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Abstract—With VLSI circuit feature size scaling down, it is 

becoming more difficult and expensive to achieve a desired level 
of yield.  Error-tolerance, that is, employing defective chips that 
occasionally produce erroneous yet acceptable results in targeted 
applications, has been proposed as one way to increase effective 
yield. In the domain of error-tolerance, defective chips are 
characterized by certain criteria set by various applications.  
Error-rate, namely how frequent errors occur at the output, is 
one such criterion. In this report we focus on the following 
problem: Given a combinational logic circuit that is defective and 
hence occasionally produces an erroneous output, how can one 
determine the error-rate of each output line by using ones 
counting?  This problem was previously considered by others but 
their analysis has some inaccuracies.  This report presents both a 
more accurate analysis and new estimator of error-rate. 
 

 
 

I. INTRODUCTION 
lassical VLSI post-manufacturing tests partition chips 
into two categories, namely those that pass and those that 

fail. Presumably, chips that fail have defects and are 
discarded, while the others are sold to customers. In this report 
we will use the terms fail and defective chip interchangeably. 
The fraction of defect-free chips among all manufactured 
chips is called the yield of a VLSI manufacturing process. 
With minimal feature sizes scaling down to below 90nm, it is 
becoming more difficult, hence expensive, to achieve a 
desired level of yield [1]. Defective chips contribute to a large 
economic loss to chip manufacturers, and increased prices to 
consumers.  

In an attempt to increase yield, designers employ several 
techniques such as fault-tolerance, defect-tolerance and 
design-for-manufacturability [2] [3] [4]. Another somewhat 
radical and new technique orthogonal to these is called error-
tolerance [5] [6]. A chip is said to be error-tolerant (ET) with 
respect to an application or system if 1) it contains defects and 
hence occasionally produces errors, and 2) using this chip in a 
given application/system produces acceptable results to the 
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end user. Because a fraction of defective chips are used in 
systems rather than being discarded, error-tolerance increases 
effective yield, and hence potentially profit. 

Many examples of systems that can operate in an error-
tolerant mode reside in the domain of multi-media and man-
machine interfaces. Some simple applications are briefly 
described below.  

While the application of error-tolerance in digital systems 
probably dates back several decades, one of the earliest 
documented applications we have encountered appears in a 
1995 patent: 

It is herein recognized that in an audio signal 
processing system, a DRAM chip for storing digitized 
audio signals and selected to include at least one 
inoperative memory location, is acceptable for use as a 
storage medium in that no noticeable error is produced 
on playback of the recorded signal due to the sampling 
rate of the audio signal and due to the relatively low 
rate of defects allowed. Furthermore, the use of a less-
than-perfect DRAM chip for storing audio information 
is acceptable due to the substantially non-critical nature 
of audio signals, as opposed to the extremely critical 
nature of computer data. [7] 

The following statement appears in another patent dealing 
with a telephone-answering machine: “The use of ‘audio 
RAMs’ (ARAMs) is also known in the answering machine art, 
with ARAMs being RAMs that are allowed to have a small 
number of defective bits, in order to allow the use of lower-
cost integrated circuit memory chips.”[8] Both statements 
embody the concept of error tolerance, i.e., that some 
defective circuitry can produce acceptable performance. 

An MPEG circuit is another example where error-tolerance 
is applicable. The effect of defects in some functional blocks 
of a MPEG encoder, such as the motion estimation block, on 
the performance of the circuits has been studied [9] [10]. The 
results indicate that for about 50% of those defects that can be 
modeled as a single or double stuck-at fault, the resulting 
defective MPEG circuits generate acceptable performance. 
Other examples of error-tolerant applications have been 
reported elsewhere [12] [15]. Error-tolerant chips range from 
low priced memories to high priced audio and video 
processing chips. In the near future, many system-on-chip 

Ming Hsieh Department of Electrical Engineering 
Viterbi School of Engineering 
University of Southern California 
 
 
 

Error-rate Estimation with Ones Counting 
Zhaoliang Pan and Melvin A. Breuer 

C



USC TECHNICAL REPORT CENG-2008-3 2

products will be excellent candidates for error-tolerant 
applications, such as those containing embedded language 
translators as well as audio, touch, smell and/or video 
processors. 

Given an analog system, one can inject “errors” into the 
circuit at some node by applying noise at that node and 
measure attributes of the output, such as dB loss, MOS value1, 
or instability.  In a digital circuit, one can introduce errors on 
an internal signal line and measure the resulting impact on the 
data at the output bus. Two measures that have been used to 
quantify output errors are error-rate and error-significance [5] 
[6]. A formal definition of error-rate is provided in [12]. 
Error-rate indicates how often on average an error is seen at 
the output when random input patterns are applied. If the 
circuit is combinational and contains a defect, and the patterns 
are uniformly selected over the input space, then the error-rate 
is equivalent to the fraction of the input space that detects the 
defect, i.e., produces an erroneous output. Error-significance 
indicates the magnitude of an error, when the associated 
pattern represents some numeric quantity. Depending on the 
application either one or both of these measures might be 
applicable. 

In this report we focus on estimating the error-rate of a 
defective circuit having static defects. Based on their error-
rate, defective chips can be binned into categories. For 
example, two error-rate thresholds, say rth1 and rth2, where 0< 
rth1 < rth2<1, can be used to divide the range of error-rate into 
three parts, i.e., (0, rth1], (rth1< rth2] and (rth2, 1]. Defective 
chips can now be partitioned into three categories, namely 
category I with error-rate in the range (0, rth1], category II in 
(rth1< rth2], and category III in (rth2, 1]. Chips in category III 
(high error-rate) are discarded; chips in category II are sold at 
a large discount in price; and those in category I are sold at a 
moderate discount. 

Our technique for estimating error-rate requires that we 
apply a large number of pseudo-random patterns to a targeted 
circuit. Most complex modern circuits employ either a full-
scan DFT or a BIST methodology [16] [17]. While either of 
these test methodologies can be used to implement our error-
rate estimation technique, we will describe our work in the 
context of a BIST methodology since this simplifies the 
discussion. A simplified version of a BIST architecture used 

 
1 MOS refers to mean opinion score, and indicates the quality of audio 

speech after processing by some CODEC. 

to test combinational logic is shown in Fig. 1.  In normal 
operation, register R1 receives data in parallel and drives the 
block of logic C. C in turn passes data to R2. In the design-
for-test process, these registers are modified to operate 
differently when in the test mode.  In the test mode, R1 
operates as a pseudo-random pattern generator (PRPG), and 
R2 as a multiple input signature analyzer (MISR).  The 
operation of the test process is as follows. First the registers 
are initialized to some known states.  Then the registers are 
clocked L times, where L is often a very large number. At the 
end of this process, if the state of the MISR is the same as 
some pre-computed value, then the circuit C is said to pass (is 
good or defect free), otherwise it fails. The idea here is that if 
there is a defect in the circuit, for at least one of the L input 
patterns the corresponding output pattern would be in error, 
and once an error enters the MISR, with a very high 
probability the state of the MISR remains in error even as new 
data arrives at its inputs.  With some assumptions regarding 
the distribution of output patterns, this technique can be 
effectively applied to some forms of sequential circuits, such 
as feed-forward pipelines. 

Thus, to implement the binning process, it is important to 
efficiently bound the error-rate of a defective chip. Note that 
the test methodology discussed in this report does not employ 
a fault model, test pattern generation or fault simulation. A 
technique for estimating the error-rate of a block of logic 
using signature analysis was first proposed in [11]. 
Subsequently, Pan and Breuer significantly expanded on the 
theoretical aspects of this methodology [12]. Shahidi and 
Gupta then proposed a variant of this work using ones 
counting rather than signature analysis [13]. Unfortunately, 
their analysis implied that error-rate estimation via ones 
counting used significantly more resources than that required 
via signature analysis. As will be explained later, their results 
are counter intuitive.  In this report, we briefly review the 
analysis presented in [13], and present a new analysis for this 
ones counting technique and a new estimator of error-rate. 
The results from our analysis show that ones counting and 
signature analysis techniques use comparable resources for 
obtaining the same degree of accuracy in error-rate estimation.  

