected graph over which end-to-end routing paths need to be
established. This view, albeit successfully applied in wired net-
works, does not always hold in wireless environments. Wireless
signals are subject to multi-path propagation, fading, and interfer-
ence making links unstable and lossy. Additionally, frequent node
mobility (e.g. as in vehicular ad hoc networks—VANETs [1])
significantly reduces the time a “good” link exists, and constantly
changes the network connectivity graph. As a result, wireless
connectivity is volatile and usually intermittent, as nodes move
in and out of range from access points or from each other, and
as signal quality fluctuates.

What is more, there has been a growing interest in the past
few years in wireless applications that can operate over networks
that are disconnected for some or most of the time. Sensor
networks can significantly increase their lifetime by powering
down nodes often, or by using very low power radios [2], [3].
Tactical networks may also choose to operate in an intermittent
fashion for LPI/LPD reasons (low probability of interception
and low probability of detection) [4]. Finally, operation over
disconnected networks may be desirable for economic reasons, as
for example in the case of low-cost Internet provision in remote
or developing communities [5]–[7], or to extend and sometimes
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bypass access point connectivity to the Internet [8]–[10]. These
new networks are often referred to collectively as Delay Tolerant
Networks (DTN [11]).

To overcome the lack of end-to-end connectivity common in
DTNs, encounter-based or mobility-assisted protocols have been
proposed, where messages get carried by mobile nodes between
disconnected parts of the network [11], [12]. Nodes carry a set of
messages, possibly for long periods of time, until they encounter
another node to which they can forward messages. During this
encounter or contact they exchange messages according to a
specific protocol, and continue their trip until a new contact
occurs [13]–[16].

Since messages can be forwarded only during such a contact,
the statistics of node encounters are of particular importance.
First, the time until a new encounter (i.e. forwarding opportunity)
occurs is an important component (if not the dominant one) of
the queueing delay of a message that is carried by that node, and
thus of the end-to-end delivery delay, as well. Thus, one needs
to know the statistics of the arrival process of such contacts in
order to analyze the behavior of any encounter-based protocol.
Second, when such a contact occurs, it is usually of limited
duration. Whether or not all messages in the queue that need
to be forwarded will get a chance to, depends on how long this
encounter will last. Also, if more than one node compete for the
shared channel, the probability that an encounter is “lost” due to
contention and interference depends on this duration as well.

Inter-contact times and contact durations have been the focus
of investigation for some recent trace-based studies [17]–[19].
Nevertheless, the debate regarding whether these statistics follow
a power-law [17] or have an exponential tail [19] is ongoing.
Further, when it comes to synthetic, “random” mobility models,
only few of the mobility properties that are relevant to node
contacts have been studied. To enable a complete analytical treat-
ment of various encounter-based schemes, a number of statistical
properties regarding encounter times and encounter durations
need to be derived, which largely depend on the mobility model
in hand.

With this in mind, in this paper we first present the mobility
properties that are necessary to analyze the performance of
encounter-based protocols. We then provide a methodology to
analyze the statistics of these properties for epoch-based mobility
models, that is, for models according to which a node’s movement
consists of a sequence of “atomic trips” in the network. This
includes simple, popular models like the Random Direction [20]
and Random Waypoint [21] mobility, but also some more sophis-
ticated models, like the Community-based model of [22], [23],
which have been shown to better capture the behaviors observed
in traces. (In [24] we studied the same mobility properties for a
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random walk on a lattice.) The reason we focus on such epoch-
based mobility models is twofold: first, they are easier to analyze
and demonstrate the basic methodology for deriving encounter-
related properties, and second, synthetic epoch-based models like
the Community-based can successfully capture real-life mobility
properties [19], [23].

Finally, we demonstrate how our various encounter time re-
sults can be readily used in a general analytical framework
for mobility-assisted routing, using the delay of epidemic rout-
ing [13] as a case study. By simply “plugging in” the respective
encounter-related quantities into generic expressions about the
performance of different algorithms (e.g. derived using Markov
Chains [25], [26], fluid models [14], etc.), we show that derivative
results based on these expressions are very accurate, under vari-
ous mobility models. As a final note, even though the focus of this
paper is on mobility-assisted routing, the analytical methods and
expressions derived here could be applicable to other processes
that are based on node encounters, like virus spread through
wireless devices [27] or the reception of broadcast channels [28].

In the next section we introduce our problem setting, the
various encounter-related quantities we’re interested at, and the
methodology to derive them. Then, in Sections III and IV, we de-
rive accurate closed form expression for these quantities for sim-
ple “epoch-based” mobility models, a popular class of synthetic
mobility models. Further, to show how our methodology can be
extended for more sophisticated mobility models, in Section V
we derive analytically the same encounter-related properties for
a more realistic mobility model, as well. Section VI incorporates
the various expressions into a general analytical framework that
can be used to predict the performance of mobility-assisted rout-
ing under various mobility models. Finally, Section VII discusses
some related work and Section VIII concludes the paper.

II. ENCOUNTER-RELATED STATISTICS FOR EPOCH-BASED

MOBILITY MODELS

In this section we look at what mobility properties are relevant
to encounter-based protocols, with our focus on encounter-based
(or mobility-assisted) routing. In encounter-based protocols, most
events of interest (e.g. forwarding) occur only when two nodes are
in contact. Consequently, we argue that the following statistical
properties of contacts must be available, under a given mobility
model, in order to analyze the performance of a protocol in this
setting.

Hitting and Meeting Times: The first quantities of interest
are hitting and meeting times, and their expected values. The
expected meeting time under a given mobility model is essentially
the time until a new contact occurs between two chosen nodes
A and B (if we start looking at them at a random point in time),
and thus the expected time until these nodes can “interact”. (The
hitting time corresponds to the case where one of the nodes
is static.) Furthermore, if we are interested instead in the next
contact between A and a subset of nodes in the network (this is
commonly the case, as for example in the “time until any of x
relays encounters the destination of a message”), then we would
like to find the minimum of a set of meeting times (between A
and each of the nodes in the subset). To be able to calculate this,
we need the hitting/meeting time distribution, as well, or at least
the distribution’s tail.

We give a formal definition of the hitting and the meeting
time here. Xi(t) denotes the position in the network of mobile
node i at time t, Xi the position of a static node i, and K the
transmission range of a node.

Definition 2.1 (Hitting Time): Let a node i move according to
mobility model “mm”, and start from its stationary distribution
at time 0. Let j be a static node with uniformly chosen Xj , then
the hitting time (Tmm) is defined as the time it takes node i
to first come within range of node j, that is Tmm = min

t
{t :

‖Xi(t) − Xj‖ ≤ K}.
Definition 2.2 (Meeting Time): Let nodes i and j move ac-

cording to a mobility model “mm” and start from their stationary
distribution at time 0. The meeting time (Mmm) between the two
nodes is defined as the time it takes them to first come within
range of each other, that is Mmm = min

t
{t : ‖Xi(t)−Xj(t)‖ ≤

K}.
Contact Duration and Inter-Meeting Time: Knowing the

hitting and meeting times allows one to calculate the delay
of various mobility-assisted schemes under ideal conditions of
infinite bandwidth and buffer space [22], [26], [29]. Although this
might be a useful approximation for low traffic scenarios or low-
resource protocols [16], it is inaccurate when resources are rather
limited, e.g. in sparse sensor networks for wildlife tracking [2], or
when the protocols utilize a lot of resources, e.g. when epidemic
protocols are used which lead to a lot of contention and overuse
the available resources [13], [30], [31].

In such a scenario, forwarding opportunities can be lost due
to: (i) lack of buffer space at the next hop; message gets dropped,
(ii) limited bandwidth; there is not enough time to forward all
messages in the queue while the two nodes are in range (contact
duration), (iii) MAC contention; more than one nodes within
range are trying to access the media at the same time, (iv)
interference; ongoing communications in the surrounding area
contribute to the noise level. If the network is not very sparse,
traffic loads are high, or nodes tend to concentrate in some
locations (infostations, cafeteria, etc.), one or more of the above
events may often occur, even in the context of DTNs. Thus, even
if a node comes in contact with a potential relay or even the
destination, it might not be able to transfer the packet during that
encounter.

To be able to analyze situations that include contention, one
needs to calculate: (i) the average time two nodes have to
exchange data during an encounter (contact time), and (ii) the
next time that these two nodes will have another opportunity to
exchange data (inter-meeting time), if the current one is “lost”
due to lack of bandwidth, buffer space, or a collision1. Contact
and inter-meeting times are formally defined as follows:

Definition 2.3 (Contact Time): Let nodes i and j move ac-
cording to a mobility model “mm”. The nodes are initially out of
range, and assume they come within range of each other at time
0. The contact time τmm is defined as the time they remain in
contact with each other before moving out of the range of each

1It is important to note that inter-meeting and meeting times are not the same
quantity and do not generally follow the same statistics, even though they are
sometimes used inter-changeably. It happens that for some mobility models,
including one model we treat here, the expected values for these quantities are
approximately equal, under some assumptions. Yet, in other important cases, they
follow very different statistics (e.g. Random Walk on a lattice [19], [32]).



3

other, that is τmm = min
t

{t − 1 : ‖Xi(t) − Xj(t)‖ > K}.
Definition 2.4 (Inter-meeting Time): Let nodes i and j move

according to a mobility model “mm”. Let the nodes start from
within range of each other at time 0 and then move out of the
range of each other at time t1, that is t1 = mint{t : ‖Xi(t) −
Xj(t)‖ > K}. The inter-meeting time (M+

mm) of the two nodes is
defined as the time it takes them to first come within range of each
other again, that is M+

mm = min
t>t1

{t−t1 : ‖Xi(t)−Xj(t)‖ ≤ K}.

(Note that τmm defined in Definition 2.3 is the same as t1 − 1.)

A. Assumptions and Notation

Here, we will analyze these statistics for a particular class of
mobility models, namely “epoch-based” mobility models. These
include, for example, the popular Random Waypoint (RWP) [21]
and Random Direction (RD) [20] models. We first look at
these two mobility models, as representative simple epoch-based
models, in order to describe our methodology. Then, we look
into a more realistic Community-based mobility model [22], [23]
that introduces the concept of “communities” to capture some
characteristics often observed in real traces. We will show how
our methodology can be applied to this model also to derive the
respective statistics.

We introduce next some useful definitions and notation and
state the assumptions we’ll be making throughout the remaining
of the paper. Table I summarizes our notation.
(a) All nodes exist in area U of size ‖U‖ = N , and have a

transmission range equal to K. The position of node i at
time t is denoted as Xi(t) or Xi if it is static.

(b) All the mobility models we deal with are epoch-based; An
epoch is a given period of time during which a node moves
towards the same direction and with the same speed; Each
node’s trajectory is a sequence of epochs.

(c) The length L of an epoch, measured as the distance between
the starting and finishing points of it, is a random variable
with expected value L = O(

√
N). (The assumption that L =

O(
√

N) ensures fast mixing of the corresponding process
and simplifies analysis as it will become clear in the proof of
Theorem 3.1. For the RWP model this assumption is satisfied
by definition. The assumption is also inline with the spirit
of the RD model since it has been introduced as a close
alternative to RWP. Last, note that when L is small then an
epoch-based mobility model behaves similarly to a random
walk model, whose properties we have studied in [15].)

(d) The speed v of a node during an epoch is randomly chosen
from [vmin, vmax], with vmin > 0, vmax < ∞ and average
speed v.

(e) At the end of each epoch a node pauses for a random amount
of time chosen from [0, Tmax], with average pause time
T stop.

(f) The expected duration of an epoch (without the pause time)
is denoted as T = E[L

v ].
(g) Let

→
v i denote the velocity of node i and vmm = ‖→vi − →

vj‖
be the mean relative speed between two nodes i and j when
both are moving according to mobility model mm. Then we
define the normalized relative speed v̂mm as v̂mm = vmm

v .

Remark: Before we proceed, note that we are primarily interested
in easy-to-use analytical formulas rather than exact results. With

TABLE I

NOTATION

Tmm hitting time under “mm”
Mmm meeting time under “mm”
M+

mm inter-meeting time under “mm”
τmm contact time under “mm”
N size of network area
K transmission range
L expected epoch length
v average node speed

T stop average pause time after an epoch
T expected epoch duration

v̂mm normalized relative speed under “mm”
EX expectation of any other random variable X

this in mind, we make a number of assumptions and approx-
imations to keep the analysis tractable and simple. During the
derivation of each of the results we state the conditions under
which the approximations hold. Furthermore, we compare our
results against simulations to show that the error introduced by
these approximations is always small for scenarios of interest.

