
 1 

 

 

Characterization of GasP cells & 
analyzing the effects of the operating 
environments on timing verification 

 
 

 

 

 

 

 

 

Prasad Joshi 

     

08/21/2008 

 

 

 

Collaborative Effort  

From  

Sun Microsystems & 

University of Southern California 



 2 

Introduction: 
 

Almost all asynchronous circuit families have internal timing constraints where a 

particular signal is required to arrive before another signal. Such timing constraints are 

termed as Relative Timing (RT) constraints. 

 

The GasP family of circuits used in the design of Fleet can be represented as follows: 

 

 

Figure 1 : GasP Plain 

 

In order to ensure that the GasP control circuits work as desired, a set of RT constraints 

need to be identified and verified. These RT constraints can be grouped as follows: 

 

1. Rail to Rail (RR) Constraints. 

2. Short Circuit (SC) Constraints. 

 

Rail to Rail Constraints: 

 

The Rail to Rail Constraints ensure that the state wire is able to reach the power and 

ground rails. This ensures that every circuit in the GasP control pipeline successfully 

completes the handshake with its nearest neighbors. The two Rail to Rail constraints that 

one should to be aware of are as follows: 

 

1. Predecessor Loop Constraint on the Successor State Wire. 

2. Successor Loop Constraint on the Predecessor State Wire. 

 

F 

P 

S 



 3 

Predecessor Loop Constraint on the Successor State Wire: 

 
The driver PMOS which pulls the successor state wire high can be turned off by action of 

the predecessor loop as well as the successor loop. In the above figure the delay of the 

solid path has to be less than that of the dotted path. This timing constraint ensures that 

the successor state wire is completely pulled high before the driver PMOS turns off 

because of the predecessor loop. This constraint has a margin of 3 gate delays. However 

this margin gets reduced when there is a large load on the successor state wire and a 

small load on the predecessor state wire. If the above constraint is violated, then control 

tokens can be lost and may even lead to deadlock. 

Successor Loop Constraint on the Predecessor State Wire: 

 
The driver NMOS which pulls the predecessor state wire low can be turned off by the 

action of the predecessor loop as well as the successor loop. In the above figure the delay 

of the solid path has to be less than that of the dotted path. This timing constraint ensures 

that the predecessor state wire is completely pulled low before the driver NMOS turns off 

because of the state wire loop. This constraint has a margin of 4 gate delays. However 

this margin gets reduced when there is a large load on the predecessor state wire and a 

small load on the successor state wire. If the above constraint is violated, then the 



 4 

predecessor state wire will be stuck at high and repeated tokens will be generated at the 

successor state wire. This can also lead to a deadlock. 

Short Circuit Constraints: 

The short circuit constraints ensure that the bidirectional state wire between two GasP 

control cells is driven by one cell at a time. Due to the symmetry of the GasP cells we 

have one short circuit constraint for each state wire: 

 

1. Short Circuit Constraint on the Successor State Wire. 

2. Short Circuit Constraint on the Predecessor State Wire. 

Short Circuit Constraint on the Successor State Wire: 

 
In the above figure the delay of the solid path must be less than that of the dotted path. 

The driver PMOS of the current cell must turn off before the driver NMOS of the next 

cell turns on. This constraint has a margin of zero gate delay and hence is really tight. 

Short Circuit Constraint on the Predecessor State Wire: 

 
In the above figure the delay of the solid path must be less than that of the dotted path. 

The driver NMOS of the current cell must turn off before the driver PMOS of the 



 5 

previous cell turns on. This constraint has a margin of zero gate delay and hence is really 

tight. 

 

Characterization of the GasP control cells 
 

The functional behavior of the GasP Control Circuits can be described using a State 

Transition Diagram as follows:  

 
 

It is important to note that the arc S- to F+ has an initial token on it which enables the 

transition of P+ to F+. As seen from the above figure the various timing arcs that need to 

be characterized are as follows: 

1. P+ to F+  

2. F+ to S+ 

3. F+ to P- 

4. P- to F- 

5. S+ to F- 

6. S- to F+ 

Characterizing the timing arcs: 

 

In-order to make sure that the GasP control circuits satisfy all the RT constraints, we need 

to make sure that the worst region of operation is always taken into account. In other 

words, the characterization procedure of the GasP cells must make sure that the each of 

the timing arcs defined previously are characterized in the right way.  

 

All the RT constraints defined previously are of the same form where one timing path A 

has to be shorter than the other timing path B. In order to make sure that the worst case is 

taken into account, we need to verify that the max of timing path A has to be smaller than 

the min of timing path B.  