This report is organized as follows. Section 2 reviews the 
ones counting error-rate estimation work presented in [13]. In 
Section 3, we present our new analysis of this technique. A 
new estimator is proposed and the statistical characteristics of 
the estimator are presented. Several special cases of using the 
ones counting technique are described in Section 4. In Section 
5, simulation results are presented.  The problem of chip 
classification based on ones counting error-rate estimation is 
discussed in Section 6. Section 7 presents the experimental 
results of chip classification, and Section 8 concludes the 
report. 

 

II. REVIEW OF PREVIOUS WORK 
The error-rate estimation techniques proposed in [5], [6], 

R1

C

R2  
Fig. 1.   Simplified BIST architecture 
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[12] and [13] are illustrated using a BIST architecture, though 
a scan architecture is equally applicable. The register driving 
the circuit-under-test (CUT) is a PRPG, which is usually 
implemented via a linear feedback shift register (LFSR). In 
[12], the output of the CUT is compressed using another 
LFSR, while in [13] a nonlinear finite state machine is used to 
obtain the ones counting in the output sequence. When both 
circuits operate in their test mode, a sequence of L test 
patterns are generated and applied to the CUT. For the ones 
counting methodology, the ones count in the output sequence 
is recorded and then compared with the pre-computed ones 
count of the fault-free circuit using the same L input patterns. 
The difference, Di, is stored. For the signature analysis 
technique, the final signature is compared to the pre-computed 
correct signature. If they are the same the test is said to pass; 
otherwise it fails. This process of applying L patterns and 
determining the value of Di, or pass/fail, is referred to as a test 
session. 

The process for estimating error-rate consists of carrying 
out S test sessions, each using a different subset of test 
patterns from the space of all test patterns. In the following, 
we will concentrate on the ones counting technique.  (The 
analogous yet radically different analysis for signature 
analysis is given in [12].) Carrying out these S test sessions 
results in S differences, denoted by D1, D2,…, Ds. It is 
assumed that all test patterns are randomly generated and that 
the total number of patterns, namely SxL, is a small fraction of 
the input pattern space. Thus these S numbers are independent 
and have the same distribution. The sample mean MD and 
sample variance VD are given by the equations 
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Based on the sample mean and variance, the error-rate 
estimator, r̂ , given in [13] is 
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where N=2n, and n is the number of input pins of the CUT. 
Again, N>>L. 

The selection of L and S depends on what objective is to be 
satisfied. In [13], the authors analyzed the problem of using 
this ones counting technique to classify chips according to 
their estimated error-rate. 

Let rth represent an error-rate threshold value, usually 
specified by an application, ε a margin of error allowed in the 
value of an estimated error-rate, and γ the confidence 
associated with this estimation. If the estimated error-rate, r̂ , 
of a CUT is smaller than rth, the CUT is accepted, otherwise it 
is rejected. The following requirements are set for the 
estimation of error-rate. For a CUT with actual error-rate r,  

a. If r < rth(1−ε), the probability of accepting the CUT is 
greater than or equal to γ. That is Prob( r̂ <rth) ≥ γ if r < 
rth(1−ε). 

b. If r > rth (1+ε), the probability of rejecting the CUT is 

greater than or equal to γ. That is Prob( r̂ >rth) ≥ γ if r > 
rth(1+ε). 

c. If rth(1−ε) ≤ r ≤ rth(1+ε), the CUT may be accepted or 
rejected. 

 
In [13] the authors discussed lower bounds for L and S such 

that the above requirements are satisfied. Their analysis 
showed that the lower bound for the number of test patterns 

per test session, L, is 2))(1(2
1

εγ thr−
, and the lower bound 

for the number of test sessions, S, is 

2222 )2/)(1(2
1

εεεγ ththth rrr ++−
. Assume rth=0.01, ε=0.1 

and γ=0.9772. The lower bound of L is about 2.19E+7 and the 
lower bound of S is about 2.23E+7. Because the ones counting 
technique requires knowledge of the ones counting for the 
fault-free circuit in order to compute Di, S values must be 
stored, which results in an exorbitant amount of overhead. 

Employing the signature analysis technique for the same 
requirements as above, only 111 test patterns are needed for 
each of 584 test sessions. These results are counter-intuitive 
from the following point of view.  In signature analysis one 
only gets a binary decision from each test session, namely 
pass or fail. Ignoring the issue of aliasing, this decision is 
always correct, but the fail can be caused by 1, 2, … up to L 
erroneous responses. Hence a great deal of information is lost 
per failing test session. On the other hand, for ones counting, 
one determines an actual observed ones counting, Oi, of 0, 1, 
2, … L. Then the recorded value Di is *

ii OO − , that can take 

on the values –L, − (L−1), …,−1, 0, 1, 2, 3, …, L, where *
iO  is 

the ones counting for the fault-free circuit.  Hence there 
appears to be a much larger amount of information in Di than 
in pass/fail. In fact, if Di ≠0, then for sure the test has failed. 
But if Di =0, the test may have passed or failed. Thus aliasing 
plays a big role in ones counting. However, it seems like the 
value of getting a non-binary result should more than 
compensate for the problem of aliasing. In addition, if L=1 
then no aliasing is possible, so if Di = 0 the response is 
correct, and if Di ≠ 0 it is incorrect.  Hence, for a large enough 
value of S, the error-rate can be accurately estimated, and thus 
the lower bound on L is 1. Thus it is useful to reexamine the 
analysis of error-rate estimation via ones counting. 

To more fully characterize the statistical properties of the 
estimator r̂ , its mean and variance should be computed. The 
mean of the estimator will be close to the true error-rate when 
the estimator is biased, and equal to the true error-rate when 
the estimator is unbiased. The variance of the estimator is not 
directly calculated in [13]. Instead, it is implied to be equal to 
the variance of another random variable (namely Se in [13]), 
which is not always true. 

In this report, we present an analysis of the ones counting 
technique that is different from the analysis provided in [13]. 
Our analysis more accurately describes the characteristics of 
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ones counting technique for the purpose of error-rate 
estimation. We also compare this ones counting technique 
with the previously published work using signature analysis. 
The comparison shows that this ones counting technique is 
able to estimate error-rate as effectively as the signature 
analysis technique, and the hardware overheads for both 
techniques are comparable. 

 

III. STATISTICAL ANALYSIS 
Consider a single output combinational circuit, C, and a 

faulty version of this circuit, Cf. In response to each input 
pattern, the output of Cf can be classified into one of four 
types, namely, 1/1, 0/1, 0/0 and 1/0, where 1/1 means that the 
output of both C and Cf are 1; 0/0 means that the output of 
both C and Cf are 0; 0/1 means the that the output of C is 0 
and Cf is 1; and 1/0 means that the output of C is 1 and Cf is 0. 
If all possible N input patterns are applied to Cf, a sequence of 
N outputs consisting of the four types of outputs is generated. 
The error-rate r of Cf is the ratio of the number of outputs of 
type 0/1 plus type 1/0 to N. 

During a single test session, the observed ones count is 
equal to the number of type 1/1 and 0/1 outputs (type x/1). 
The result is subtracted by the correct ones counting of C, 
which is equal to the sum of type 1/1 and 1/0 outputs of Cf. 
This difference, denoted by D, represents the difference 
between the ones count generated by Cf and the ones count 
generated by C. It also equals the number of type 0/1 outputs 
minus the number of type 1/0 outputs of Cf. A complete test 
consists of S test sessions. Thus, recorded are S numbers, each 
of which is the value of D for a test session. The error-rate is 
estimated according to these S numbers. 