III. ENCOUNTER STATISTICS FOR RANDOM DIRECTION

Although the Random Waypoint model was the first epoch-
based model to be proposed, it was quickly recognized that it
can result in a non-uniform stationary node distribution. This is
not only in discord with the common assumption of uniformity
made in many studies, but also complicates the analysis. To
overcome this, the Random Direction model, which induces a
uniform stationary node distribution, has been proposed [20]. The
following gives a formal description of the Random Direction
mobility model:

Definition 3.1 (Random Direction): In the Random Direction
(RD) model each node moves as follows: (i) choose a direction θ
uniformly in [0, 2π); (ii) choose a speed according to assumption
(d); (iii) choose a duration T of movement from an exponential
distribution with average L

v ; (iv) move towards θ with the chosen
speed for T time units; 2 (v) after T time units pause according
to assumption (e) and go to step (i).

The following two Theorems calculate the expected hitting and
meeting times for the Random Direction model.

Hitting Time (Random Direction): Hitting times are useful
when some of the nodes (including the destination) are static (see
for example [3] or [12]). Also the meeting time generally depends
on the hitting time. Our methodology is based on calculating the
expected number of epochs until a static or mobile destination,
respectively, is encountered.

Theorem 3.1: The expected hitting time ETrd for the Random
Direction model is given by:

ETrd =
(

N

2KL

)(
L

v
+ T stop

)
. (1)

Proof: Let a node A perform RD movement, starting from
its stationary distribution. A’s movement consists of a sequence
of randomly and independently chosen epochs. Let further a
second node B be static with uniformly chosen position, and

2If the boundary is reached, the node either reflects back or re-enters from the
opposite side of the network (torus).
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let us calculate the probability that node A encounters node B
during a given epoch i of length Li. This epoch will “cover” an
area of size 2KLi. If B lies anywhere within this area, then A
“hits” B during this specific epoch. Furthermore, it is easy to see
by the definition of the RD model, that the specific area of the
network an epoch will cover is uniformly distributed around the
whole network. Hence, the probability pi of an epoch of length
Li hitting B is equal to pi = 2KLi

N .
Let us now denote as Nhit the number of epochs until A hits B,

and P (Nhit > n) the probability that B has not been encountered
after n epochs. Let further Ei, i = 1 . . . n denote the event that
A doesn’t hit B at the ith epoch given that the length of the
epoch equals li, and fL(l1, l2, . . . , ln) denote the joint probability
density function of the lengths of these first n epochs. Then:

P (Nhit > n) =

Z
· · ·

Z
P (E1) · · ·P (En|E1 . . . En)fL(l1, . . . , ln)dl1. . .dln.

Although consecutive epochs are not independent (the end of
one epoch is the beginning of the next one), their lengths are i.i.d.
and we can use the statistics of one epoch to describe all epochs.
Further, while in general Ei is not independent of Ej , j < i
(to see this, consider very small epoch lengths, in which case
RD resembles a random walk where the probability that epoch i
covers the same area as epoch j is high), we have assumed that
the epoch lengths are large, specifically O(

√
N), such that the

process mixes very fast (similar to RWP where the mixing time is
exactly one epoch). Hence, Ei’s are (approximately) independent
(a similar argument has been made for RWP in [33]) and

P (Nhit > n) =
(∫ (

1 − 2Kl

N

)
fL(l)dl

)n

=
(

1 − 2KL

N

)n

.

Consequently, the number of epochs needed till A hits B is
geometrically distributed with average N

2KL
. Finally, the expected

duration of each epoch is equal T + T stop (see assumptions
(e),(f)), where T = L

v in the case of RD.

Remark: One might argue that counting epochs to calculate
hitting times may not capture intra-epoch behavior. However, as
can be inferred from the proof of Theorem 3.1, if K � √

N then
the probability of an epoch to hit the destination is small (order
of 1/

√
N ), it takes a large (order of

√
N ) number of epochs to

hit the destination, and the relative error introduced is at most
1√
N

.

Meeting Time: We now turn our attention to the case where both
nodes are moving.

Theorem 3.2: The probability distribution of the meeting time
Mrd for the Random Direction model has an approximately
exponential tail and expected value

EMrd =
ETrd

pmv̂rd + 2(1 − pm)
, (2)

where v̂rd is the normalized relative speed for RD, and pm =
T

T+T stop
is the probability that a node is moving at any time.

Proof: Let us first assume again that only one of the two
nodes, let A, performs RD movement, while the second one, let
B, is static. We will re-calculate the expected hitting time of
Theorem 3.1 in a slightly different manner. Let’s assume that
node A performs RD movement in discrete steps of unit size,

and let pm denote the probability that A is moving at any of
these steps. Then, with probability pm any given step covers on
average a new area of size 2Kv, and with probability 1 − pm

it stands still and covers no new area. Thus, on average, each
node step has an independent probability of finding (“hitting”)
the destination equal to pm2Kv

N , where to claim independence
we are using as before that the average length of each epoch
is proportional to the network dimension to ensure fast mixing.
This implies a geometric distribution for the total number of unit
steps until the destination is found with an expected value equal
to

ET ′
rd =

N

pm2Kv
.

Note that this method of calculating the hitting time is equivalent
to that of Thoerem 3.1, i.e. ET ′

rd = ETrd. 3 Furthermore, because
the duration of the time unit is much smaller than the expected
hitting time (for K � N ) the distribution of the hitting can be
approximated by an exponential in continuous time.

Now, to calculate the meeting time, we need to take into
account that both A and B move concurrently. Specifically, we
will assume that node B is fixed, but node A is moving at each
step with a speed vector equal to the relative speed between A
and B. (This compound movement can be shown to be statistically
equivalent for our purposes to the original case, by defining an
appropriate martingale and using a similar argument as in [32]:
Ch.3 – Proposition 3.)

It is known that, for generic random walks on graphs, the
meeting time between two walks is 1

2 the respective hitting time
of a single walk on the same graph [32]. This holds, because
the relative movement of the nodes at consecutive steps are
independent of each other. However, in the RD model a node
keeps moving in the same direction for the duration of an epoch.
The relative movement at consecutive steps is not independent,
so the denominator is expected to be smaller than 2. We thus
need to calculate the expected relative speed ‖→

vA − →
vB‖ between

A and B. Due to the uniform choice of direction at every epoch,
and the toroidal structure of the network, we can assume without
loss of generality that the direction of

→
vA is fixed. In other words,→

vA = (vA, 0) and
→
vB = (vB cos θ, vB sin θ). If we assume, for

simplicity, that
→
vA =

→
vB = v, this gives us

‖→
vA − →

vB‖ =
v

2π

∫ 2π

0

√
(1 + cos θ)2 + sin2(θ)dθ,

which is equal to 1.27v. (A little more calculus gives the general
case for random speeds.) Thus, the normalized relative speed for

this RD model is v̂rd = ‖→
vA− →

vB‖
v = 1.27.

v̂rdv is the relative speed between the nodes when both nodes
are moving, which occurs with probability p2

m. However, with
probability 2pm(1−pm) only one of the node moves with relative
speed v, and with probability (1 − pm)2 none of the nodes is
moving. Consequently, the expected number of steps until the
two walks meet equals

EMrd =
N

2K(p2
mv̂rdv + 2pm(1 − pm)v)

=
ET ′

rd

pmv̂rd + 2(1 − pm)
.

3One can see this by replacing pm with its value T
T+T stop

, which then gives

the expected hitting time in the familiar form of N
2KL

“
L
v

+ T stop

”
.
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Fig. 1. Comparison of theoretical and simulations results for the expected hitting
and meeting times under the Random Direction model.

Figure 1 compares analytical and simulation results for the
expected hitting and meeting times, under the Random Direction
model, as the transmission range (Tx) increases. (Note that in this
and all other plots throughout the paper we normalize the average
speed to v = 1.) It is evident that analytical and simulation results
are a close match.

Inter-meeting time: The next theorem finds the expected inter
meeting time for the Random Direction mobility model.

Theorem 3.3: The expected inter meeting time EM+
rd for the

Random Direction model is approximately equal to EMrd.

Proof: Let us approximate the Random Direction movement
by a discrete time Markov Chain in which a state represents the
location of the node (at the end of the epoch). When a node A
starts from within range of another node B, these two nodes are
coupled [34]. The mixing time, that is the time until A reaches
again the stationary distribution, can be bounded in terms of the
second largest eigenvalue in magnitude of the transition matrix
of this Markov Chain [35], [36]. This implies that mixing occurs
within c = O(1) number of epochs. Further, each epoch is
of length O(

√
N), which implies that the mixing time is also

O(
√

N). The additional time it takes for the two nodes to meet
after getting mixed is equal to one meeting time which is O(N)
(Eq. 2). Consequently, as N becomes large, the total intermeeting
time (mixing + meeting) converges to the meeting time. Thus,
EM+

rd = EMrd and the tail of the inter-meeting time is equal to
the tail of the meeting time (approx. exponential).

The only step missing is to show that the probabil-
ity that the two nodes meet within the constant number
of time epochs (denoted by c) is always less than 1 −(
1 − max

{
2Kv̂rdvp2

m

N , 4Kvpm(1−pm)
N

})c

where pm is the prob-
ability that a node is moving at any time. This probability is
negligible because K << N .

Contact Duration: We finish this section by deriving the ex-
pected contact time for the Random Direction model.

When two nodes come within range of each other, one of the
following is true: (a) Both the nodes are moving or (b) Only one
of the nodes is moving and the other is paused. Let E[τ1

rd] denote
the expected contact time given both nodes were moving when
they came within range of each other and let E[τ2

rd] denote the
expected contact time given only one of the nodes was moving
when they came within range. We derive their values in the
Appendix and assume for the rest of this discussion that they
are known.

Theorem 3.4: The expected contact time Eτrd for the Random

Direction model is given by

Eτrd =
p2

m

p2
m + 2pm(1 − pm)

E[τ1
rd] +

2pm(1 − pm)

p2
m + 2pm(1 − pm)

E[τ2
rd],

where pm = T
T+T stop

is the the probability that a node is moving
at any time.

Proof: The probability that both nodes are moving is equal
to p2

m. The probability that only one of the nodes is moving is
equal to 2pm(1−pm). For two nodes to come within range from
out of range, at least one of the nodes has to be moving. Hence,
to find Eτrd, we have to condition over the fact that at least one
of the two nodes is moving. Applying the law of total probability
gives the result.

Accuracy of the Analysis: We compare analytical and simulation
results for the expected contact time (Figure 2(a)) and the
distribution of the meeting time and inter meeting time of the
Random Direction model for some sample values (Figures 2(b)
and 2(c)). Despite some approximations we made during the
derivations, it is evident that there is a good match for both
the expected contact time values, and the geometric/exponential
tail for the meeting and inter-meeting times. Note that it is the
number of epochs to hit/meet which are geometrically distributed
(Theorems 3.1 and 3.2), hence the distributions of hitting, meeting
and inter-meeting times will be geometric/exponential when they
are much larger than one epoch time. This explains the deviation
from the exponential distribution for smaller values of meeting
and inter-meeting times in Figures 2(b) and 2(c).

IV. ENCOUNTER STATISTICS FOR RANDOM WAYPOINT

Definition 4.1 (Random Waypoint): In the Random Waypoint
(RWP) model, each node moves as follows [21]: (i) choose a
point X in the network uniformly at random, (ii) choose a speed
v uniformly in [vmin, vmax] with vmin > 0 and vmax < ∞.
Let v denote the average speed of a node, (iii) move towards
X with speed v along the shortest path to X , (iv) when at X ,
pause for Tstop time units where Tstop is chosen from a geometric
distribution with mean T stop, (v) and go to Step (i).

Random Waypoint on a rectangle leads to a non-uniform
stationary node distribution, however Random Waypoint on a
torus converges to an uniform stationary node distribution [37].
Here, we will study the properties of random waypoint mobility
on a torus and not incorporate the complications arising due to
the non-uniform stationary distribution.

We first state a lemma deriving the average distance covered
by a node in one epoch.

Lemma 4.1: Let L be the length of an epoch, measured as
the distance between the starting and the finishing points of the
epoch. Then ELrwp = 0.3826

√
N .

Proof: The current position as well as the destination picked
is uniformly distributed on the torus. The pdf of Lrwp can be
easily evaluated using geometrical arguments to be fLrwp

(l) ={
2πl
N l ≤

√
N
2

4l
N

(
π
2 − 2cos−1

(√
N

2l

)) √
N
2 ≤ l ≤

√
N√
2

. Then ELrwp =

∫ √
N√
2

0 fLrwp
(l)dl = 0.3826

√
N .