 

The above discussion makes it obvious that we should have two timing libraries: 

1. Fast .lib for Fast Circuit Corners 

2. Slow .lib for Slow Circuit Corners 

  P
+ 

F
+

S
+ 

  

 
  

 

P
- 

S
- 

F -



 6 

Each of the above arcs needs to be characterized using different initial conditions for 

achieving the fast and slow circuit corners. These arcs are characterized by sweeping the 

input slews and the output loads. This is discussed in detail as follows: 

 

1. P+ to F+ : 

a. Fast .lib: S pin of the DUT is held at 0 with no initial conditions on the other 

pins. 

b. Slow .lib: S pin of the DUT changes from 1 to 0 at the same time as the 

inverted P signal. This can be done by putting an inverter on the S pin which is of 

the same strength as the inverter to which the P signal is applied. 

2. F+ to S+: 

a. Fast .lib: S pin is set to 0 by using .ic command in spice. 

b. Slow .lib: Same as above. 

3. F+ to P-: 

a. Fast .lib: P pin is set to 1 by using .ic command in spice. 

b. Slow .lib: Same as above. 

4. P- to F-: 

a. Fast .lib: S pin of the DUT changes from 0 to 1at the same time as the inverted 

P signal. This can be done by putting an inverter on the S pin which is of the same 

strength as that of the inverter to which the P signal is applied. 

b. Slow .lib: S pin of the DUT is held at 0 with no initial conditions on the other 

pins. 

5. S+ to F-: 

a. Fast .lib: The inverted P of the DUT changes from 0 to 1 at the same time as 

the S pin changes from 0 to 1. This can be done by pulling out the pin Pbar in the 

sub-circuit definition and applying the same input signal on the Pbar pin as the S 

pin. 

b. Slow .lib: P pin of the DUT is held at 1 with no initial conditions on the other 

pins. 

6. S- to F+: 

a. Fast .lib: P pin of the DUT is held at 1 with no initial conditions on the other 

pins. 

b. Slow .lib: The inverted P of the DUT changes from 1 to 0 at the same time as 

the S pin changes from 1 to 0. This can be done by pulling out the pin Pbar in the 

sub-circuit definition and applying the same input signal on the Pbar pin as the S 

pin. 

 



 7 

Evaluating the effects of operating environments: 
The GasP control pipelines operate in the following three regions: 

1. Bubble limited (BL) region. 

2. Data limited (DL) region. 

3. Full throughput (FT) region. 

The timing arcs defined previously have their minimum and maximum delays in different 

regions as shown in the following table: 

Minimum Delay Maximum Delay Timing Arcs 

Region Characterized 

in which .lib? 

Region Characterized 

in which .lib? 

P+ to F+ DL (note 1) fast .lib FT slow .lib 

F+ to S+ --- (note 2) both --- both 

F+ to P- --- (note 2) both --- both 

P- to F- note 3 fast .lib FT slow .lib 

S+ to F- note 3 fast .lib FT slow .lib 

S- to F+ BL (note 4) fast .lib FT slow .lib 

 

Note1: The arc P+ to F+ has a minimum delay when the other input of the NOR gate is a 

constant low. In other words the minimum delay is achieved when the successor state 

wire is empty. This happens in the data limited case. 

 

Note 2: The actual timings of the arcs F+ to S+ and F+ to P- in a real circuit depends on 

the load on the successor and predecessor state wires respectively. The timings on these 

arcs remain the same, irrespective of the operating region. 

 

Note 3: The arc P- to F- has a maximum delay when the other input of the NOR gate is a 

constant low. This happens when the predecessor loop completes before the successor 

loop and hence it can be attributed to the fact that predecessor state wire load is less than 

the successor state wire load. 

The arc S+ to F- has a maximum delay when the other input of the NOR gate is a 

constant low. This happens when the successor loop completes before the predecessor 

loop and hence it can be attributed to the fact that successor state wire load is less than 

the predecessor state wire load. However, the timings on both these arcs remain the same, 

irrespective of the operating region. 

 

Note 4: The arc S- to F+ has a minimum delay when the other input of the NOR gate is a 

constant low. In other words the minimum delay is achieved when the predecessor state 

wire is full. This happens in the bubble limited case. 

 

Note 5: The arcs P+ to F+ and S- to F+ pass through the NOR gate. Hence by Charlie 

effect, they have their maximum delays when both the inputs of the NOR gate change at 

the same time. This happens in the full throughput case. 

 

As seen in the above table all the maximum delay values are located in the slow .lib and 

all the minimum delay values are located in the fast .lib. Hence we can safely assume that 



 8 

if the RT constraints are verified using these two .lib’s, then the GasP control circuits can 

be guaranteed to function as desired. This might be conservative, but it is safe. 