Imagine that N possible outputs define a collection having 
four types of symbols. In each test session, we choose L 
outputs without replacement from the collection. From the 
selected outputs, we do not ascertain the number of type 0/1 or 
1/0 outputs, but the difference between the number of 0/1 and 
1/0 outputs. After a test session is finished, we put these 
outputs back into the collection. S test sessions are carried out, 
resulting in S numbers. From these S numbers, we estimate the 
fraction of outputs in the collection that are either of type 0/1 
or 1/0. 

Let p1 be the fraction of 0/1 outputs in the collection, and p2 
the fraction of 1/0 outputs in the collection. Thus, 

21 ppr += . p1, p2 and r are all positive and less than 1. An 
oracle knows p1 and p2. We wish to estimate p1 and p2 since 
the estimated error-rate equals the sum of the estimated values 
of p1 and p2. 

Assume the L outputs are drawn one at a time, and we have 
a counter, initialized to 0. If a type 0/1 output is drawn, the 
value of the counter is increased by 1; if a type 1/0 output is 
drawn, the value of the counter is decreased by 1; if a type 1/1 
or 0/0 output is drawn, the state of the counter is not changed. 
The final state after L outputs are chosen, i.e., a test session, is 
just the state of the counter, say D. Because outputs are drawn 

randomly, D is a random variable. 
In the above process, it is implied that we are sampling 

without replacement.  Because N is assumed to be large with 
respect to L, which is usually the case in practice, the change 
in the fraction of each type of output in the remaining 
collection after each of the L outputs is selected is very small 
and can be ignored. So we will treat this process as sampling 
with replacement. Thus, for each drawing, the probability that 
the counter increases by 1 is p1, the fraction of 0/1 outputs; the 
probability that it decreases by 1 is p2, the fraction of 1/0 
output; and the probability that it does not change is 1− p1− p2. 
Let X be a random variable such that X = 1 with probability p1, 
X = −1 with probability p2, and X = 0 with probability 1− 
p1−p2. 

Thus D = X1+X2+…+XL, where X1, X2, …, XL are identically 
and independently distributed (i.i.d.) random variables with 
the same distribution as X. From the probability density 
function (PDF) of X, we see that 

Expectation: 21}{ ppXE −=  

Variance:      2
2121 )(}{ ppppXVar −−+= . 

Thus the expectation and variance of D are 
Expectation: }...{}{ 21 LXXXEDE +++=  

                                )(}{ 21 ppLXEL −=⋅=  (2) 

Variance: }...{}{ 21 LXXXVarDVar +++=  

                   ))((}{ 2
2121 ppppLXVarL −−+=⋅=   (3) 

 
From the test process we obtain S samples of the random 

variable D, namely D1, D2, …, DS. The sample mean MD and 
the sample variance VD are defined by the equations 

∑
=

=
S

i
iD D

S
M

1

1
 and  ∑

=

−
−

=
S

i
DiD MD

S
V

1

2)(
1

1
. 

We intend to estimate the two parameters, p1 and p2, in the 
distribution of D. A generic method for building an estimator 
is based on approximation of the moments of the random 
variable [14]. The first order moment of a random variable is 
its expectation, which is approximated by the sample mean. 
The second order moment is its variance, which is 
approximated by the sample variance. Thus, we have 

       DMppLDE ≈−= )(}{ 21  (4) 
and  
       DVppppLDVar ≈−−+= ))((}{ 2

2121 . (5) 
 
From (4) and (5) we solve for p1 and p2, and obtain 
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2
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21 L
M

L
Vpp DD +≈+ . Because the error-rate is 

equal to the sum of p1 and p2, the estimated error-rate, r̂ , is 
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2
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L
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L
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which is also called the estimator of error-rate. r̂  is a 
function of S samples of D. So the estimator itself is a random 
variable. To evaluate the performance of an estimator, its 
expectation and variance need to be computed. If the 
expectation is equal to the true value of the estimated quantity, 
the estimator is unbiased; otherwise it is biased. If the 
estimator is biased, the difference between the expectation of 
the estimator and the true value of the estimated quantity is of 
interest.  Smaller differences imply better estimators. The 
variance of the estimator represents how close the estimation 
is to the expectation of the estimator. A large variance means 
the PDF is somewhat flat and the estimation result is likely to 
be poor. A small variance implies that the PDF is narrow 
around its expectation, and the estimation result is likely to be 
close to the expectation of the estimator. With the expectation 
and variance of the estimator, we are able to approximate the 
PDF of the estimator. If the type of distribution of the 
estimator is known, the PDF of the estimator can be expressed 
explicitly. If the type of distribution is unknown, as it is for 
the error-rate estimator, the PDF of the estimator is usually 
approximated by a normal distribution, which is a function of 
the expectation and variance of the estimator. 

The procedure for deriving the expectation and the variance 
of the estimator r̂ is given in Appendix A. The expectation of 
the estimator is 

{ } SLpppppp
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and its variance is 
{ } { }22 //ˆ LMLVVarrVar DD +=         

           
2

3030
2
02

2
24

2

2
2

2
2 224332

LSLSSS
αααααααααα

+
++−

++=     

            
33

2
24

32

2
24

3

2
2

22

2
2430 3334

SLSLLSSL
ααααααααα −

+
−

+−
−+

+  (8)  

where 210 pp −=α ,  2
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3
002103 2)(3 αααα ++−= pp  and 

4
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2
021214 3)4)(6()( ααα −−+++= pppp . 

The true value of the error-rate r to be estimated is p1+p2. 
Equation (7) shows that the estimator is biased. However, 
when SL is large, the terms with SL can be ignored and the 
estimator becomes unbiased. Later we show that for the 
problems addressed in this report, SL is large, and for these 
cases { } rpprE =+≈ 21ˆ . 

We use the normal distribution { } { }( )rVarrENr ˆ,ˆˆ  to 
approximate the distribution of the estimator. Thus the PDF of 
the estimator can be expressed as 
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We are interested in having the estimated error-rate be 
within a certain range of accuracy, say [ )1( ε−r , )1( ε+r ], 
with confidence not less than γ, where 0<ε <<1 and γ is 
between 0 and 1. Thus, we require 
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(see Appendix B) 
Changing the form of (10), we have  

( ) { }rVarrQ ˆ/2/)1(1 εγ ≤−−  (11) 
 

{ }rVar ˆ  is a function of r (=p1+p2), p1−p2, S and L. Thus, 
(11) includes six quantities, namely ε, γ, r, p1−p2, S and L, 
where S and L are unknown and ε and γ are given as part of 
the test specifications. To determine values for S and L, which 
are test parameters for carrying out error-rate estimation, some 
additional constraints and/or objective functions are needed. 
Referring back to our VLSI test problem, some quantities of 
interests are listed next. 
a) Minimize SxL, which primarily determines the total test 

time; 
b) Minimize S, which primarily determines the storage cost 

for the correct ones counting; 
c) Minimize c1SxL+c2SxL, which is the weighted cost for 

both test time and storage cost, where c1 and c2 are both 
non-negative cost coefficient. 

Referring back to (11), r is the true error-rate only known to 
an oracle, but we can guess a value for r and refine our guess 
once we have a value for the estimator.  The quantity (p1−p2) 
is also unknown, but again we can attempt to approximate it. 
Because the approximations are different for various 
situations, we will deal with these issues in the next section 
entitled case studies. 