Hitting and Meeting Times: We next state expressions for the
expected hitting and meeting times for the Random Waypoint
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Fig. 2. Random Direction Mobility Model: (a) Comparison of the theoretical and simulation results for the expected contact time for parameters N = 100×100, T =
300, v = 1, T stop = 50. (b) Meeting time distribution with parameters N = 300×300, K = 30, T = 160, v = 1, T stop = 150. (c) Inter-meeting time distribution
with parameters N = 300 × 300, K = 30, T = 160, v = 1, T stop = 150.

mobility model. The derivation of these expressions is similar
to the derivation of the corresponding variables for the Random
Direction mobility model. So, we skip the derivation of the
following theorems.

Theorem 4.1: The expected hitting time ETrwp for the Ran-
dom Waypoint model is given by:

ETrwp =
(

N

2KELrwp

)(
ELrwp

v
+ T stop

)
. (3)

Theorem 4.2: The expected meeting time EMrwp for the
Random Waypoint model is given by:

EMrwp =
ETrwp

pmv̂rwp + 2(1 − pm)
, (4)

where v̂rwp = 1.27 is the normalized relative speed for RWP, and
pm = ELrwp/v

ELrwp/v+T stop
is the probability that a node is moving at

any time.

Inter-meeting time: The next theorem derives the expected inter-
meeting time for the Random Waypoint mobility model.

Theorem 4.3: The expected inter meeting time EM+
rwp for the

Random Waypoint model is approximately equal to EMrwp.
Proof: When the nodes move out of the range of each

other, they pick up a destination uniformly at random in the torus.
After reaching their destination, they are fully mixed (back in
their stationary distribution) and the additional time it takes for
them to meet again is equal to the meeting time. In general,
since an epoch time is much less than the expected meeting time,
EM+

rwp = EMrwp.

Contact Duration: Now we find the expected contact time for
the Random Waypoint mobility model. The approach is exactly
the same as for the Random Direction model. Let E[τ1

rwp] denote
the expected contact time given both nodes were moving when
they came within range of each other and E[τ2

rwp] denote the
expected contact time given only one of the nodes was moving
when they came within range. We derive their values in Appendix
II and assume for the rest of this discussion that they are known.

Theorem 4.4: The expected contact time E[τrwp] for the Ran-
dom Waypoint model is given by

E[τrwp] =
p2

m

p2
m + 2pm(1 − pm)

E[τ1
rwp] +

2pm(1 − pm)

p2
m + 2pm(1 − pm)

E[τ2
rwp].

where pmis the the probability that a node is moving at any time.
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Fig. 3. Comparison of theoretical and simulations results for the expected hitting
and meeting times under the Random Waypoint model.

Proof: The proof runs along similar lines as the proof of
Theorem 3.4.

Accuracy of the Analysis: We compare analytical and simulation
results for the expected hitting and meeting time in Figure 3,
expected contact time in Figure 4(a) and the distribution of the
meeting time and inter meeting time in Figures 4(b) and 4(c) for
the Random Waypoint mobility model for some sample values.
As can be seen, theory matches simulations quite closely.

V. ENCOUNTER STATISTICS FOR COMMUNITY-BASED

MOBILITY

So far we have dealt with simple epoch-based mobility models,
like the Random Direction model. Despite their usefulness in
theoretical analysis these models have been found to often be
unrealistic. Specifically, various collected traces [10], [38] consis-
tently confirm that real life mobility exhibits location preference
and considerable heterogeneity in behavior, not captured by
popular models like Random Direction, Random Waypoint and
Random Walk. To capture these characteristics, a number of
synthetic mobility models have been proposed based on real
traces [23], [39], [40].

One of these models, the “Community-based Mobility
Model” [22], [23], is still epoch-based in nature, but introduces
the concept of communities (and time-dependency) to better
capture real life mobility characteristics. In its simplest version,
the model consists of two states only, a “local” state where the
node moves inside a small community, representing a location
of high preference (e.g. office), and a “roaming” state where the
node may go anywhere in the network. This can be modeled by
a simple two-state Markov Chain.

Definition 5.1 (Community-based Model): Nodes move inside
the network as follows:
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Fig. 4. Random Waypoint Mobility Model: (a) Comparison of the theoretical and simulation results for the expected contact time for parameters N = 100×100, v =
1, T stop = 150. (b) Meeting time distribution with parameters N = 300 × 300, K = 30, v = 1, T stop = 150. (c) Inter-meeting time distribution with parameters
N = 300 × 300, K = 30, v = 1, T stop = 150.

• each node i has a local community Ci of size ‖Ci‖ =
c2N, c ∈ (0, 1]; a node’s movement consists of a sequence
of local and roaming epochs.

• a local epoch is a Random Direction movement4 restricted
inside area Ci with average epoch length Lc equal to the
expected distance between two points uniformly chosen in
Ci.

• a roaming epoch is a Random Direction movement in the
entire network with expected length L.

• (local state L) if the previous epoch of node i was a local
one, the next epoch is a local one with probability p

(i)
l , or

a roaming epoch with probability 1 − p
(i)
l .

• (roaming state R) if the previous epoch of node i was
a roaming one, the next epoch is a roaming one with
probability p

(i)
r , or a local one with probability 1 − p

(i)
r .

The locality of movement is captured by the existence of a
community inside which each node spends a configurable amount
of its time. Further, each node may have different p

(i)
r and p

(i)
l

parameters modeling a large range of different mobility charac-
teristics per node. Finally, different nodes may have communities
of different sizes, or may have more than one community. These
together allow for a large range of node heterogeneity to be
captured. The realism of this model has been further confirmed
in [23], where a somewhat “richer” version of the model (multi-
tiered communities and time-dependent behavior) has been shown
to closely match existing traces. However, to simplify our expo-
sition, we will focus here on the “vanila” version of the model
described above.

Lemma 5.1 calculates some useful probabilities, and follows
easily from elementary probability theory.

Lemma 5.1: Let us denote as π
(i)
l and π

(i)
r the probability that

a given epoch of node i is a local or a roaming one, respectively.
Let us further denote the probability that, at any time, the node is:
(a) moving in local epoch as p

(i)
ml, (b) moving in roaming epoch

as p
(i)
mr, (c) pausing after a local epoch as p

(i)
pl , (d) pausing after

a roaming epoch as p
(i)
pr . Then:

4Note that each node could also perform Random Waypoint movement or some
other i.i.d. movement in each epoch, instead of Random Direction.

TABLE II

ADDITIONAL NOTATION FOR SECTION V

Ci community of node i: ‖Ci‖ = c2N, c ∈ (0, 1]
pl probability that next epoch is local,

given that previous epoch was local
pr probability that next epoch is roaming,

given that previous epoch was roaming
πl probability that a given epoch is a local one
πr probability that a given epoch is a roaming one

pmr probability that a node is in roaming state and moving
pml probability that a node is in local state and moving
ppr probability that a node is in roaming state and pausing
ppl probability that a node is in local state and pausing
Lc expected length of local epoch

T
l
stop expected pause time for a local epoch

T l expected local epoch duration (Lc/v + T
l
stop)

T r expected roaming epoch duration (L/v + T stop)

π
(i)
l =

1 − p
(i)
r

2 − p
(i)
l − p

(i)
r

, π
(i)
r =

1−p
(i)
l

2−p
(i)
l

−p
(i)
r

,

p
(i)
ml =

π
(i)
l

Lc
v

π
(i)
l T l + π

(i)
r T r

, p
(i)
mr =

π
(i)
r

L
v

π
(i)
l

T l+π
(i)
r T r

,

p
(i)
pl =

π
(i)
l T

l
stop

π
(i)
l T l + π

(i)
r T r

, p
(i)
pr =

π
(i)
r T stop

π
(i)
l

T l+π
(i)
r T r

.

Table II summarizes some additional notation related to the
community model. We will focus here on the case where each
node i has its own community Ci, but all nodes have the same
mobility characteristics, that is, p

(i)
l = pl and p

(i)
r = pr, ∀i (i.e.

drop the (i) from all probabilities). The heterogeneous case is
only a straightforward extension of this, see [22].

Hitting Time: Let’s assume that a node A with community
CA moves according to the Community-based model, until it
encounters a node B that is static with uniformly chosen position.
If B’s position is outside CA, then A can only encounter B during
a roaming epoch. Otherwise, if B lies inside CA, A is expected
to encounter B much faster, since it tends to move preferentially
inside CA. The following two Lemmas calculate the expected
hitting time for each of these two subcases.

Lemma 5.2: The expected hitting time ET
(out)
comm until a node

A, moving according to the Community model, encounters a
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static node B, who lies outside A’s community, is given by:

ET (out)
comm = ETrd +

1 − pr

1 − pl

N

2KL
T l. (5)

Proof: Let Nl and Nr denote the number of times A visits
the local state (L) and roaming state (R), respectively, before
it finds B. Furthermore, let Nhit = Nl + Nr denote the total
number of epochs of any kind. Then, according to the law of large
numbers, when Nhit → ∞, Nl → πlNhit and Nr → πrNhit.

Since B does not lie inside A’s community, B can only be
encountered while A is in the roaming state.5 The expected
number of roaming epochs needed until such a destination is met
was found in Theorem 3.1, to be equal to 2KL

N . This implies that
A visits state R ENr = 2KL

N number of times before it meets
B. The sum of the duration of these epochs is equal to ETrd.
Additionally, according to the previous argument based on the
law of large numbers, A also visits state L on average

ENl =
πl

πr
ENr =

1 − pr

1 − pl
ENr

times, before it meets B (given that A starts from its stationary
distribution). The average time spent at state L, each time it is
visited, is equal to Lc

v + T
l

stop. Putting everything together gives
us Eq.(5).

Otherwise, if B lies inside CA, A is expected to encounter
B much faster, since it tends to move preferentially inside CA.
Lemma 5.3 calculates the expected hitting time for this case.

Lemma 5.3: The expected hitting time ET
(in)
comm until a node

A, moving according to the Community model, encounters a
static node B, who lies inside A’s community, is given by:

ET (in)
comm 
 1

1 − [(1 − pl
hit)πl(1 − pr

hit)πr
] (πlT l + πrT r), (6)

where pr
hit = 2KL

N and pl
hit = pr

hit

c .
Proof: Let us count the number of steps in the Markov

chain corresponding to the community model until B is found.
Let further Nl and Nr denote again the number of local and
roaming epochs elapsed, respectively, before B is encountered,
and let Nhit = Nl + Nr denote the total number of epochs.
Finally, let P (Nl, Nr) denote the probability that at least Nl

local and Nr roaming epochs elapse before B is found. Then,
P (Nl, Nr) = (1 − pl

hit)
Nl(1 − pr

hit)
Nr . According to the law

of large numbers, when Nhit → ∞, Nl → πlNhit and Nr →
πrNhit. Consequently, for large n

P (Nhit > n) = (1 − pl
hit)

πln(1 − pr
hit)

πrn.

This implies that the probability distribution of the total number
of epochs Nhit (local or roaming) has a geometric tail with
parameter

phit = 1 − [(1 − pl
hit)

πl(1 − pr
hit)

πr
]
.

Hence, when the average number of epochs necessary to find B is
not too small, we can approximate the pdf of the total epochs with
a geometric distribution with the above parameter phit. For this

5Recall that we have assumed that the transmission range K of nodes is much
smaller than the total network area N , and thus the probability that B is near the
edge of CA and thus can be encountered even while A is inside its community
goes to 0 as N → ∞.

to occur we require that the transmission range is much smaller
than the network dimensions, which is the case indeed in most
situations of interest (i.e. when mobility is required to deliver
a message). In this case, the expected number of epochs until
B is encountered ENhit is equal to 1

phit
. Finally, each of these

epochs is a local one with probability πl or a roaming one with
probability πr, and with duration T l and T r, respectively.

We can now go ahead and calculate the hitting time for the
case where the destination’s position is uniformly chosen over
the entire network area.

Theorem 5.1: The expected hitting time ETcomm under the
Community-based Mobility Model is given by:

ETcomm = (1 − c2)ET (out)
comm + c2ET (in)

comm. (7)
Proof: With probability ‖U‖−c2‖U‖

‖U‖ = 1 − c2 B’s position
is outside A’s community CA. In that case, B can only be
encountered during a roaming phase, and the expected time until
this occurs is given is ET

(out)
comm (Lemma 5.2). Similarly, with

probability c2 B lies inside CA, in which case the expected hitting
time is given by Lemma 5.3.

Meeting Time: The proof for the community meeting time
follows in a similar manner as that of Theorem 3.2. The main
difference is that here we need to consider two cases: (i) non-
overlapped communities, which refers to the case where the
communities of the two nodes under study are disjoint, and
(ii) overlapped communities, which refers to the case where the
communities of the two nodes are the same.