Finding clocks for the data-path 
 

After the RT constraints are verified, it is necessary to verify whether the data-path meets 

the setup and hold checks. The first step is to find out the phase difference between two 

neighboring fire signals. After determining the phase differences, local clocks can be 

defined in PrimeTime to perform the setup and hold checks. 

Finding the worst case for Setup checks 

 

Let us consider a transition phase of a GasP pipeline from the full throughput case into 

the data limited case. This will help us evaluate the difference between the two cases. As 

mentioned previously in this document, the NOR gate has a maximum delay in the full 

throughput case. Let us take this delay to be 1 gate delay. We also know that in the data 

limited case, the NOR gate operates slightly faster. Let us take this delay to be 0.5 gate 

delay. After making these assumptions, consider the following figure: 

 

 
 

As seen in the figure, the setup check from F1 to F2 is 6 gate delays in the full throughput 

case and is reduced to 5.5 in the data limited case due to a slightly faster NOR gate. This 

leads us to the conclusion that the data limited case is worse than the full throughput case. 

The next question that comes into mind is “what happens in the bubble limited case?” 

 

In the bubble limited case, as the successor state wire of a particular cell is stuck at full, 

that cell can’t fire again till its successor state wire becomes empty. Hence the phase 

P1 

S1/P2 

F1 

F2 

Full Throughput Data limited 

0 5 10 15 18.5 20.5 24 30 

The setup time 
from F1 to F2 has 
changed from 6 
to 5.5 

4 



 9 

difference between F1 going high and F2 going high will always be greater than 6 gate 

delays. Hence we can conclude that the data limited case is the worst case for the setup 

checks. 

Finding clock for setup checks: 

 

The phase difference between the rising edges of the neighboring clocks F1 and F2 is the 

summation of the delays F1+ to S1+ and P2+ to F2+. Now for the worst case, we must 

ensure that these delay values are picked up by PrimeTime from the data limited case.  

 

Recall the discussion made while characterizing the various arcs. We had said that the 

fast .lib has the delay from P+ to F+ corresponding to the data limited case and F+ to S+ 

is the same for all three cases. Hence we can safely use the fast .lib to find out the phase 

differences between the rising edges of the neighboring clocks. Using these phase 

differences while defining the clocks, we can make PrimeTime verify the setup checks. 

Finding the worst case for the Hold checks: 

 

Let us now consider a transition phase of a GasP pipeline from the full throughput case 

into the bubble limited case. This will help us evaluate the difference between the two 

cases. Similar to the previous case we will assume the NOR gate delay to be 1 gate delay 

in the full throughput case. We also know that in the bubble limited case, the NOR gate 

operates slightly faster. Let us take this delay to be 0.5 gate delay. After making these 

assumptions, consider the following figure: 

 

 
 

As seen in the figure, the hold time check from F1 to F2 has changed from 1 to 1.5 for the 

bubble limited case. Hence as shown in the figure, the third data token launched by F1 

F1 

F2 

S1/P2 

S2/P3 

Full Throughput Bubble Limited 

0 5 10 15 18 20 23 30 

The hold time 
from F1 to F2 
has changed 
from 1 to 1.5 

2 6 

20.5 

21.5 

24 

25.5 

11 



 10 

gets more time to corrupt the second data token that is getting latched by F2. This can 

result in a hold time violation. Thus we can conclude that the bubble limited case is 

worse than the full throughput case. 

The hold time violations occur because the second data tries to corrupt the first data. This 

happens because of the overlapping transparent periods of the adjacent fire signals. 

However in the data limited case, the second fire signal arrives later than the usual 5 gate 

delays. This results in no overlap between the transparent periods of F1 and F2. Hence 

the data limited case can never be the worst case for hold time violations. 

 

Finding clock for hold checks: 

 

In order to verify the hold time violations, we need to find when F1+ can happen at the 

earliest after F2+ has happened. The phase difference between the rising edges of the 

neighboring clocks F2 and F1 is the summation of the delays F2+ to P2- and S1- to F1+. 

In other words we are finding the adjacent clocks in the backward direction. Now for the 

worst case, we must ensure that these delay values are picked up by PrimeTime from the 

bubble limited case.  

 

Recall the discussion made while characterizing the various arcs. We had said that the 

fast .lib has the delay from S- to F+ corresponding to the bubble limited case and F+ to P- 

is the same for all three cases. Hence we can safely use the fast .lib to find out the phase 

differences between the rising edges of the neighboring clocks. Using these phase 

differences while defining the clocks, we can make PrimeTime verify the hold checks. 

 

 

Conclusions: 
 

1. RT constraints should be verified using the fast .lib for the minimum delay 

paths and the slow .lib for the maximum delay paths. 

2. Data Limited case is the worst case for setup checks. 

3. Bubble Limited case is the worst case for hold checks. 

4. Setup and Hold checks should be performed using the fast .lib 