 

IV. CASE STUDIES 
In [13], the number of test patterns per session, L, has a 

lower bound. However, our analysis shows that any positive 
integer is feasible for L. First we consider two cases, namely 
L=1 and 1/L≈0 (i.e., L is very large). From (11) and (8) we see 
that S and L are inversely proportional to each other. So L=1 
results in an upper bound for S, and 1/L≈0 results in a lower 
bound of S. Then we consider the symmetric case of p1=p2>0. 
At last we consider the general case. In the following (except 
in Section 4.4), we assume γ=0.9972 and hence 
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( ) 32/)1(1 =−− γQ . Then (11) reduces to 

{ } 9/ˆ 22εrrVar ≤  (12) 
 

4.1 Case 1: L=1 
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24 92 αα −  are all of the order of r.  Keep terms with S in the 

denominator and ignore terms with higher orders of S, we 
have 

S
rVar 30

2
02

2
24 24}ˆ{ αααααα ++−

=  (13) 

and (12) can be rewritten as 

9/24 2230
2
02

2
24 εαααααα r

S
≤

++− . (14) 

Replacing 2α , 3α  and 4α  with their functions of r in (14) 
leads to 

( )4
0

2
0

2
22 4)26(9 αα

ε
−−+−≥ rrr

r
S . (15) 

Since )( 210 pp −=α  and r are unknown, we cannot 
choose the value S to be 

( ) )/(4)26(9 224
0

2
0

2 εαα rrrr −−+− . However, we can 
choose S to be the maximum of 

( ) )/(4)26(9 224
0

2
0

2 εαα rrrr −−+− . Thus, (15) is satisfied 
and it is guarantees that the estimated error-rate is in the range 
of [ )1( ε−r , )1( ε+r ] with confidence γ. 

For r ≤ 1/3, which is typically the case, 02
0 =α  maximizes 

4
0

2
0

2 4)26( αα −−+− rrr . So we choose S to be 

( )
0

4
0

2
0

2
22

2
0

4)26(9

=

−−+−
α

αα
ε

rrr
r

, i.e., 

2
1 )1(9

εr
rS C −

= .  (16) 

For example, for r=0.01, ε=0.05 and L=1, we choose S to 
be 3.6E+5. When 1/3<r<1, 4/)13(2

0 −= rα  maximizes 
4
0

2
0

2 4)26( αα −−+− rrr . So S can be chosen as 

( )
4/)13(

4
0

2
0

2
22

2
0

4)26(9

−=

−−+−
r

rrr
r α

αα
ε

, i.e., 

22

2

4
)125(9

εr
rr +−

. For r=0.4, ε=0.05 and L=1, we choose S to 

be 5625. 

 

4.2 Case 2: 1/L ≈ 0 
For the case of 1/L≈0, not only do we assume that L is very 

large, but also that L>>S, in which case we ignore all terms in 
(8) with an L, and obtain 

2

2
2

2
2 32

}ˆ{
SS

rVar
αα

+= . (17) 

Ignoring the term with S2 and replacing 2α  with its 

function of r and 0α , (17) reduces to 

{ } SrrVar /)(2ˆ 22
0α−= . From (12) and (17), we have  

22

22
0 )(18

ε
α

r
r

S
−

≥ . (18) 

Similar to case 1, we can choose the value of S to be the 
maximum of 2222

0 )(18 εα rr − . Since the maximum value 

of 2222
0 )(18 εα rr −  is 218 ε , we choose S as 
22 18 ε=CS . (19) 

For example, for ε=0.05, we get SC2 = 7200 and thus L >> 
7200. From (19) we see that when L is very large, the number 
of test sessions required in error-rate estimation is independent 
of the error-rate, and only depends on the accuracy and 
confidence of the estimation.  This follows since, if the error-
rate is extremely small, then the allowable error in our 
estimation as specified by ε allows our test methodology to 
work, and for larger values of error-rate, there is enough 
information gathered by using these values of L and SC2 to 
again estimate the error-rate. 

If we choose L=7200 and solve for S using (19), we get 
L=S. Then the condition to approximate (8) with (17) is not 
satisfied. In this case, we cannot use (19) to select S. Case 1 
and Case 2 represent two extreme values of L resulting in 
upper and lower bounds for S. 

 

4.3 Case 3: p1= p2>0 
When p1=p2, the probability of observing a type 0/1 or 1/0 

output are the same. Thus, the expected value of D for each 
session is zero, i.e., the sample mean of D, MD, is close to 
zero. In this case, it appears that the ones counting test 
methodology becomes ineffective.  However, when MD=0 the 
estimator (6) reduces to VD/L. This means that the error-rate 
can be derived solely from the variance of D. With p1=p2, we 
have 030 == αα  and r== 42 αα . From (8), we have 

{ } 22

22

2

22 332ˆ
SL
rr

LS
rr

S
r

S
rrVar −

+
−

++=   
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              .333
33

2

32

2

3

2

SL
rr

SL
rr

LS
r −

+
−

+−  (20) 

Assume S is large. When compared with Sr /2 2 , 22 /3 Sr  
can be ignored. When compared with LSrr /)3( 2− , we can 

ignore 32 /3 LSr , 222 /)( SLrr − , 322 /)3( SLrr −  and 
332 /)3( SLrr − . Thus, (20) reduces to 

{ } ( ) SLrrrrVar /)3(2ˆ 22 −+= .  (21) 
From (12) and (21), we have 

( ) 9//)3(2 2222 εrSLrrr ≤−+ , i.e., 

⎟
⎠
⎞

⎜
⎝
⎛ −+≥ )31(129

2
3

rL
S C

ε
 (22) 

Any positive integer is legitimate for L. When L=1, 
)/()1(9 2εrrS −= . When L is very large, 2/18 ε=S . 

These results for S are consistent with those derived for Cases 
1 and 2. Fig. 2 shows the relationship between S and L for 
different error-rates and 05.0=ε . 

Consider the case of a single stuck at fault in a single-
output XOR circuit that causes half of all outputs to be wrong. 
Among those erroneous outputs, half are of type 0/1 and the 
other half of type 1/0. So p1=p2=1/4 and r =1/2. This provides 
an example of Case 3. If the output line is stuck-at 0, then 
again r =1/2 but now all errors are of type 1/0. 

To see how the variance is instrumental in determining the 
estimated value of error-rate, again consider a circuit such that 
a randomly selected half of all possible input patterns map 
into 1, and the other half map into 0.  Now consider a faulty 
version of this circuit, where again a randomly selected half of 
all possible input patterns map into 1, and the other half map 
into 0. So the true error-rate of the faulty circuit is 1/2. Now, 
for both the good and faulty circuits, the average value of the 
ones counting is L/2. Thus, the expected value of D (the 
difference of ones counting between good circuit and faulty 
circuit) is zero. In addition, for the faulty circuit, the 

probability of observing a 0/0, 0/1, 1/0 or 1/1 type response is 
1/4, i.e., p1=p2=1/4. Assume L=4. For each session, the 
possible values of D are –4, –3, –2, –1, 0, 1, 2, 3 and 4.  If 
D=–4 for a session, then all four outputs are 1/0 type. Thus, 
the probability of D=–4 is (1/4)4= 1/256. If D=–3 for a 
session, then three outputs are 1/0 type and one output is 
either 0/0 or 1/1 type. Thus, the probability of D=–3 is 
4x(1/4)3x(1/2)= 1/32. Similarly, we can computer the 
probability of D being –2, –1, 0, 1, 2, 3 or 4. As a result, the 
probabilities of D being –4, –3, –2, –1, 0, 1, 2, 3 and 4 are 
1/256, 1/32, 7/64, 7/32, 35/128, 7/32, 7/64, 1/32 and 1/256, 
respectively. With the distribution function of D, we have the 
expectation of D to be zero and the variance to be 2. From the 
expectation and variance of D, we know that the sample mean 
of D, MD, is about zero and the sample variance of D, VD, is 
about 2. From the estimator 22 // LMLV DD + , we obtain the 
estimated error-rate to be 1/2, which matches the true error-
rate. 

 

4.4   General Case 
For the general case, we make no assumptions of the values 

of p1, p2 and γ. However, we assume S is large. To make our 
discussion clear, we show a copy of (8) below. 