Theorem 5.2: The probability distribution of the meeting time
Mcomm under the Community-based mobility model can be ap-
proximated by the weighted sum of two exponential distributions,
with expected value:

EMcomm = (1 − c2)EM (out)
comm + c2EM (in)

comm. (8)

where,

EM
(out)
comm =

»
2Kv

N
((2pmr(ppr + ppl)) + (2pmlppr) + v̂rd

((pmr + pml)
2 − p

2
ml)
”i−1

EM
(in)
comm =

"
2Kv

N

 
v̂rdp2

ml

c2
+

2pmlppl

c2
+ (2pmr(ppr + ppl))+

(2pmlppr) + v̂rd((pmr + pml)
2 − p

2
ml)
”i−1

are the expected meeting time for nodes with non-overlapping
and overlapping communities, respectively.

Proof: If the communities do not overlap, the nodes can only
meet when at least one of them is out of the community (i.e.,
roaming). The first and the second terms in the expression for
EM

(out)
comm correspond to the scenario when one node is moving

and the other is not. In the first term, the moving node is in
roaming state and the non-moving node can be in either local
or roaming state. The moving node covers 2Kv new area each
time unit. Since it performs a roaming movement, it meets with
the other node with probability 2Kv

N as it does not have a priori
knowledge about where the paused node is. In the second term
the moving node performs a local movement and the paused node
in roaming epoch happens to pause within the community of
the moving node, which happens with probability c2

N . Since the
moving node moves locally, it meets with the other node with
probability 2Kv

c2 .
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Fig. 5. Hitting Times under the Community-based RD model for small (left)
and large (right) communities.

The third term corresponds to the scenario when both nodes
are moving. Note that the two nodes cannot meet if they both
perform local movement, hence we have to multiply the meeting
probability by the factor of (pmr + pml)2 − p2

ml) (that is, at least
one of them is moving in roaming epoch).

If the communities overlap, the nodes meet with higher prob-
ability when they both perform local movements. Here we make
the simplifying assumption that the two communities are perfectly
overlapped. As we show later in this section, the theory is
reasonably close to the simulation despite such simplification.
The first two terms in the expression of EM

(in)
comm correspond to

the scenario when both nodes are in local epochs. Under such
scenario, the new area covered by a moving node contains the
other node with probability 2Kv

c2 . The first term captures the
scenario when both nodes move locally and the second term
captures the scenario when only one node moves, with similar
reasonings as above. The remaining terms correspond to the
scenario when at least one of the nodes is in roaming epoch.
They are exactly the same as in the sub-cases with non-overlapped
communities.

Finally, we take a weighted average over the two cases to find
the expected meeting time as we did for the expected hitting time.

Inter-meeting Time: To calculate the inter-meeting times,
we condition on the two subcases of overlapping and non-
overlapping communities. We first look at the simpler case of
non-overlapping communities.

Lemma 5.4: The expected inter-meeting time for nodes with
non-overlapped communities is EM

+(out)
comm = EM

(out)
comm.

Proof: Since both nodes are moving according to the
Random Direction mobility model, the location distribution will
converge to the stationary distribution within a few time epochs
(as discussed in Theorem 3.3). Further, the Markov Chain which
describes the transition of nodes between local and roaming states
can be shown to converge to within ε of its stationary distribution
within

max

(
log
“ 1−pl

ε(2−pl−pr)

”
2−pl−pr

,
log
“

1−pr
ε(2−pl−pr)

”
2−pl−pr

)
time units (we bound the

mixing time in terms of the second largest eigenvalue of the
transition matrix [35], [36]). Thus, it takes only a constant
number of epochs until two nodes that just met reach again their
stationary distribution, and we can show that the probability that
the two nodes meet during this time is negligible if K � N
(similar to Theorem 3.3). After this, the additional time it takes
for them to meet is equal to one meeting time.

When the communities of the two nodes overlap, then the
situation becomes slightly more complicated. Specifically, if
the two nodes meet within their community, there is a high
probability that they will meet again quite fast.

Lemma 5.5: The expected inter-meeting time for nodes with
overlapping communities is

EM+(in)
comm = p+

1 E[M+
1 ] + p+

2 E[M+
2 ] + (1− p+

1 − p+
2 )EM (in)

comm, (9)

where (i) p+
1 is the probability that when the two nodes met,

both were in their local states and only one of the nodes was
moving, and E[M+

1 ] is the expected inter-meeting time for this
case, (iii) p+

2 is the probability that when the two nodes met,
both were in their local states and moving, and E[M+

2 ] is the
expected inter-meeting time for this latter case.
The expressions for p+

1 , E[M+
1 ], p+

2 and E[M+
2 ] are contained in

the proof of the lemma which is presented in Appendix III.
We next state the value of the expected inter-meeting time,

EM+
comm, in terms of EM

+(out)
comm and EM

+(in)
comm in the following

theorem.
Theorem 5.3: The expected inter-meeting time of the

Community-based mobility model is

EM+
comm = (1 − c2)EM+(out)

comm + c2EM+(in)
comm. (10)

Proof: The proof is similar to Theorem 5.1.

Contact Duration: The expected contact time is also derived
after conditioning on the two subcases of overlapping and non-
overlapping communities. Let Eτ

(out)
comm and Eτ

(in)
comm denote the

expected contact time for nodes with non-overlapped and over-
lapped communities respectively. Appendix IV discusses how to
derive their values. The following theorem states the value of
the expected contact time, Eτcomm, and is derived in a manner
similar to the derivation of Theorem 5.1.

Theorem 5.4: Eτcomm = (1 − c2)Eτ
(out)
comm + c2Eτ

(in)
comm.

Accuracy of the Analysis: Figure 5 compares analytical and sim-
ulation results for the expected hitting time under the Community-
based mobility model, for small and large communities (for the
large community case all pause times are zero and pl = 0.9, pr =
0.5). Figures 6(a) and 6(b) compare the analytical and simulation
results for the expected meeting and inter-meeting times under
the Community-based mobility model. As can be seen, theory
matches simulations quite closely.

Small Communities: As a special case, in some real-life situa-
tions each node tends to move most of the time in a very small
area that may be common for some of the nodes, and could be
entirely covered by the node’s antenna, while the network might
be much larger, like several office buidling on a campus or several
conference rooms in a hotel. We now discuss how the preceeding
analysis changes for such small communities.

If two nodes have non-overlapping communities, then if two
nodes are within range, then both of them will be in their roaming
states. Incorporating this observation in the preceeding derivations
yield the expressions for expected meeting, inter-meeting and
contact times. Also, for non-overlapping small communities, the
tail of the distribution of the meeting and inter-meeting times is
expoenential as their relative movement is similar to the relative
movement of two nodes moving according to Random Direction
mobility.
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Fig. 6. Simulation and analytical results for the Community-based mobility
model. (a) Meeting time. (b) Inter-meeting time. Network parameters: N = 500×
500, L = 150, c = 0.1, pl = 0.9, pr = 0.5, v = 1.0, T stop = T

l
stop = 0.

If two nodes have overlapping communities, then if these two
nodes are within their community, then the probability that they
are within each other’s range is equal to one. Incorporating this
observation in the preceeding derivations yield the expressions for
expected meeting, inter-meeting and contact times. In general, for
overlapping small communities, the tail of the distribution of the
meeting and inter-meeting times is not exponential. However, for
the special case when most of the nodes remain within their own
community such that the probability that both the nodes under
consideration are in their roaming states is small, the distribution
of the meeting and inter-meeting times will be exponential as
their distribution is governed by the node in the roaming state
returning back to the local state.

VI. DELAY OF MOBILITY-ASSISTED ROUTING

In this section, our goal is to demonstrate how the mobility
properties we have derived thus far can be readily used in various
analytical expressions of interest related to encounter-based pro-
tocols. As an example, we will show how our results regarding the
various encounter times fit into a general theoretical framework
that can be used to analyze the performance of mobility-assisted
routing. Note that the derived encounter-related expressions could
also be useful for the calculation of various other interesting
results such as: capacity results [41], end-to-end delay and
resource usage results based on Markov Chains and Random
Walk theory [15], [16], [25], [26], fluid models [14], wireless
virus spread models [27], PeopleNet [9], etc. By “plugging” our

basic encounter-related results into more generic equations, we
derive similarly accurate performance results under a specific
mobility model, in closed form, without resorting to simulations
or curve fitting.

Our focus here will be the delay of two well known mobility-
assisted routing algorithms: Direct Transmission and Epidemic
Routing [29]. We will first look into a scenario with idealized
conditions (infinite bandwidth and buffer space), and derive upper
and lower bounds for the delay. Then, we address a more realistic
situation, where nodes contend for access to limited resources like
bandwidth.

We use a custom simulator described in [42] to get the
simulation values we compare our theoretical results to. The sim-
ulator avoids excessive interference by implementing a scheduling
scheme which prohibits simultaneous transmissions within two
hops of each other. It incorporates interference by adding the
received signal from other simultaneous transmissions (outside
the scheduling area) and comparing the signal to interference
ratio to the desired threshold. The simulator allows the user to
choose from different physical layer, mobility and traffic models.

A. Mobility-Assisted Routing under no Contention

We will first assume that all nodes have infinite buffer space,
and the available bandwidth per contact is much larger than the
amount of data to be sent. These assumptions are valid, when
traffic is low, the network is sparse and the spatial distribution
of nodes does not have large peaks. In this case, the probability
that many nodes will try to access the same “wireless area” at
the same time is small. We can thus safely ignore contention
or queueing and concentrate on the important effect on delay of
storing and carrying a message.

In Direct Transmission, since the source of a message holds on
to it until it comes within range of the destination itself [29], [43],
its delay (under no contention) is equal to the expected meeting
time under the given mobility model, and is also an upper bound
on the delay of any other (non-adversarial) mobility-assisted
routing scheme [29]. Epidemic Routing, on the other hand, has
the minimum expected delivery delay under the assumption of
no contention, being equivalent with an optimal “oracle-based”
scheme that knows all future connectivity [6], [15]. The properties
of the optimal algorithm have been widely studied [14], [25],
[26], [29], [44]. The following Lemma gives the delay of the
two routing schemes as a function of the expected meeting time
for a given mobility model, and thus it also gives bounds for the
expected delay of any mobility-assisted routing scheme, under
a given mobility model (proofs can be found in [29], and the
lemma is reproduced here for completeness).

Lemma 6.1: Let M nodes move according to a given mobility
model with exponentially distributed meeting times. Then, the
expected message delivery time of any routing algorithm EDmm

under mobility model “mm” is

HM−1

(M − 1)
EMmm ≤ EDmm ≤ EMmm (11)

where Hn is the nth Harmonic Number, i.e, Hn =
∑n

i=1
1
i =

Θ(log n).
We can replace the values we calculated for the meeting

times under different mobility models in Equation (11) and
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Fig. 7. Upper and lower bounds on the delay of any mobility-assisted routing
scheme under Random Direction (a) and Community-based mobility (b).

derive closed-form expressions for the delays. Note that these
expressions hold for mobility models with exponential tails for
the meeting time distribution, and thus the epoch-based mobility
models we have seen, such as Random Direction, Random
Waypoint or Community mobility with small communities. In
the case of large communities, Equation (11) has to be slightly
modified. These equations also hold for the case of random Walk
mobility whose meeting time has been derived in [29].

In Figure 7(a) we compare our analytical results, based on
Lemma 6.1 and the expressions derived in Sections III and V, to
simulation results, for the Random Direction model. Figure 7(b)
does the same for the Community-based model with small
non-overlapping communities and parameter values pl = 0.8,
proam = 0.5, T stop = 0, and T

l

stop = 150. For the non-
contention case, we turned off all interference and scheduling
modules in the simulator, and route only a single message in
each run. As can be seen by both plots, our theoretical results
for the optimal delay match very closely with simulations results.
This implies not only that our meeting time expressions for
different mobility models are accurate, but that derivative delay
expressions based on these meeting times, and pertaining to the
delay of more complicated mobility-assisted routing schemes are
also accurate.

B. Mobility-Assisted Routing under Contention

The simple approach of Section VI-A that takes into consider-
ation only the expected meeting times fails to take into account
contention for the shared channel, as described in Section II. This
can produce too optimistic delay results for resource-demanding
protocols like epidemic routing (see [16] and Fig. 8(b)).

When contention occurs during the whole duration of a given
contact, a “loss” of a forwarding opportunity may occur. Such a
loss can be modeled by a loss probability, which is a function of
contact duration, propagation environment, and traffic load. Note
that different routing protocols induce different load for the same
amount traffic, since they use different degrees of data replication.
Hence, the loss probability also depends on the routing protocol.
[42] discusses how to find the value of the loss probability in
terms of these network parameters. 6 We will not reproduce these
result here, but instead discuss how to find the delay given this
loss probability. In the rest of this section we denote by ptxS the
probability of a successful transmission, and by 1−ptxS the loss
probability.

The two nodes will remain in contact with each other for
one contact time. If contention causes loss of every transmission
opportunity in one contact time, then the two nodes will move
out of each other’s range without being able to exchange the
packet. As a result, they will have to wait for one inter-meeting
time to be able to meet each other again. Thus, when contention
is significant, knowing the statistics of these two properties in
addition to meeting times is necessary and sufficient to be able
to analyze the delay of any mobility-assisted routing scheme.

We first analyze the performance of Direct Transmission under
contention. Although this scheme is somewhat “trivial” and not
very likely to be used in a real implementation, it is very useful to
demonstrate how the various encounter statistics all fit together,
and will serve as the building block for more complex protocols.

Theorem 6.1: Let EDdt denote the expected delay and 1 −
pdt

txS denote the loss probability under direct transmission. Then,

EDdt = EMrd +
(1 − pdt

success)EM+
rd

pdt
success


 EMrd

pdt
success

,

where EMrd is the expected meeting time of the Random
Direction mobility model and pdt

success = 1 − (1 − pdt
txS

)Eτrd is
the probability that when two nodes come within range of each
other, they successfully exchange the packet before going out of
each other’s range (within the contact time τrd).

Proof: The expected time it takes for the source to meet the
destination for the first time is EMrd (the expected meeting time).
Then, with probability 1 − pdt

txS , the source and the destination
are unable to exchange the packet in one time slot, where pdt

txS

is given in [42]. Since these nodes are within range of each other
for Eτrd number of time slots,

(
1 − pdt

txS

)Eτrd is the probability
that the source fails to deliver the packet to the destination
when they came within range of each other. (We are making
an approximation here by replacing τrd by its expected value.)
Thus, pdt

success = 1 − (1 − pdt
txS

)Eτrd .
If the two nodes fail to exchange the packet when they

were within range, then they will have to wait for one inter-
meeting time to come within range of each other again. If
they fail yet again, they will have to wait another inter-meeting
time to come within range. Thus, EDdt = EMrd + pdt

success(
(1 − pdt

success)EM+
rd + 2(1 − pdt

success)
2

EM+
rd + . . .

)
= EMrd + (1−pdt

success)EM+
rd

pdt
success

. Since EM+
rd =

6Note that this probability could also reflect other things too, for example, loss
due to lack of buffer space or the unwillingness of a node to further forward
packets.
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EMrd for the Random Direction mobility model, EDdt evaluates
to EMrd

pdt
success

.
We will now analyze the performance of epidemic routing with

contention assuming Random Direction mobility.
Theorem 6.2: Let EDepid denote the expected delay of epi-

demic routing and 1− pepid
txS denote the induced loss probability.

Then,

EDepid =
M−1∑
i=1

1
M − 1

i∑
m=1

EMrd

m(M − m)pepid
success

, (12)

where pepid
success = 1 −

(
1 − pepid

txS

)Eτrd

.
Proof: To find the expected end-to-end delay, we first find

the expected time it takes for the number of nodes having a copy
of the packet to increase from m to m + 1. The expected time
it takes for one of the m nodes having a copy of the packet to
encounter one of the other M − m nodes is equal to EMrd

m(M−m) .
Similar to the Direct Transmission case, each “encounter” fails

with probability pepid
success = 1 −

(
1 − pepid

txS

)Eτrd

, where pepid
txS is

given in [42]. Since both meeting and inter-meeting times have
exponential tails, the expected time it takes for the number of
nodes having a copy of the packet to increase from m to m + 1
is equal to EMrd

m(M−m)pepid
success

.

Finally, the probability that the destination is the ith node to
receive a copy of the packet is equal to 1

M−1 for 2 ≤ i ≤ M . The
amount of time it takes for the ith copy to be delivered is equal
to
∑i

m=1
EMrd

m(M−m)pepid
success

. Applying the law of total probability
over the random variable i gives Eq.(12).

Figures 8(a) and 8(b) compare the analytical and simulation
delay results for different network densities for Direct Transmis-
sion and Epidemic routing respectively. To generate contention
in the network, instead of routing a single message per run (used
to generate results for Section VI-A), we use the Poisson arrival
process to generate traffic in our simulations. The channel model
is assumed to be Rayleigh-Rayleigh fading and Random Direction
mobility is used to model node mobility in the simulations. Its
easy to see the analytical results closely match the simulation
results. Also, the analytical delay derived without incorporating
contention heavily underestimates the actual delay of Epidemic
routing as flooding is used to route packets in Epidemic routing.

VII. RELATED WORK

There has been a line of work pre-dating delay tolerant
networks, which also proposed the use of node mobility, but
with the aim to overcome the limited capacity problem of ad hoc
networks [43], [45]. A significant research thread has spawned
thereafter exploring the fundamental trade-offs between the ca-
pacity and the delay of the original “2-hop” scheme and other
similar algorithms (e.g. [41], [44], [46], [47]). Nevertheless, most
of these results are of asymptotic nature. Although asymptotic
results provide useful insight on the scalability of a given family
of protocols, they are more applicable to large dense wireless
networks, which do not represent our target applications.

A large number of (mobility-assisted) routing protocols have
been proposed for DTN networks, some assuming known or
enforced future connectivity (e.g. [6], [12]), while others assum-
ing random connectivity and making “opportunistic” forwarding
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Fig. 8. Simulation and analytical results for the expected delay of (a) Direct
Transmission. (b) Epidemic Routing. Network parameters: N = 150× 150, v =
1, L = 55, M = 50, T stop = 0.

decisions (e.g [13]–[16]). A detailed list of proposals can be
found in [11] or [48].

Following this, a significant amount of theoretical work has
also recently emerged in the context of intermittently connected
networks or DTNs [14], [25], [26], [29], [31], [44], [49]. These
papers try to analyze the delay of epidemic routing [13] or other
mobility-assisted protocols, in networks that are not connected
for the majority of time. However, a lot of these works assume
that the expected time between encounters, the basic building
component in most models, is just a parameter of the mobility
model that can be acquired from simulations or curve fitting [25],
[26], [44]. Although this makes these results quite generic, at the
same time it also reduces the usefulness of analytical expressions,
as a simulation must be run beforehand to obtain some quantities
necessary for the model.

Random Walk mobility is one of the mobility models, where
hitting and meeting times have been analyzed extensively [29],
[32] and used to derive various performance metrics for mobility-
assisted routing protocols [3], [29]. Further, various statistical
properties of the Random Waypoint and the Random Direction
model (e.g. node distribution [33], convergence [37], [50], etc.)
have been studied. Nevertheless, hitting and meeting times for
these models have to our best knowledge only been treated
in [51]. There, the authors use a similar methodology to the
one we use, but only derive upper and lower bounds on the
meeting time between two nodes performing Random Waypoint
movement, and use it to calculate an asymptotic result.

To fill this important gap, in this paper we analyzed the statis-
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tics of various important encounter-related quantities for a generic
class of mobility models, namely “epoch-based” models. In [22],
[23] we had dealt with expectations for hitting and meeting
times for these models. Here, we extended this work by deriving
the complete probability distributions for these quantities, and
also by calculating two other important statistics, namely inter-
meeting times and contact durations, which are necessary to
model contention (for limited bandwidth or buffer space).

VIII. CONCLUSIONS

In this paper, we have presented a methodology to analyze
the encounter statistics for some commonly used (“epoch-based”)
mobility models. We have derived accurate closed form solutions
for all the respective hitting, meeting, inter-meeting, and contact
times for Random Direction and Random Waypoint mobility
which are simple and popular epoch-based models. Additionally,
we have applied our methodology to derive similar results for
a more realistic mobility model that aims at capturing real-
world mobility characteristics more accurately than many existing
models. Finally, we have demonstrated how these results can
be used in a more general framework to analyze the delay
of different mobility-assisted routing schemes, that is, schemes
that require the node to carry a message for (potentially long)
periods of time. Such schemes have been recently recognized
to be very helpful in improving the performance of regular
wireless networks or to enable data delivery in networks that
are disconnected for the majority of time. We believe that this
work can help in better understanding the particular advantages
and shortcomings of various protocols in different settings, and
can facilitate the design of new, improved schemes.
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tial decay of inter contact times between mobile devices,” in Proceedings
of ACM MOBICOM, 2007.

[20] C. Bettstetter, “Mobility modeling in wireless networks: Categorization,
smooth movement, and border effects,” ACM Mobile Computing and Com-
munications Review, 2001.

[21] J. Broch, D. A. Maltz, D. B. Johnson, Y.-C. Hu, and J. Jetcheva, “A
performance comparison of multi-hop wireless ad hoc network routing
protocols,” in Mobile Computing and Networking, 1998.

[22] T. Spyropoulos, K. Psounis, and C. S. Raghavendra, “Performance analysis
of mobility-assisted routing,” in Proceedings of ACM MOBIHOC, 2006.

[23] W. Hsu, T. Spyropoulos, K. Psounis, and A. Helmy, “Modeling time-
variant user mobility in wireless mobile networks,” in Proceedings of IEEE
INFOCOM, 2007.

[24] A. Jindal and K. Psounis, “Fundamental mobility properties for realistic
performance analysis of intermittently connected mobile networks,” in
Proceedings of ICMAN’07, held together with IEEE PERCOM, 2007.

[25] R.Groenevelt, G. Koole, and P. Nain, “Message delay in manet (extended
abstract),” in Proceedings ACM SIGMETRICS, 2005.

[26] Z. J. Haas and T. Small, “A new networking model for biological applica-
tions of ad hoc sensor networks,” IEEE/ACM Transactions on Networking.

[27] D. Dagon, T. Martin, and T. Starner, “Mobile phones as computing devices:
The viruses are coming!” IEEE Pervasive Computing, 2004.

[28] G. Karlsson, V. Lenders, and M. May, “Delay-tolerant broadcasting,” in
CHANTS ’06: Proceedings of the 2006 SIGCOMM workshop on Challenged
networks, 2006.

[29] T. Spyropoulos, K. Psounis, and C. S. Raghavendra, “Single-copy routing in
intermittently connected mobile networks,” in Proceedings of IEEE SECON,
2004.

[30] A. Lindgren, A. Doria, and O. Schelen, “Probabilistic routing in intermit-
tently connected networks,” SIGMOBILE Mobile Computing and Commu-
nication Review, vol. 7, no. 3, 2003.

[31] T. Spyropoulos, K. Psounis, and C. S. Raghavendra, “Spray and wait: Effi-
cient routing in intermittently connected mobile networks,” in Proceedings
of ACM SIGCOMM workshop on Delay Tolerant Networking (WDTN),
2005.

[32] D. Aldous and J. Fill, “Reversible markov chains and random
walks on graphs (monograph in preparation),” http://stat-
www.berkeley.edu/users/aldous/RWG/book.html.

[33] C. Bettstetter, H. Hartenstein, and X. Perez-Costa, “Stochastic properties of
the random waypoint mobility model: epoch length, direction distribution,
and cell change rate,” in Proceedings ACM Int. Workshop on Modeling
Analysis and Simulation of Wireless and Mobile Systems, 2002.

[34] R. Durrett, Probability: Theory and Examples, 2nd ed. Duxbury Press,
1995.

[35] D. Randall and P. Tetalli, “Analyzing glauber dynamics by comparison of
markov chains,” Lecture Notes in Computer Science, 1999.

[36] P. Billingsley, Convergence of Probability Measures, 2nd ed. Wiley Series
in Probability and Statistics, 1999.

[37] J. Y. L. Boudec and M. Vojnovic, “Perfect simulation and stationarity of a
class of mobility models,” in Proceedings of IEEE INFOCOM, 2005.

[38] W. Hsu and A. Helmy, “Impact: Investigation of mobile-user patterns across
university campuses using wlan trace analysis,” USC, Tech. Rep. CENG-
2005.

[39] D. Lelescu, U. C. Kozat, R. Jain, and M. Balakrishnan, “Model t++: An
empirical joint space-time registration model,” in Proceedings of ACM
MOBIHOC, 2006.

[40] C. Tuduce and T. Gross, “A mobility model based on wlan traces and its
validation,” in Proceedings of IEEE INFOCOM, 2005.

[41] A. Gamal, J. Mammen, B. Prabhakar, and D. Shah, “Throughput-delay
tradeoff in wireless networks,” in Proceedings of IEEE INFOCOM, 2004.