{ } { }22 //ˆ LMLVVarrVar DD +=         

           
2

3030
2
02

2
24

2

2
2

2
2 224332

LSLSSS
αααααααααα

+
++−

++=     

               
33

2
24

32

2
24

3

2
2

22

2
2430 3334

SLSLLSSL
ααααααααα −

+
−

+−
−+

+  

  
Because S is large, the term 22

2 /3 Sa  can be ignored when 
compared to Sa /2 2

2 . For the same reason, the terms 
2

30 /2 LSαα , 222
2430 /)4( SLαααα −+ , 32

2 /3 LSa , 
322

24 /)3( SLa−α  and 332
24 /)3( SLa−α  can be ignored when 

compared to LS/)243( 30
2
02

2
24 αααααα ++− . Thus, the 

variance of the estimator becomes 

{ }
LSS

rVar 30
2
02

2
24

2
2 2432ˆ ααααααα ++−

+= . (23) 

Replacing 2α , 3α  and 4α  with their functions of r and 

0α , we have 

{ } ( )
LS
rrr

S
rrVar

4
0

2
0

222
0 6)210()3(2ˆ ααα −−+−

+
−

= . (24) 

 
Then, (11) becomes 
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( )( )21
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2
0

222
0

2/)1(

6)210()3(2

γ

εααα

−
≤

−−+−
+

−
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r
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rrr

S
r  

 
and hence 
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Fig. 2.   S vs. L based on Eq. (22) for different error-rates and 05.0=ε . 
The points marked by an ‘X’ correspond to the selection of S and L that 
minimize SxL. 
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( )( ) ( ) ⎟⎟
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rrr

r
r
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S

4
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2
0

2
22

022

21 6)210()3(
2

2/)1( αα
α

ε
γ .  (25) 

Without knowing the value of 0α , we choose S to be the 
maximum achievable value of right hand side of (25). It can 
be shown (see Appendix C) that when r is less than 1/5, which 
is generally the case of interest, 00 =α  results in (25) being 
maximal. Thus we choose S as 

( )( )
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ −+

−
=

−

31122/)1(
2

21

rL
QS

ε
γ . (26) 

For γ =0.9972, (26) reduces to (22). This is expected 
because Case 3, from which (22) is derived, is a special case 
of Case 4. For L=1, (26) reduces to (16). For 1/L≈0, (26) 
reduces to (19). These results imply that the analysis of the 
general case is consistent with the analysis of its special cases. 

Setting L= ∞ allows us to find a lower bound on S. For 
γ=0.9972, this lower bound is given by (19). For ε=0.1, the 
lower bound is 1800. Usually ε is much smaller than 0.1 and, 
as ε decreases the lower bound on S increases. Thus in (8), 
where an S and LS term exist, it is appropriate to ignore terms 
containing S2, LS2, L2S2, LS3, L2S3 and L3S3. This justifies the 
approximations used to obtain (24) from (8). 

Now consider minimizing test time which is proportional to 
SxL. Assume γ=0.9972. From (26), we have 

⎟
⎠
⎞

⎜
⎝
⎛ −+= 3129

2 r
LSL

ε
. When rL /12 = , then 

2/)64(9 εrS −=  and SxL has a minimal value of 
2/)3/2(9 ε−r . When r is small, S ≈ 2/36 ε  and (SxL)min ≈ 

)/(18 2εr . In Fig. 2, the points marked by ‘X’ correspond to 
the selections of S and L that minimize SxL. It can be seen that 
for different values of error-rate, the values of S are almost the 
same, namely 2/36 ε . 

For error-rate estimation using signature analysis [12], it is 
recommended to set L = 1/r, which leads to 2/15 ε=S  and 

)/(15 2εrSL = . Thus we see that the ones counting technique 
for error-rate estimation is comparable to signature analysis in 
terms of total test time, and a little higher in terms of overhead 
cost. 
 

V. SIMULATION 
In the above analysis, we approximated the probability 

density function of the estimator with the normal distribution 
{ } { }( )rVarrENr ˆ,ˆˆ . Then we developed a way to select S and L 

to satisfy the accuracy and confidence requirement of error-
rate estimation based on this approximation. In this section, 
we describe our results of estimating the error-rate via 
simulation. By repeating the simulation process many times, 
we can collect a large number of estimated error-rates and 
compare their distribution with { } { }( )rVarrENr ˆ,ˆˆ . 

The simulation is implemented as follows. 

1) A random number generator generates three numbers, 
namely a 1 with probability p1, −1 with probability p2 and 
0 with probability 1− p1−p2. 

2) The number of 1s and the number of –1s in a sequence of 
L generated numbers are counted separately. Their 
difference is recorded. This represents a test session. 

3) S test sessions are carried out, and S numbers are 
recorded. With the estimator presented in Section 3, the 
error-rate p1+ p2 is estimated. 

4) The above procedure is repeated 3000 times and results in 
3000 error-rate estimations. The distribution of the 
estimated error-rates is generated. 

We use the MATLAB tool “normplot” to determine if this 
data is consistent with a normal distribution.  Normplot 
displays the cumulative distribution of the data. In the plot, a 
superimposed line is drawn to fit the sample data. If the data 
are normally distributed, the plot appears linear. 

First, we set p1=0.006, p2=0.004, L=1 and S=1.0E+5. Fig. 
3a shows the distribution of the data and it appears to be 
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Fig. 3.   (a) Distribution of estimated error-rate data from simulation. (b) The 
output from MATLAB tool “normplot” to test whether the data are normally 
distributed. For this figure, p1=0.006, p2=0.004, L=1 and S=1.0E+5. 
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normal. The output of “normplot” is shown in Fig. 3b, and is 
fairly linear, confirming that the data has a normal 
distribution. Now, a normal distribution can be defined by its 
mean and standard deviation. From the data, we estimate the 
mean to be 0.01 and the variance to be 1.21E-6. So the set of 
error-rate data has normal distribution N(0.01, 1.21E-4). In 
Section 3, we used a normal distribution to approximate the 
distribution of the estimator. The mean of the estimator is 
given by (7), and results in a value of 0.01. The variance of 
the estimator is given by (8), and results in a value of 1.23E-6. 
So in our analysis, we would use N(0.01, 1.23E-6) to be the 
distribution of the estimator. Thus our analytical results 
closely match the simulation results. 

Next, we choose different values of L and S while keeping 
p1=0.006 and p2=0.004. Fig. 4 shows the distribution of the 
estimated error-rate data from simulation and the normal 
distribution test from “normplot” for the case where L=1000 
and S=2000. L =1000 is about 10 times 1/r. For ε=0.1, the 
lower bound on S is 1800. S =2000 is close to the lower bound 
on S, and thus the case outlined in Section 4.2 is satisfied. The 

figure shows that the simulation data are normally distributed. 
From the data, we estimate its normal distribution to be 
N(0.01, 1.05E-7). From the analysis in Section 3, we obtain 
the distribution of the estimator to be N(0.01, 1.048E-7), 
which again is an excellent match. 

Finally, we consider the case where p1= p2=0.005, L=50 
and S=4000. Since L is small, one would expect that for most 
test sessions few if any errors would occur. In this case, the 
estimated error-rate is mainly derived on the variance of the 
sample data as mentioned in Section 4.3. The distribution of 
error-rate data from simulation and the output of “normplot” 
are displayed in Fig. 5, which shows the simulation data has a 
normal distribution. The distribution function of the data is 
estimated to be N(0.01, 9.85E-8), which matches the 
distribution of the estimator from analysis, namely N(0.01, 
9.85E-8). 