[42] A. Jindal and K. Psounis, “Contention-aware performance analysis
of mobility-assisted routing,” USC, Tech. Rep. CENG-2007-9, 2007
(under submission). [Online]. Available: http://www-scf.usc.edu/∼apoorvaj/
jsac tech09.pdf



14

[43] M. Grossglauser and D. N. C. Tse, “Mobility increases the capacity of ad
hoc wireless networks,” IEEE/ACM Transactions on Networking, vol. 10,
no. 4, 2002.

[44] G. Sharma and R. Mazumdar, “On achievable delay/capacity trade-offs in
mobile ad hoc networks,” in Workshop on Modeling and Optimization in
Mobile, Ad Hoc and Wireless Networks (Wi’Opt), 2004.

[45] P. Gupta and P. Kumar, “Capacity of wireless networks,” IEEE Transactions
on Information Theory, vol. 46, no. 2, 2000.

[46] E. Perevalov and R. Blum, “Delay limited capacity of ad hoc networks:
asymptotically optimal transmission and relaying strategy,” in Proceedings
of IEEE INFOCOM, 2003.

[47] R. M. de Moraes, H. R. Sadjadpour, and J. Garcia-Luna-Aceves,
“Throughput-delay analysis of mobile ad-hoc networks with a multi-copy
relaying strategy,” in Proceedings of IEEE SECON, 2004.

[48] E. P. Jones and P. A. Ward, “Routing strategies for delay-tolerant networks,”
Submitted to ACM Computer Communication Review (CCR).

[49] Y. Wang, S. Jain, M. Martonosi, and K. Fall, “Erasure coding based routing
for opportunistic networks,” in Proceedings of ACM SIGCOMM workshop
on Delay Tolerant Networking (WDTN), 2005.

[50] J. Yoon, M. Liu, and B. Noble, “Random waypoint considered harmful,” in
Proceedings of IEEE INFOCOM, 2003.

[51] G. Sharma and R. R. Mazumdar, “Delay and capacity trade-off in wireless
ad hoc networks with random way-point mobility,” preprint, 2005.

APPENDIX I
CONTACT TIME FOR THE RANDOM DIRECTION MOBILITY

MODEL

We first derive a series of lemmas which constitute a general
methodology for finding the expected contact time for any mobil-
ity model. Then, we use this methodology to derive the expected
contact time for the Random Direction mobility model. This
methodology will also be used in the derivation of the expected
contact times for the Random Waypoint and the Community-
based mobility model.

Lemma 1.1: Let the two nodes be moving when they came
within range of each other. We label the two nodes as nodes 1
and 2. Let E[τ1

mm] denote the expected contact time for these
two nodes for the mobility model ’mm’. Then,

E[τ1
mm] = (1 − p1

mm)
4K

πv̂c
mmv

+ p1
mm„

0.6366K

v̂c
mmv

+ p11
mmE[τadd1

mm ] + p12
mmE[τadd2

mm ]

«

where v̂c
mm is the normalized relative speed between the two

nodes given that they moved within range of each other in the
current time slot,7 p1

mm is the probability that one of the two
nodes pause while they are within range of each other, p11

mm

(p12
mm) is the probability that the paused node is node 1 (node 2),

and E[τadd1
mm ] (E[τadd2

mm ]) is the expected additional time the two
nodes remain within range after node 1 (node 2) pauses.

Proof: When both the nodes are moving when they come
within range of each other, either they move out of each other’s
range before any of them pauses or one of them pauses before
they move out of range.

(a) They move out of each other’s range before pausing: Let
one node be static and let the other node move at a speed
�vi − �vj . This model is equivalent to the model when both

7v̂mm denotes the unconditioned normalized relative speed while v̂c
mm denotes

the normalized relative speed conditioned on the event that the two nodes under
consideration moved within range of each other in the current time slot. This
event will rule out certain relative velocities, and hence v̂mm and v̂c

mm will be
different.

Φ

A
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D

Tangent at Point A

K

C

Fig. 9. The first node enters the transmission range of the second node at an
angle φ to the tangent at A and moves along the chord AB.

nodes are moving at speeds �vi and �vj respectively. We will
work with the former model during this proof as well as all
the subsequent proofs.
So, when these two nodes come within range of each other,
the angle φ in Figure 9 will be uniformly distributed within
[0, π). It cannot be greater than π as φ > π implies that
the nodes were already in contact with each other. They
will remain in contact with each other while the first node
travels along the chord AB in Figure 9. The length of the
chord AB is equal to 2Ksin(φ). E[distance for which the
nodes remain in contact with each other] = E[length of chord
AB] =

∫ π

0
1
π 2Ksin(φ)dφ = 4K

π . The expected speed of the
moving node is equal to v̂c

mm (the normalized relative speed
between the two nodes given that they moved within range
of each other in the current time slot). Thus the expected
time they remain in contact with each other is approximately
equal to 4K

v̂c
mmπv .

(b) One of the nodes pauses before they move out of each
other’s range: We again work with the model where one
of the nodes is static and the other node is moving at a
speed �vi − �vj . The moving node is equally likely to pause
anywhere on the chord AB in Figure 9 since the distribution
of movement duration is memoryless. Let the node stop at
point C which is 0 ≤ x ≤ 2Ksin(φ) distance away from

A. Thus fX|Φ(x | φ) =
{ 1

2Ksin(φ) 0 ≤ x ≤ 2Ksin(φ)
0 otherwise

.

Multiplying by fΦ(φ) and integrating over φ gives us fX(x).
The expected distance that the node travels before pausing
can then be evaluated to 0.6366K. Thus, the expected time
the node travels before pausing is equal to 0.6366K

v̂c
mmv . The

probability that node 1 (node 2) pauses first is equal to p11
mm

(p12
mm) and the additional time the two nodes spent within

range of each other is equal to E[τadd1
mm ] (E[τadd2

mm ]).

The values of p1
mm, p11

mm and p12
mm depend on the mobility model.

Lemma 1.4 finds their value for the Random Direction mobility
model.

In the previous lemma, we found the expected contact time
given both nodes were moving when they came within range of
each other. The next lemma evaluates the expected contact time
when only one node was moving when they came within range
of each other.
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When only one node is moving, either they will move out of
each other’s range before the paused node restarts again and the
moving node pauses, or the moving node pauses or the paused
node restarts before they move out of each other’s range. The
derivation has to account for all the three scenarios.

Lemma 1.2: Let only one of the nodes be moving when the
two nodes came within range of each other. Without loss of
generality, we assume that node 1 is the moving node while node
2 is the paused node. Let E[τ2

mm] denote the expected contact
time for these two nodes for the mobility model ’mm’. Then,

E[τ2
mm] = (1 − p2

mm)
4K

πv
+ p2

mm„
0.6366K

v
+ p21

mmE[τadd3
mm ] + p22

mmE[τadd4
mm ]

«

where p2
mm is the probability that the paused node restarts again

or the moving node pauses before moving out of each other’s
range, p21

mm is the probability that the paused node restarts before
the moving node pauses, and p22

mm is the probability that the
moving node pauses before the paused node restarts. E[τadd3

mm ]
and E[τadd4

mm ] are the expected additional times the two nodes
remain within range after both of them start moving and after
both of them are paused respectively.

Proof:

(a) Both nodes move out of the range of each other without any
of them changing state: The expected time they remain in
contact is 4K

πv . The proof goes along the same lines as in
proof of Lemma 1.1 (a). Except here, the expected relative
speed is v.

(b) The moving node pauses or the paused node starts moving
before they move out of each other’s range: The expected
time before one of the nodes change their state is 0.6366K

v .
The proof goes along the same lines as in proof of Lemma
1.1 (b). Except here, the expected relative speed is v. The
probability that the moving node pauses before the paused
node restarts is p21

mm and E[τadd4
mm ] is the additional time

the two nodes remain within range. The probability that the
moving node pauses before the paused node restarts is p22

mm

and E[τadd3
mm ] is the additional time the two nodes remain

within range.

The values of p2
mm, p21

mm and p22
mm depend on the mobility model.

Lemma 1.4 finds their value for the Random Direction mobility
model.

Next, we find the values of E[τadd1
mm ], E[τadd2

mm ], E[τadd3
mm ] and

E[τadd4
mm ].

Lemma 1.3: E[τadd1
mm ], E[τadd2

mm ], E[τadd3
mm ] and E[τadd4

mm ] are
related to each other through the following set of linear equations:

E[τadd1
mm ] = (1 − padd1

mm )
0.6366K

v
+

padd1
mm

„
4K

3πv
+ padd11

mm E[τadd3
mm ] + padd12

mm E[τadd4
mm ]

«
, (13)

where padd1
mm is the probability that one of the nodes change their

state (either the paused node starts moving or the moving node
pauses) before they go out of the range of each other, padd11

mm is
the probability that the paused node (node 1) starts moving before
the moving node (node 2) pauses and node 1 does not change its

state from roaming to local or vice versa, while padd12
mm is equal

to the probability that the moving node pauses before the paused
node starts moving.

E[τadd2
mm ] = (1 − padd2

mm )
0.6366K

v
+

padd2
mm

„
4K

3πv
+ padd21

mm E[τadd3
mm ] + padd22

mm E[τadd4
mm ]

«
, (14)

where padd2
mm is the probability that one of the nodes change their

state (either the paused node starts moving or the moving node
pauses) before they go out of the range of each other, padd21

mm is
the probability that the paused node (node 2) starts moving before
the moving node (node 1) pauses and node 2 does not change its
state from roaming to local or vice versa, while padd22

mm is equal
to the probability that the moving node pauses before the paused
node starts moving.

E[τadd3
mm ] = (1 − padd3

mm )
0.6366K

v̂c
mmv

+ padd3
mm„

4K

3πv̂c
mmv

+ padd31
mm E[τadd1

mm ] + padd32
mm E[τadd2

mm ]

«
, (15)

where padd3
mm is the probability one of the nodes pause before

moving out of each other’s range, padd31
mm is the probability the

node 1 pauses before node 2 and padd32
mm is the probability that

node 2 pauses before node 1.

E[τadd4
mm ] = T

stop
mm + padd4

mm
0.6366K

v̂c
mmv

+“
1 − padd4

mm

” “
padd41

mm E[τadd2
mm ] + padd42

mm E[τadd1
mm ]

”
, (16)

where T
stop

mm is the expected time both the two nodes remain
paused, padd4

mm is the probability that one of the two nodes change
states to move out of each other’s range (padd4

mm is needed for
the community-based mobility model as nodes can move from
roaming to local state or vice versa), padd41

mm is the probability
that node 2 starts moving node 1 and padd42

mm is the probability
that node 1 starts moving before node 2.

Proof:

(13) E[τmm
add1] is the additional time two nodes remain in contact

when node 1 is paused and node 2 is moving. Either of the
following can happen in the succeeding time slots:
(a) The two nodes move out of the range of each other

without either of the nodes changing states: The ex-
pected distance the node travels before going out of
range is 0.6366K. (This is the expected length from a
point anywhere on chord AB in Figure 9 to point B.)
The expected relative speed is v. Hence, the expected
duration the two nodes remain in contact is 0.6366K

v .
(b) Node 1 starts moving before they move out of range.

If node 1 does not change its state, the additional time
both nodes spend within range of each other is E[τmm

add3].
(c) Node 2 pauses before they move out of range. The

additional time both nodes spend within range of each
other is E[τmm

add4].
Let E[s] denote the distance travelled before one of nodes
changes state for cases (b) and (c). E[s] = E[distance
between points C and D on the chord in Figure 9 ] =
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∫ π

0

∫ 2Ksin(φ)

0

∫ x

0
s−x

4πK2(sin(φ))2
dsdxdφ = 4K

3π . Hence, the
expected time spent before one of the two nodes change
their states = 4K

3πv .
(14) E[τmm

add2] is the additional time two nodes remain in contact
when node 2 is paused and node 1 is moving. This equation
can be derived in a manner similar to the derivation of
Equation (13).

(15) E[τmm
add3] is the additional time two nodes remain in contact

when both the nodes are moving. Either of the following
can happen in the succeeding time slots:
(a) The two nodes move out of the range of each other

without either of the nodes pausing. The expected
duration the two nodes remain in contact is 0.6366K

1.27v .
(The derivation is similar to the one for 13 (a).)