 

VI. CLASSIFYING CHIPS VIA THEIR ERROR-RATE 
One application for error-rate estimation is to assign chips 
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Fig. 4.   (a) Distribution of estimated error-rate data from simulation. (b) 
Output from MATLAB tool “normplot” to test whether data are normally 
distributed. For this figure, p1=0.006, p2=0.004, L=1000 and S=2000. 
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Fig. 5.   (a) Distribution of estimated error-rate data from simulation. (b) 
Output from MATLAB tool “normplot” to test whether data are normally 
distributed. For this figure, p1=0.005, p2=0.005, L=50 and S=4000.
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to bins that correspond to error-rate ranges that are defined by 
threshold error-rate values. Recall that a threshold separates a 
range into two adjacent sub-ranges. Threshold rth divides the 
domain of error-rates into two range (0, rth) and (rth, 1), and 
consequently failing chips are partitioned into two types, A 
and B. The error-rate of a type A chip is equal to or less than 
rth, while that of a type B is greater than rth.  Testing classifies 
a chip into type A or type B according to the estimated error-
rate r̂ . Namely, if thrr <ˆ , the chip is classified as type A; 
otherwise, it is classified as type B. Unfortunately, the random 
variable r̂  can be greater than rth even though the true error-
rate, r, is smaller than rth and vice versa. The chance for this to 
occur increases rapidly as r̂ approaches the value rth. So the 
test can classify chips incorrectly. In statistics such a test is 
called a hypothesis test. In our case, the two hypotheses are: 

H0:  The chip is type B, i.e., thrr > ; 
H1:  The chip is type A, i.e., 

thrr ≤ . 
This test generates four possible outcomes. 1) The chip is 

type B, and classified as type B; 2) the chip is type B, and 
classified as type A; 3) the chip is type A, and classified as 
type A; and finally 4) the chip is type A and classified as type 
B. Outcome 2) results in a lower price chip sold erroneously at 
a higher price, while outcome 4) results in a higher price chip 
sold at a lower price. Outcome 4) is likely acceptable to 
customers and outcome 2) is not. So the test should limit the 
probability of the occurrence of outcome 2). 

Assume it is required that the probability of any type B chip 
being classified as type A be smaller than β, where β<<1. 
According to the analysis of error-rate estimation, the 
estimated error-rate has normal distribution with its 
expectation being the true error-rate. Fig. 6 shows the 
distribution of estimated error-rate of a chip whose true error-
rate is rth and a chip whose true error-rate is greater than rth. It 
can be seen that for a chip with true error-rate r greater than 
rth, the further the true error-rate r is from rth, the lower that 
probability of outcome 2) occurring. This probability is 
represented by the dash area under the curve. However, when 
the true error-rate is equal to rth, the probability of outcome 2) 
is always 50%. Thus, the requirement is never satisfied. To 
solve this issue, we define another threshold, namely rthn, that 
is smaller than rth, and postulate the following classification 
criterion: 

If the estimated error-rate of a chip is smaller than rthn, it is 
classified as type A. If the estimated error-rate of a chip is 
equal to or greater than rthn, it is classified as type B. 

Assume that the probability of outcome 2) occurring is still 
limited to β. Thus this constraint also holds when r = rth, 
hence the probability of outcome 2) is smaller than β when r > 
rth. So we require β ≥ Prob( thnrr <ˆ | thrr = ). When thrr = , 
the estimated error-rate has normal distribution 

})ˆ{,( rVarrN th . Thus, Prob( thnrr <ˆ | thrr = )= 
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or equivalently, 
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(28) describes the requirement for S and L such that the 
probability of outcome 2) occurring is limited to β. Without 
knowing the value of 0α , we choose S to be greater than the 
maximum value of the right hand side of (28). With rth being 
smaller than 0.2, the right hand side of (28) is maximal at the 

value ( )
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choose S according to the expression 
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In (29), β and rth are given in the test specification. We 
need to determine the value of S, L and rthn. From our previous 
analysis, the selection of S and L depends on what cost 
function is minimized. Assume L has been determined. Then S 
is determined by rthn. As rthn decreases, S decreases. Because 
smaller values of S result in less storage cost, it is important to 
keep S small. However, smaller rthn causes more type A chips 
to be classified as type B, meaning a loss in profit. So there is 
a tradeoff between storage cost and profit. 

For a type A chip, its true error-rate, r, may be smaller or 
greater than rthn. Given L and S, the probability of outcome 4) 
can be computed. Consider the case of r < rthn. The estimated 
error-rate has normal distribution 
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Fig. 6.   (a) PDF of estimated error-rate of a chip whose true error-rate is rth. 
(b) PDF of estimated error-rate of a chip whose true error-rate is greater than 
rth. 
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outcome 4), i.e. the estimated error-rate being greater than rthn 
is 

( ) ( ) ⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

−−+−+−

−

)(6)210()3(/2 4
0
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0

222
0 LSrrrSr

rrQ thn

ααα

. (30) 

When r < 0.2 and 00 =α , (30) takes on a maximal value 

of 
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

−+

−

)()3(/2 22 LSrrSr
rrQ thn , which is the upper bound of 

the probability of outcome 4) for the case of r < rthn.  When 
rthn < r < rth, the probability of outcome 4) is 
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. (31) 

 
Since rpp ≤−= 210α , 22

0 r≤α , it can be shown that 

if r < 1/3 then (31) is maximal when 22
0 r=α  and has the 

value 
( ) ( ) ⎟⎟
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⎜⎜
⎜
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−
−

)(6105/2
1

43222 LSrrrrSrr

rrQ thn . 

Similarly, the probability of outcome 2) for the case of r > rth 
can be computed. Table 1 summarizes the upper bounds on 
the probability of erroneous classification for these three 
cases. 
Similar to the error-rate estimation technique based on 
signature analysis [12], it is not necessary to apply all test 
sessions before making a decision because the farther the true 
error-rate away from the threshold, the less probability of 
making wrong classification. The number of test sessions is 
based on the assumption of the worst case, i.e., when r = rth. 
However, a defective chip usually does not represent the worst 
case, and sometimes never represents such a case. The 
classification requirement is that the probability of an 
estimated error-rate less than rthn be smaller than β if the true 
error-rate is greater than rth. So it is possible to make a 
decision without executing all S test sessions as long as the 
probability of making a wrong decision is smaller than β.  Let 
Sms(r) be the minimal number of test sessions required for a 
chip with error-rate r that satisfies the constraint imposed by 
β. 

For r > rth, the upper bound on the probability that the 
estimated error-rate is smaller than rthn is 

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

−+

−

)()3(/2 22 LSrrSr
rrQ thn . For r < rthn, the upper bound of 

the probability that estimated error-rate is greater than rthn is 

⎟
⎟

⎠
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⎜
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⎛
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)()3(/2 22 LSrrSr
rrQ thn . Both formulas are listed in 

Table 1. Then Sms(r) should satisfy 
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⎟
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LSrrSr
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and 

β=
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

−+

−

)()3(/2 22
msms

thn

LSrrSr
rrQ   if r < rthn. (33)    

When rthn < r < rth, Sms(r) is equal to S as specified by (29). 
As an example, let rthn = 0.009, rth = 0.01 and β = 0.05.  L is 
chosen to be 100 (=1/rth).  Fig. 7 shows the minimal number 
of test sessions Sms(r) for different true error-rates r. As r 
moves away from the range of [rthn, rth], Sms(r) quickly 
decreases. So for error-rates far from [rthn, rth], only a small 
number of test sessions are needed. 

To be able to make early decision before applying all test 
sessions, the test procedure must be modified. An original test 
is divided into multiple phases, each of which consists of a 
disjoint subset of the S test sessions. After each test phase is 
completed, the error-rate is estimated based on the results 
from the test sessions applied so far, and assuming the 
estimated error-rate is the true error-rate. If the estimated 
error-rate is smaller than rthn, the probability of making an 
erroneous classification is calculated using (33). If the 
estimated error-rate is greater than rth, the probability of 
making an erroneous classification is calculated using (32).  If 
the computed probability is smaller than β, the test stops, 
otherwise it continues. If the estimated error-rate is in the 
range [rthn, rth], the test also continues unless all test sessions 

TABLE I 
THE MAXIMAL LIKELIHOOD OF MAKING AN ERRONEOUS CLASSIFICATION 

 Upper Bound of the Probability 
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Fig.7.   The minimal number of test sessions for different true error-rates. 
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have been run, in which case testing is finished. 
 