(b) One of the two nodes pause before moving out of each
other’s range. The expected time spent before one of
the node pauses = E[s]

1.27v . If its node 1 which paused,
then the additional time both nodes spend within range
of each other is E[τmm

add1], while if its node 2 which
paused, then the additional contact time is E[τmm

add2].
(16) E[τmm

add4] is the additional time two nodes remain in contact
when both the nodes are paused. The expected time before
one of the nodes starts moving is denoted by T

mm

stop. If the
node which starts moving changes state (from roaming to
local or vice versa), the nodes will stay within with each
other’s range for a further 0.6366K

v̂mm
c v time units. If the node

which starts moving does not change its state, following two
subcases can occur: If node 2 starts moving before node
1, the additional time spent within each other’s range is
E[τadd1

m ], while if node 1 starts moving first, the additional
contact time is E[τadd2

m ].
The value of all the probabilities in all the four equations depend
on the mobility model. Lemma 1.4 derives their value for the
Random Direction mobility model.

The set of linear equations in Lemma 1.3 can be solved to get
E[τadd1

mm ], E[τadd2
mm ], E[τadd3

mm ] and E[τadd4
mm ]. Lemmas 1.1, 1.2 and

1.3 summarize the basic framework of how to find the expected
contact time for two nodes moving according to a mobility model
’mm’. Now we discuss how to use these lemmas to find the
expected contact time for the Random Direction mobility model,
Eτrd. Recall that Theorem 3.4 expresses Eτrd as a function of
E[τ1

rd] and E[τ2
rd]. So, what we need to determine are expressions

for E[τ1
rd] and E[τ2

rd]. Lemmas 1.1, 1.2 and 1.3 are used to derive
these two. Specifically, E[τ1

rd] corresponds to E[τ1
mm] which is

derived in Lemma 1.1 and E[τ2
rd] corresponds to E[τ2

mm] which
is derived in Lemma 1.2. To complete the derivation, in the next
lemma, we derive the value of all the variables in Lemmas 1.1,
1.2 and 1.3 which depend on the mobility model for the Random
Direction mobility model.

Lemma 1.4: (a) The normalized relative speed between the
two nodes given that they moved within range of each other in
the current time slot, v̂c

rd, is given by,

v̂c
rd 


∫ K+2v

K

√
8(1 + cos(a))tan

(a

2

) al

2π(K + 1)vP (EA)
dl,

where a = cos−1
(

l2+2v2−2lv−K2

2v(l−v)

)
and P (EA) =∫K+2v

K
al

2π(K+1)dl is the probability of the event that the

two nodes were out of each other’s range at time t− 1 and were
within each other’s range at time t.
(b) The value of the probabilities in Lemma 1.1
which depend on the mobility model are as follows:

p1
rd 
 ∫ π

0
1
π

(
1 − e

„
−4Ksin(φ)

v̂c
rd

vT

«)
dφ, p11

rd = p12
rd = 1

2 .

(c) The value of the probabilities in Lemma 1.2
which depend on the mobility model are as follows:

p2
rd 
 ∫ π

0
1
π

(
1 − e

−2Ksin(φ)
v

„
1
T

+ 1
T stop

«)
dφ, p21

rd = 1 − p22
rd =

1/T stop

1/T+1/Tstop
.

(d) The value of the probabilities in Lemma 1.3 which depend
on the mobility model are as follows: padd1

rd = padd2
rd 
∫ π

0

∫ 2Ksin(φ)

0
1

2πKsin(φ)

(
1 − e

„
−x
v

„
1
T

+ 1
T stop

««)
dxdφ,

padd3
rd 
 ∫ π

0

∫ 2Ksin(φ)

0
1

2πKsin(φ)

(
1 − e(

−2x

1.27T v
)
)

dxdφ, padd4
rd =

0, padd11
rd = 1 − padd12

rd = padd21
rd = 1 − padd22

rd = 1/T stop

1/T+1/T stop
,

and padd31
rd = padd32

rd = padd41
rd = padd42

rd = 1
2 .

(e) Finally, the expected time both the nodes remain paused,
T

stop

rd is equal to T stop

2 .
Proof: (a) Let EA denote the event that the two nodes (label

them as nodes 1 and 2) were out of each other’s range at time
t− 1 and came within each other’s range at time t. Then, v̂c

rd =
E[‖�v1−�v2‖|EA]

v . Recall that Theorem 3.2 evaluated the value of
v̂rd which is the unconditioned normalized relative speed. v̂c

rd is
different from v̂rd because the fact that the two nodes are coming
within range of each other rules out some relative velocities. For
example, the nodes cannot be moving away from each other.

To find v̂c
rd, we make an approximation by replacing the

magnitude of the node’s velocities by their expected value v.
Let l denote the distance between the two nodes at time t − 1.
Let node 1 move along the x-axis and node 2 move at an
angle θ = θ1 − θ2 from the x-axis. This is equivalent to the
model where both nodes are moving at an angle θ1 and θ2

respectively. The angle θ will satisfy the following relationship:
(l − v − vcos (θ))2 + (vsin (θ))2 ≤ K2 ⇒ θ ≥ a where a =
cos−1

(
l2+2v2−2lv−K2

2v(l−v)

)
. Since unconditioned θ is distributed

uniformly at random between 0 and 2π, the conditioned value
of θ will be uniformly distributed between −a and a.

Thus, E [‖�v1 − �v2‖ | EA, l] =
∫ a

−a
v
2a√

(1 + cos(φ))2 + sin2(φ) dφ =
√

8(1 + cos(a)) tan
(

a
2

)
.

Now, to find E [‖�v1 − �v2‖ | EA], we will have to remove
the condition on l using the law of total probability,
for which we first have to derive fL|EA

(l). fL|EA
(l)dl =

P (L = l | EA) = P (EA|L=l)P (L=l)
P (EA) = aldl

(2K+2)πP (EA) where

P (EA) =
∫K+2v

K
al

2π(K+1)dl.
Now using the law of total probabil-

ity, E [‖�v1 − �v2‖ | EA] can be derived to be∫K+2v

K

√
8(1 + cos(a))tan

(
a
2

)
al

2π(K+1)P (EA)dl.
(b) p1

rd is the probability that one of the two moving nodes
pause before they move out of each other’s range. As the
movement duration of both the nodes is exponential with mean

T , p1
rd given φ and ‖�vi − �vj‖ is equal to 1 − e

− 2Ksin(φ)
T
2 ‖�vi−�vj‖ .
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To simplify exposition, we replace ‖�vi − �vj‖ by its expected

value. Hence, p1 
 ∫ π

0
1
π

(
1 − e

„
− 4Ksin(φ)

vc
rd

vT

«)
dφ which can

be evaluated numerically. Since both the nodes have the same
movement duration distribution, the probability that node 1
pauses first is equal to the probability that node 2 pauses first,
hence p11

rd = p12
rd = 1

2 .
(c) p2

rd can be derived in a manner similar to the derivation of
p1

rd. The movement duration is exponentially distributed with
mean T while the pause duration is exponentially distributed with
mean T stop. Hence, the probability that the paused node restarts

before the moving node pauses, p21
rd, is equal to 1/T stop

1/T+1/Tstop
.

(d) padd1
rd is the probability that either the moving node pauses

or the paused node restarts before the two nodes move out
of each other’s range. The distance to be travelled to move
out of each other’s range is equal to 2Ksin(φ), where φ is a
random variable uniformly distributed between 0 and π. Since
both the movement and pause distributions are uniform, the
distance after which the nodes change state (denote it by x) is
uniformly distributed between 0 and 2Ksin(φ). Hence, padd1

rd 
∫ π

0

∫ 2Ksin(φ)

0
1

2πKsin(φ)

(
1 − e

„
−x
v

„
1
T

+ 1
T stop

««)
dxdφ. padd2

rd

and padd3
rd can be derived in a manner similar to the derivation of

padd1
rd . Since there are no local and roaming states in the Random

Direction mobility model, padd4
rd = 0. Finally, the movement and

pause durations of both the nodes is exponential with means T

and T stop respectively, hence padd11
rd = padd21

rd = 1/T stop

1/T+1/T stop
,

and padd31
rd = padd32

rd = padd41
rd = padd42

rd = 1
2 .

(e) Since the pause duration of both the nodes is exponentially
distributed with mean T stop, the expected time both the nodes

remain paused is equal to T stop

2 .

APPENDIX II
CONTACT TIME FOR THE RANDOM WAYPOINT MOBILITY

MODEL

We will use the framework proposed in Appendix I to derive
values for E[τ1

rwp] and E[τ2
rwp]. E[τ1

rwp] corresponds to E[τ1
mm]

which is derived in Lemma 1.1 and E[τ2
rwp] corresponds to

E[τ2
mm] which is derived in Lemma 1.2. To be able to use

the framework, we will first have to derive the value of all
the variables in Lemmas 1.1, 1.2 and 1.3 which depend on the
mobility model for the Random Waypoint mobility model.

We first derive the value of prwp which denotes the probability
that a given node A pauses within the transmission range of
another node B given that node A is passing through the
transmission range of node B. Then, in the next lemma, we state
the value of all the variables in Lemmas 1.1, 1.2 and 1.3 which
depend on the mobility model. (Obviously, the value of some of
these variables will depend on prwp.)

Lemma 2.1: prwp =
πK2

N
πK2

N +pr1+pr2
where pr1 =

1
N

∫ √
N
2

K
2πl
N

∫ √
N√
2√

l2−K2 2rsin−1
(

K
l

)
drdl and pr2 =

1
N

∫ √
N√
2√

N
2

4l
N

(
π
2 − 2cos−1

(√
N

2l

)) ∫ √
N√
2√

l2−K2 2rsin−1
(

K
l

)
drdl.

pr1 + pr2 is the probability that node A will pass through the

Fig. 10. Node A will pass through the transmission range of node B if and
only if its destination lies in the shaded region.

transmission range of node B but not pause within node B’s
transmission range.

Proof: Let node A start from point X shown in Figure 10.
XY1 and XY2 are tangents from point X to the circle denoting
the transmission range of node B. If the destination of node A
falls within the marked region, then node A will pass within
transmission radius of node B. but not pause within node B’s
transmission range. l denotes the distance between point X and
node B. The pdf of the random variable Lrwp is given in the
proof of Lemma 4.1(b). The angle θ shown in Figure 10 is equal
to 2sin−1

(
K
l

)
. The sector of a circle at a distance r from node

X and lying within the shaded region is equal to rθ. Integrating
over all possible values of r and l will give the probability that
the chosen destination lies in the shaded region. pr1 and pr2

represent the probabilities when 0 ≤ l ≤
√

N
2 and

√
N
2 ≤ l ≤

√
N√
2

respectively.
Lemma 2.2: (a) v̂c

rwp = v̂c
rd.

(b) The value of the probabilities in Lemma 1.1 which depend
on the mobility model are as follows: p1

rwp = 2prwp − p2
rwp,

p11
rwp = p12

rwp = 1
2 .

(c) The value of the probabilities in Lemma 1.2 which depend
on the mobility model are as follows: p2

rwp = pr3 + prwp(1 −
pr3), p21

rwp = 1 − p22
rwp = pr3

pr3+prwp(1−pr3)
, where pr3 


∫ π

0

∫ 2Ksin(φ)

0
1

2πKsin(φ)

(
1 − e

„
−x

T stopv

«)
dxdφ.

(d) The value of the probabilities in Lemma 1.3 which depend on
the mobility model are as follows: padd1

rwp = padd2
rwp = pr3+pr4(1−

pr3), padd3
rwp = 2pr4 − p2

r4, padd4
rwp = 0, padd11

rwp = 1 − padd12
rwp =

padd21
rwp = 1 − padd22

rwp = pr3
pr3+pr4(1−pr3)

, and padd31
rwp = padd32

rwp =

padd41
rwp = padd42

rwp = 1
2 , where pr4 = πK2

N .

(e) Finally, the expected time both the nodes remain paused, T
stop

rwp

is equal to T stop

2 .
Proof: Lemma 2.2 is derived in a manner similar to the

derivation of Lemma 1.4.

APPENDIX III
PROOF OF LEMMA 5.5

If the nodes meet within their community, then they have a
higher chance of meeting again quickly because the communities
are much smaller than the entire network. The probability of the
event that when the nodes met, they were in their local states
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and only one of them was moving (denoted by p+
1 ) is evaluated

using Bayes’ Theorem to be equal to 4Kvpmlppl

c2Npm,in
where pm,in =

1/EM
(in)
comm. Similarly, the probability of the event that when the

nodes met, both of them were in their local states and moving
(denoted by p+

2 ) is derived to be equal to 2Kv̂rdvp2
ml

c2Npm,in
. Now we

find E[M+
1 ] and E[M+

2 ] which are the expected inter-meeting
times associated with the two cases.