VII. EXPERIMENTAL RESULTS 
To validate this chip classification technique, we applied it 

to the ISCAS’85 benchmark circuit C432 that has 7 primary 
outputs. Because our technique is currently only applicable to 
single output circuits, we created seven single output circuits 
from C432, labeled as C432_1, C432_2, C432_3, C432_4, 
C432_5, C432_6 and C432_7. The seven circuits have the 
same netlist as C432. For each of these netlists, only one 
primary output of C432 is treated as the output of the new 
circuit and other outputs are treated as internal wires. For 
example, the output pin 1 of C432 is the output of C432_1, 
and output pin 2, 3, 4, 5, 6 and 7 of C432 are treated as 
internal wires in C432_1. To model a defect, we used the 
single stuck-at fault model. Each of these circuits has 864 
single stuck-at faults. Thus, corresponding to each fault-free 
circuit, there are 864 faulty circuits. Consider the 864 faulty 
circuits of C432_7. Since we know the actual faults in the 
circuit, we can obtain their actual error-rates (see Fig. 8). 

To classify these circuits, we set rth=0.02, rthn=0.019, 
β=0.05 and L=50. The error-rate of a type A circuit is in the 
range (0, 0.02), and for a type B circuit [0.02, 1). From (29), 
the maximal number of test sessions, S, is 3182. We use the 

multi-phase test scheme described in the previous section for 
classification. In the first phase, S*=20 test sessions are 
executed. The collected data is not statistically meaningful if 
S* is too small. In the following phases, only one test session 
is applied. Even though more test sessions can be applied, we 
choose one because we want to find the exact number of the 
test sessions needed. After each phase, the estimated error-rate 
is computed and the condition for stopping is checked. The 
total number of test sessions for each circuit is recorded. Fig. 
9 shows the histogram of test sessions for all the circuits. 
From Fig. 9, it is seen that for many circuits, only a small 
number of test sessions are needed. This means that the error-
rate for each of these circuits is far away from the range 
(0.019, 0.02). This result is consistent with Fig. 8, that shows 
that only a small fraction of the circuits have an error-rate 
among and near the range (0.019, 0.02). 

To further demonstrate the correlation between the number 
of test sessions and error-rate, in Table 2 we list the average 
number of test sessions for different sub-ranges of error-rate. 
For error-rate far from 0.019~0.02, the average number of test 
sessions is small. As the error-rate gets close to 0.019~0.02, 
the average number of test sessions increases. This is 
consistent with the analysis in Section 6. For error-rates in the 
range 0.019~0.02, the average number of test sessions is 
995.44, which is not equal to the maximal number of test 
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Fig.8.   Normalized histogram of error-rates of 864 faulty circuits associated 
with C432_7. (a) The error-rate range is from 0 to 0.04. (b) The error-rate 
range is from 0.04 to 0.55. Note: the scales of (a) and (b) are different. 
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sessions 3182. This is because for some circuits, the estimated 
error-rate is either below 0.019 or above 0.02, and stopping 
condition is satisfied before running 3182 test sessions. 

 
The percentage of circuits misclassified as type A is called 

test escape, and those misclassification as type B is called 
yield loss. Intuitively, if the error-rate of a circuit is far from 
the threshold, it is less likely to be misclassified. Because most 
of the 864 circuits in our experiment have an error-rate far 
from the threshold, the test escape and yield loss should be 
low. Table 3 lists the number of misclassification for three 
different error-rate ranges. Thus for this experiment the test 
escape is 10/471=3.33% and the yield loss is 13/393=2.12%. 

The same classification experiment was applied to 
benchmark circuit C880. A single output circuit, namely 
C880_26, was derived from C880 such that one primary 
output of C880 is the only output of C880_26, and the other 
primary outputs of C880 are treated as internal wires of 
C880_26. Because C880_26 has 1960 single stuck-at faults, 
we obtained 1960 faulty copies of C880_26. Each faulty copy 
corresponds to a single stuck-at fault. 

In the experiment, rth=0.02, rthn=0.019, β=0.05 and L=50. 
Table 4 lists the average number of test sessions for different 
sub-ranges of error-rate and the number of faulty circuits in 
each range. Similar to the results for C432_7, the number of 
test sessions increases when the error-rate range is close to 
0.019~0.02. Table 4 also quantifies the number of 
misclassifications made. Of the 1554 type A circuits, 7 are 
misclassified. Of the 206 type B circuits, 6 are misclassified. 
The resulting yield loss is 0.45% and the test escape is 2.91%. 

The results of these experiments on C432_7 and C880_26 
are consistent with our analytical results. When the error-rate 
of a circuit is far from the threshold, correct classification 

decision can be made after a small number of test sessions. As 
the error-rate of a circuit approaches the threshold, more test 
sessions are needed. In our experiments, we choose β to be 
0.05, which limits the probability of misclassification, and use 
β for the worse situation to determine other test parameters. 
When the error-rate of a circuit is far from the threshold, the 
probability of making a wrong decision is actually smaller 
than β. From table 4 it is seen that the probability of making a 
wrong decision increases as the actual error-rate approaches 
the threshold.  

In the experiment for C880_26, 1547 type A circuits are 
correctly classified as type A, and 6 type B circuits are 
misclassified as type A. Thus, 1553 circuits are classified as 
type A with 6 of them actually being type B. If we sell all 
1553 circuits, in principle 6 might justifiable be returned. The 
fraction of chips that are beyond-tolerance (FBT), namely 
6/1553, should not be confused with the classical notion of 
defects per million (DPM) used as a measure for product 
quality. We require that the maximal probability of 
misclassification for a circuit be β. Theoretically, for the worst 
scenario in classification, the number of actual type B circuits 
that are misclassified as type A is (β × the number of actual 
type B circuits); and the number of actually type A circuits 
that are misclassified as type B is (β × the number of actual 
type A circuits). Thus the number of circuits that are classified 
as type A is (the number of actual type A circuits − β × the 
number of actual type A circuits + β × the number of actual 
type B circuits). Then, FBT is equal to  

Atypeasclassifiedarethatcircuitsofnumberthe
circuitsBtypeactualofnumberthe×β . 

In practice, the probability of misclassification is lower than 
β when the error-rate of a circuit is far from the threshold. 
Thus, the real value of FBT is usually lower then its 
theoretical value. In our experiment on the 1960 faulty circuits 
of C880_26, the experimental value of FBT is 
6/1553(=0.38%), while the theoretical value of FBT is 
0.05x206/(1554-0.05x1554+0.05x206) or 0.696%. 
 

TABLE III 
MISCLASSIFICATION IN THE EXPERIMENT FOR C432_7 

Error-rate 
Range Actual Type 

Actual Number 
of Faulty 
Circuits 

Number of 
Misclassified 
Circuits 

0~0.019 Type A 455 1 
0.019~0.02 Type A 16 9 

0.02~1 Type B 393 13 

TABLE II 
AVERAGE NUMBER OF TEST SESSIONS OF FAULTY C432_7 CIRCUITS FOR 

DIFFERENT ERROR-RATE RANGE 

Error-rate 
Range 

Average Number of 
Test Sessions 

Number of Circuits 
in the Range 

0~0.004 20 177 
0.004~0.008 21.33 98 
0.008~0.012 28.32 74 
0.012~0.015 54.23 66 
0.015~0.017 192.33 21 
0.017~0.019 296.53 19 
0.019~0.02 995.44 16 
0.02~0.022 341.05 19 
0.022~0.024 252.90 28 
0.024~0.027 95.82 34 
0.027~0.034 56.13 40 
0.034~0.05 31.20 99 

0.05~1 20.15 172 

TABLE IV 
EXPERIMENTAL RESULTS FOR FAULTY C880_26 CIRCUITS  

Error-rate 
Range 

Actual 
Type 

Average 
Number of 

Test Sessions 

Number of 
Actual 

Circuits 
in the Range 

Number of 
Misclassified 

Circuits 

0~0.004 A 20 1397 0 
0.004~0.008 A 21.57 74 0 
0.008~0.012 A 24.16 37 0 
0.012~0.015 A 56.88 16 0 
0.015~0.017 A 213.71 7 0 
0.017~0.019 A 818 17 2 
0.019~0.02 A 1657.83 6 5 
0.02~0.022 B 873.76 17 4 
0.022~0.024 B 244 7 0 
0.024~0.027 B 80.38 8 1 
0.027~0.034 B 68.14 7 1 
0.034~0.05 B 34.97 38 0 

0.05~1 B 20.19 129 0 
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VIII. CONCLUSIONS 
Error-tolerance mandates new domains for VLSI tests, such 

as error-rate. Here, the objective is to classify chips according 
to their error-rate rather than pass/fail, or X MHz vs. Y MHz. 
The fundamental task associated with this classification is the 
estimation of error-rate. An error-rate estimation technique 
based on signature analysis was presented in [11] and [12], 
where it was shown that this estimation and chip classification 
can be effectively implemented with reasonable BIST test 
resource. Another error-rate estimation technique based on 
ones counting also resulted in an estimator and classification 
technique [13]. The statistical properties of this estimator were 
not fully studied, some results were non-intuitive, and the 
required resources needed to carry out the test process 
appeared to be larger than necessary. 