E[M+
1 ]: If both the nodes are in their local state but only one

of the nodes is moving, then only after T 1 =
(

v
Lc

+ 1

T
l
stop

)−1

time units, one of the nodes will change its state. With probability

1 − (1 − 2Kv
c2N

)T 1 , the two nodes meet again within this time
epoch, else one of the following three subcases occur: (i) with
probability vT 1

Lc
the moving node pauses first and let E[M+

3 ]
denote the additional time it takes the two nodes to meet again,
(ii) with probability (1−pl)T 1

T
l
stop

the paused node starts moving first

and remains in its local state, and it takes E[M+
2 ] additional time

units for them to meet again, and (iii) with probability plT 1

T
l
stop

, the

paused node starts moving first and moves into its roaming state
and it take will take EM

(in)
comm time units to meet again (as now

one of the nodes is now moving over the entire network and it
will mix fast). Thus,

E[M+
1 ] = T 1 +

„
1 − 2Kv

c2N

«T1
„

vT 1

Lc

E[M+
3 ]+

(1 − pl)T 1

T
l
stop

E[M+
2 ] +

plT 1

T
l
stop

EM (in)
comm

!
. (17)

E[M+
2 ]: Now, if both the nodes were moving in their local

states, then they will keep moving for Lc

2v time units before one of

the nodes changes its state. With probability 1−(1 − 2Kv̂rdv
c2N

)Lc
2v ,

the two nodes meet within this time epoch, else one of the nodes
pauses within its local state and it takes E[M+

1 ] additional time
units for them to meet again. Thus,

E[M+
2 ] =

Lc

2v
+

„
1 − 2Kv̂rdv

c2N

« Lc
2v

E[M+
1 ]. (18)

E[M+
3 ]: If both the nodes are paused in their local states,

then they will remain paused for
T

l
stop

2 time units. Once one of
the nodes changes states, one of the following two subcases can
occur: (i) With probability pl, the node which starts moving will
move into the roaming state and it will take EM

(in)
comm time units

for them to meet again, else (ii) With probability 1−pl, the node
which starts moving will remain in its local state and it will take
E[M+

1 ] additional time units for them to meet again. Thus,

E[M+
3 ] =

T
l
stop

2
+ plEM (in)

comm + (1 − pl)E[M+
1 ]. (19)

Equations (17), (18) and (19) form a linear set of equations
which can be easily solved to find E[M+

1 ], E[M+
2 ] and E[M+

3 ].
Finally, when the nodes met, if at least one of the nodes was

in its roaming state, then the probability that the two nodes meet
within one mixing time is negligible and it will take one meeting
time for them to meet again. Putting everything togther yields
the Lemma.

APPENDIX IV
CONTACT TIME FOR THE COMMUNITY-BASED MOBILITY

MODEL

In this appendix, we discuss how to derive the expressions for
Eτ

(out)
comm (expected contact time for nodes with non-overlapping

communities) and Eτ
(in)
comm ((expected contact time for nodes with

overlapping communities). For ease of presentation, we define
the following sets of variables. (i) E[τ1

comm,rr] and E[τ2
comm,rr]:

Expected contact time for two nodes in the roaming state when
both nodes are moving and when only one node is moving
respectively. (ii) E[τ1

comm,ll] and E[τ2
comm,ll]: Expected contact

time for two nodes in the local state when both nodes are moving
and when only one node is moving respectively. (iii) E[τ1

comm,rl]
and E[τ2

comm,rl]: Expected contact time for two nodes with one in
the roaming state and other in the local state and when both nodes
are moving and when only one node is moving respectively. The
framework introduced in Appendix I is used to derive expressions
for these three sets of variables. The corresponding probabilities
are derived in a manner similar to the derivation of Lemma
1.4 because both nodes are moving according to the Random
Direction mobility model. The only difference is that now nodes
can change states at the end of a pause time (from roaming to
local and vice versa).

We first state a lemma needed to derive E[τ1
comm,rr] and

E[τ2
comm,rr] using the framework. Note that E[τ1

comm,rr] cor-
responds to E[τ1

mm] (derived in Lemma 1.1) and E[τ2
comm,rr]

corresponds to E[τ2
mm] (derived in Lemma 1.2).

Lemma 4.1: (a) v̂c
comm,rr = v̂c

rd.
(b) The value of the probabilities in Lemma 1.1 which
depend on the mobility model are as follows: p1

comm,rr 
∫ π

0
1
π

(
1 − e

„
−4Ksin(φ)

v̂c
comm,rrvT

«)
dφ, p11

comm,rr = p12
comm,rr = 1

2 .

(c) The value of the probabilities in Lemma 1.2
which depend on the mobility model are as follows:

p2
comm,rr 
 ∫ π

0
1
π

(
1 − e

−2Ksin(φ)
v

„
1
T

+ 1
T stop

«)
dφ,

p21
comm,rr = pr

1/T stop

1/T+1/Tstop
, p22

comm,rr = 1/T

1/T+1/Tstop
.

(d) The value of the probabilities in Lemma 1.3 which depend
on the mobility model are as follows: padd1

comm,rr = padd2
comm,rr 
∫ π

0

∫ 2Ksin(φ)

0
1

2πKsin(φ)

(
1 − e

„
−x
v

„
1
T

+ 1
T stop

««)
dxdφ,

padd3
comm,rr 
 ∫ π

0

∫ 2Ksin(φ)

0
1

2πKsin(φ)

(
1 − e(

−2x

1.27T v
)
)

dxdφ,

padd4
comm,rr = 1 − pr, padd11

comm,rr = padd21
comm,rr = p21

comm,rr,
padd12

comm,rr = padd22
comm,rr = p22

comm,rr, and padd31
comm,rr = padd32

comm,rr =
padd41

comm,rr = padd42
comm,rr = 1

2 .
(e) Finally, the expected time both the nodes remain paused,
T

stop

comm,rr is equal to T stop

2 .
In the next lemma, we state expressions for variables needed

to derive E[τ1
comm,ll] and E[τ2

comm,ll] using the framework. Note
that E[τ1

comm,ll] corresponds to E[τ1
mm] (derived in Lemma 1.1)

and E[τ2
comm,ll] corresponds to E[τ2

mm] (derived in Lemma 1.2).

Lemma 4.2: (a) v̂c
comm,ll = v̂c

rd.
(b) The value of the probabilities in Lemma 1.1 which
depend on the mobility model are as follows: p1

comm,ll 
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∫ π

0
1
π

(
1 − e

„
−4Ksin(φ)

v̂c
comm,ll

Lc

«)
dφ, p11

comm,ll = p12
comm,ll = 1

2 .

(c) The value of the probabilities in Lemma 1.2
which depend on the mobility model are as follows:

p2
comm,ll 
 ∫ π

0
1
π

(
1 − e

−2Ksin(φ)
v

„
v

Lc
+ 1

T l
stop

«)
dφ,

p21
comm,ll = pl

1/T
l
stop

v/Lc+1/T l
stop

, p22
comm,ll = v/Lc

v/Lc+1/T l
stop

.

(d) The value of the probabilities in Lemma 1.3 which depend
on the mobility model are as follows: padd1

comm,ll = padd2
comm,ll 
∫ π

0

∫ 2Ksin(φ)

0
1

2πKsin(φ)

(
1 − e

„
−x
v

„
v

Lc
+ 1

T l
stop

««)
dxdφ,

padd3
comm,ll 
 ∫ π

0

∫ 2Ksin(φ)

0
1

2πKsin(φ)

(
1 − e

“
−2x

1.27Lc

”)
dxdφ,

padd4
comm,ll = 1 − pl, padd11

comm,ll = padd21
comm,ll = p21

comm,ll,
padd12

comm,ll = padd22
comm,ll = p22

comm,ll, and padd31
comm,ll = padd32

comm,ll =
padd41

comm,ll = padd42
comm,ll = 1

2 .
(e) Finally, the expected time both the nodes remain paused,

T
stop

comm,ll is equal to
T

l
stop

2 .

Finally, in the next lemma we state expressions for variables
needed to derive E[τ1

comm,rl] and E[τ2
comm,rl] using the frame-

work. Note that E[τ1
comm,rl] corresponds to E[τ1

mm] (derived in
Lemma 1.1) and E[τ2

comm,rl] corresponds to E[τ2
mm] (derived in

Lemma 1.2). The only additional observation used in proving this
lemma is that the probability that the node in the roaming state
is moving and the node in the local state is paused given that at
least one of the nodes is paused is equal to pmrppl

pmrppl+pprpml
.

Lemma 4.3: (a) v̂c
comm,rl = v̂c

rd.
(b) The value of the probabilities in Lemma 1.1
which depend on the mobility model are as follows:

p1
comm,rl 
 ∫ π

0
1
π

(
1 − e

„
−2Ksin(φ)
v̂c

comm,rl
v

“
v

Lc
+ 1

T

”«)
dφ,

p11
comm,rl = 1 − p12

comm,rl = 1/T

v/Lc+1/T
.

(c) The value of the probabilities in Lemma 1.2 which
depend on the mobility model are as follows: p2

comm,rl 

pmrppl

pmrppl+pprpml

∫ π

0
1
π

(
1 − e

−2Ksin(φ)
v

„
1
T

+ 1
T l

stop

«)
dφ

+ pprpml

pmrppl+pprpml

∫ π

0
1
π

(
1 − e

−2Ksin(φ)
v

„
v

Lc
+ 1

T stop

«)
dφ,

p21
comm,rl = plpmrppl

pmrppl+pprpml

1/T
l
stop

1/T+1/T
l
stop

+
prpprpml

pmrppl+pprpml

1/T stop

v/Lc+1/T stop
, p22

comm,rl =
pmrppl

pmrppl+pprpml

1/T

1/T+1/T
l
stop

+ pprpml

pmrppl+pprpml

v/Lc

v/Lc+1/T stop
.

(d) The value of the probabilities in Lemma 1.3 which depend
on the mobility model are as follows: padd1

comm,rl = padd2
comm,rl 


pmrppl

pmrppl+pprpml

∫ π

0

∫ 2Ksin(φ)

0
1

2πKsin(φ)

(
1 − e

„
−x
v

„
1
T

+ 1
T l

stop

««)
dxdφ+

pprpml

pmrppl+pprpml

∫ π

0

∫ 2Ksin(φ)

0
1

2πKsin(φ)

(
1 − e

„
−x
v

„
v

Lc
+ 1

T l
stop

««)
dxdφ,

padd3
comm,rl 


∫ π

0

∫ 2Ksin(φ)

0
1

2πKsin(φ)

(
1 − e

“
−x

1.27v

“
v

Lc
+ 1

T

””)
dxdφ,

padd4
comm,rl = (1 − pr)

1/T stop

1/T stop+1/T
l
stop

+ (1 − pl)
1/T

l
stop

1/T stop+1/T
l
stop

,

padd11
comm,rl = padd21

comm,rl = p21
comm,rl, padd12

comm,rl = padd22
comm,rl =

p22
comm,rl, and padd31

comm,rl = padd32
comm,rl = padd41

comm,rl = padd42
comm,rl =

1
2 .
(e) Finally, the expected time both the nodes remain paused,

T
stop

comm,rl is equal to

(
1

T stop
+ 1

T
l
stop

)−1

.

We now derive Eτ
(out)
comm and Eτ

(in)
comm in the following two

lemmas. The proof of both the lemmas follow directly by listing
all the possible cases two nodes can be in when they come
within each other’s range, find the probability of each case, find
the expected contact time associated with each case and then
combining everything together using the law of total probability.

Lemma 4.4: Eτ
(out)
comm = p1

outE[τ1
comm,rr]+p2

outE[τ2
comm,rr]+

p3
outE[τ1

comm,rl] + p4
outE[τ2

comm,rl] where p1
out = 2Kp2

mr v̂rdv
Npm,out

,

p2
out = 4Kpmrpprv

Npm,out
, p3

out = 4Kpmrpmlv̂rdv
Npm,out

, p4
out =

4K(pmrppl+pprpml)v
Npm,out

, and pm,out = 1/EM
(out)
comm.

Lemma 4.5: Eτ
(in)
comm = p1

inE[τ1
comm,rr] + p2

inE[τ2
comm,rr] +

p3
inE[τ1

comm,rl] + p4
inE[τ2

comm,rl] + p5
inE[τ1

comm,ll] +

p6
inE[τ2

comm,ll] where p1
in = 2Kp2

mr v̂rdv
Npm,in

, p2
in = 4Kpmrpprv

Npm,in
,

p3
in = 4Kpmrpmlv̂rdv

Npm,in
, p4

in = 4K(pmrppl+pprpml)v
Npm,in

,

p5
in = 2Kp2

mlv̂rdv
c2Npm,in

, p6
in = 4Kpmlpplv

Npm,in
, and pm,in = 1/EM

(in)
comm.