In this report, we again consider the problem addressed in 
[13], and develop a mathematically simpler estimator. In 
addition, we analyze the statistical characteristics of the 
estimator, such as its expectation, variance and probability 
density function. We determine the conditions when this 
estimator is biased vs. unbiased. Based on the statistical 
analysis, we describe a method for selecting the values for two 
key test parameters, namely the number of test patterns per 
session, L, and the number of test sessions, S. These 
parameters impact the test resources used for error-rate 
estimation. We show how these parameters are a function of 
both test time and storage requirements. In addition, we 
provide useful and practical bounds for these two parameters. 
The results of our analysis show that the test resources 
required for error-rate estimation based on ones counting are 
quite comparable to those needed when signature analysis is 
employed. Thus, the major difference in these two approaches 
is that signature based error-rate analysis can operate on a 
multi-output circuit, while ones counting processes one output 
at a time unless the test hardware is replicated for each output 
line. 

We also address the problem of classifying chips based on 
their error-rate.  The proposed classification procedure is 
partitioned into multiple phases. This process can significantly 
reduce classification time without any loss in the quality of 
classification. 

Throughout this report several assumptions have been 
made, such as assuming a normal distribution for some 
random variables, and dropping terms that lead to second or 
third order effects. We have addressed these issues in our 
experiments, and validated that these assumptions are 
appropriate. We have also considered various boundary or 
extreme conditions, such as where the test length L of a test 
session is 1 or very large.  

In our analysis, we assume all possible input patterns are 
equally likely to appear and have uniform distribution. Thus 
the test pattern generator in BIST is implemented with LFSR 
and generates pseudo random test patterns. For some circuits, 
their functional input may have different statistics than 
uniform distribution. To deal with this situation, test patterns 

can be obtained from functional test circuit instead of LFSR, 
and the same procedure is applied. Thus, the estimated error-
rate is a conditional probability of outputting an error given 
the real statistics of input patterns. Thus, if the distribution of 
functional input patterns is known, it may be feasible to 
replace the PRPG with one that produces patterns whose 
distribution more closely mimics the real world. 

For multiple output circuits, the output lines may not be of 
the same importance. Thus, when these output lines are 
considered independently, each of these lines will be 
associated with a different error-rate threshold. For example, 
the most significance bit line might have a much smaller error-
rate threshold than the least significance bit line. Under this 
situation, the technique presented in this report can be used to 
estimate the error-rate of each output line and justify whether 
the error-rate is smaller than a threshold. 

When the output lines of a multiple output circuit are 
considered as a whole for error-rate, its error-rate cannot be 
simply derived from the error-rate of each output line because 
of the correlation of errors among different output lines. This 
problem has been solved by using signature analysis [12], 
while using ones counting to solve this problem is the basis of 
a forthcoming paper. 

 
 

APPENDIX 

A. Expectation and Variance of the Estimator 
For error-rate estimation based on ones counting 

compression, we propose using the estimator 

2

2

ˆ
L

M
L

Vr DD += , where MD and VD are, respectively, the 

sample mean and sample variance of the sampled random 
variable D. In this appendix, we derive expressions for the 
expectation and variance of the estimator. 

 
1) Preliminaries 

In Section 3, we defined D = ∑
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, where X1, X2, …, XL 

are i.i.d. and have the same distribution as the random variable 
X.  The PDF of X is Prob(X=1)=p1, Prob(X= −1)=p2, and 
Prob(X=0)=1−p1−p2, where 10 1 ≤≤ p , 10 2 ≤≤ p and 

10 21 ≤+≤ pp . 
To simplify future mathematical expressions, we define 
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0α  is the expectation of X, and 2α , 3α  and 4α  are the 
2nd, 3rd and 4th central moments of X. 

Additional symbols are defined below. 
}{0 DE=µ , 

0µ−= DY  and 0µ−= ii DY  (i = 1, 2, … , S),         
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0µ  denotes the expectation of D. Y1, Y2, … , YS are i.i.d. 

and have the same distribution as Y. 1µ , 2µ , 3µ  and 4µ  are 
the 1st, 2nd, 3rd and 4th order moments of Y. 
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2) Derivation of the Expectation and Variance of the 
Estimator 

The expectation of the sample variance of a random 
variable is equal to the expectation of the random variable 
[14]. So we have  

}{}{ DVarVE D = . (A1) 

The expectation of 2
DM  is computed as follows. 
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Thus, the expectation of the estimator is 
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Next we compute the variance of the estimator. 
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We next compute each component in (A4). Now 
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We next consider the term { }DVVar . Let 

( ) 0421 /... µ−=+++= DY MSYYYM . Then 

( )∑
=

−
−

=
S

i
DiD MD

S
V

1

2

1
1  

     ( ) ( )( )∑
=

−−−
−

=
S

i
Di MD

S 1

2
001

1 µµ  



USC TECHNICAL REPORT CENG-2008-3 16

     ( )∑
=

−
−

=
S

i
Yi MY

S 1

2

1
1 . 

Recall that  
{ } { } { }( )22

DDD VEVEVVar −=  

              { } { }( ) { } 2
2

222 µ−=−= DD VEDVarVE . (A8) 
Hence, 

( ) ( )
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟
⎠

⎞
⎜
⎝

⎛
−−= ∑

=

2

1

22 1}{ SMYEVE
S

i
YiD

 

     
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟
⎠

⎞
⎜
⎝

⎛
−

−
= ∑

=

2

1

22
2)1(

1 S

i
Yi SMYE

S
 

   { } { }
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+−

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟
⎠

⎞
⎜
⎝

⎛
−

= ∑
=

4222
1

2
2

1

2
2 2

)1(
1

YY

S

i
i MESMYESYE

S
. (A9) 

In (A9), 
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So finally for (A8) we have 
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Substituting { }2
DMVar , { }DVVar  and ( )2, DD MVCov  

into (A4) using (A7), (A14) and (A17), the variance of the 
estimator is obtained as 
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Because S is large compared to 1, we assume that S−1 ≈ S. 
Now we have 
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B. Q Function: Q(x) 
Q function Q(x) computes the right tail probability of 

normal distribution N(0, 1). So Q function is defined as 
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. 

Using Q function, many probability related to a random 
variable having normal distribution N(µ, σ2) can be simply 
expressed simply. Here are some examples. Let T denote such 
a random variable. 

Probability of T being in (x, +∞) is  
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Probability of T being in (-∞, x) is 1- Q((x-µ)/σ). 
Probability of T being in (µ-α,µ+α), where α>0, is 1-

2Q(α/σ). 
 

C. Justification of (25) with r<1/5 being Maximized 
when 00 =α  in Section 4.4 

Equation (25) in Section 4.4 states that 
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Because 210 pp −=α  and 21 ppr += , we have 

r<≤ 2
00 α  and rr ≤−< 2
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0α−r  is 

maximized when 00 =α . So is 22
0 )( α−r . The term 
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is maximized when 02

0 =α , and its maximum is 
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