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1 Introduction

The receiver capacity model uses local constraints to define the achievable rate
region of a given routing topology. In this report we show that for all rate
vectors, that satisfy the receiver capacity constraints with the receiver capacity
set to 1

3 , there exists a feasible TDMA schedule that can satisfy these rate
vectors.

2 The Receiver Capacity Model

In this section we present an example to illustrate the receiver capacity model
over a collection tree.

Figure 1 shows a 6 node topology. The solid lines indicate a parent child
relationship in the tree. The dashed line represent noise links. For each source,
any rate consumed by the source on the link with its parent will result in con-
sumption of an equal rate on the noise links. Thus, when node 2 sends its data
to node 1, node 2 not only consumes capacity at node 1 but also at node 3,
since the same flow exists over link 2 → 1 and noise link 2 → 3.

The radios are assumed to be half duplex. The half duplex nature of the
radio forces flows to be received at a particular rate in a particular slot and
then forwarded at the same rate in the next available slot. This results in flows
originating from a child consuming twice the allocated rate at the parent.

The receiver capacity constraints on the rates at node 3 will be as follows:

rnoise
2 + rnoise

3 + rsrc
6 ≤ B3 (1)

where B3 is the receiver capacity of node 3 and rsrc
6 is the source rate of node

6. rnoise
2 and rnoise

3 are the output rates at node 2 and node 3 respectively and
are given by:

rnoise
2 = rsrc

2 + rsrc
4 + rsrc

5

and
rnoise
3 = rsrc

3 + rsrc
6
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Figure 1: A 6 node topology: An illustrative example of the receiver capacity
model

The half duplex assumption for the radios forces the term rsrc
6 to appear

twice in equation 1. Once independently to account for the consumption of
bandwidth during reception at node 3 and once as part of the term rnoise

3 to
account for the forwarding of the flow originating at node 6.

In general the receiver capacity constraint at a node i can be given as follows:

∑

j∈C(i)

rsrc
j +

∑

j∈Ni

∑

k∈Cj

rsrc
k +

∑

j∈Ni

rsrc
j ≤ Bi (2)

Where Ni is the set of all neighbors of i. The half duplex assumption implies
that i ∈ Ni. Ci is the set of all nodes j that have i in its path to the sink. rsrc

j

represents the rate at which data generated at node j is being transmitted.
Although the above example was specific to a tree, the receiver capacity

model is applicable to a directed graph as well.
The constraints presented above were flow constraints. The flow constraints

of the receiver capacity model can be written purely as link constraints as fol-
lows: For node 1 the constraint will be:

f21 + f31 ≤ B1

The constraint at node 2 will be:

f21 + f42 + f52 + f31 ≤ B2

Where fij is the link rate on link ij, with i as the transmitter and j as the
receiver. In order to match the flow constraints of the receiver capacity model
we require to at least these extra constraints, in addition to the link constraints
presented above:

f42 ≤ f21

f52 ≤ f21

f63 ≤ f31
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Due to these extra constraints, the flow constraints will always be more
constrained than the link constraints in a receiver capacity model( at least over
a collection tree). Thus, if we are able to develop a sufficiency constraint for
the link rates over a receiver capacity model, for a collection tree the sufficiency
condition will hold for the flow rates as well.

3 Preliminaries

In this section we present a quantitative description of a general communication
graph and various terms pertaining to this graph that will be used in our proof
for the sufficiency condition of the link rates for the receiver capacity model.

We represent the nodes in the network, and possible communication, with a
directed labeled graph G = (V,L, f, w) where V represents the set of nodes in
the network and L the set of edges (links) in the network. Each link l ∈ L is
associated with two labels f and w. The label f(l) represents a demand rate at
which data needs to be transmitted over the link l. The label w(l) represents
the number of slots that are required in order to transmit the data over the link
at a rate f(l).

Over the graph G only a subset of the link l ∈ L are active. This subset
is determined by the transmitter receiver pairs that want to exchange data. If
l is part of the set of links that are active then f(l) ≥ 0, else f(l) = 0. It is
assumed that f(l),∀ l ∈ L, are rational. The value of w(l), associated with each
link l ∈ L is determined as follows:

w(l) =
f(l)

τ

Where τ is some rational number. We can find a w(l),∀ l ∈ L, since f(l)
is assumed to be rational. The value τ can be thought of as the slot interval.
Thus, we have a total of 1

τ
slots per second to schedule, and a link requiring a

rate of f(l) will require w(l) = f(l)
τ

slots per second to achieve this rate. There
can be multiple such τ values that will give an integral value for all links l ∈ L,
we choose the largest of these τ that makes w(l) a positive integer ∀ l ∈ L.
Thus, every link in the graph G will have two labels associated with it, a rate
label f(l) and a slot label w(l).

Our objective is to determine a sufficiency condition such that, given a de-
mand vector f that satisfies the sufficiency condition, it is possible to design a
TDMA schedule that can satisfy the demand f . Some other variables that are
defined for the graph G are as follows:

• r(l) is defined as the receiver of a link l ∈ L.

• t(l) is defined as the transmitter of a link l ∈ L.

• Ni, the set of neighbors of node i, such that for any j ∈ Ni there exists
a link l ∈ L such that r(l) = i, t(l) = j and f(l) = 0. NOTE: Under the
receiver capacity model such a link will be a noise link.
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NOTE: We assume that each receiver i in the graph G has a receiver capacity
of 1. We have set the receiver capacity to 1 to keep the analysis tractable.
We believe the results presented here can be extended to cases where receiver
capacities are greater then 1 by changing the calculation of the number of slots
required to schedule a given demand vector.

We now define a few terms pertaining to the graph G.

Definition 1. An interference set I(i) for a node is defined as I(i) = {l : r(l) =
i, or t(l) = i, or t(l) = j, j ∈ Ni}. The set I(i) thus contains the set of links
that have i as a receiver, the set of links that have i as a transmitter, and the
set of links that have a transmitter who is a neighbor of i.

NOTE: The cardinality of the interference set I(i) at a node i represents the
total number of terms in the receiver capacity constraint at node i, where α ≤ 1.

Definition 2. The graph G α-satisfies the receiver capacity model (RCM) if :

∑

l∈I(i)

f(l) ≤ α,∀ i (3)

NOTE: Equation 3 is the receiver capacity constraint at node i.

Definition 3. We define the contention graph Gc for the graph G, by replacing
every edge l ∈ L with w(l) vertices in Gc. The w(l) vertices in Gc form a
clique. Beyond this, we add an edge between two vertices in Gc if the edges of
the corresponding vertices in G interfere with each others transmissions. The
vertices in the graph Gc form the set Vc, and the edges in the graph Gc form the
set Ec. The maximum clique size in Gc is denoted by ∆c.

Definition 4. We define the contention graph Gdc as a directed version of the
graph Gc. The set of vertices of the graph Gdc, Vdc = Vc. The set of edges Edc

is a directed version of the edges in Ec. A directed edge edc ∈ Edc, from vi ∈ Vdc

to vj ∈ Vdc exists if the transmitter of the corresponding link li ∈ L interferes
with the reception of lj ∈ L. A reverse directed edge will exist if the transmitter
of lj ∈ L interferes with the reception of li.

Definition 5. We define the maximum interference set, ∆I for the graph G as
follows:

∆I = max
∀ i ∈V

(
∑

l∈I(i)

w(l))

4 The sufficiency condition

The answer to the question of the sufficiency condition which guarantees the
schedulability of the demand vector f is given by the following theorem:

Theorem 1. A graph G that is 1/3-satisfying RCM can be feasibly TDMA
scheduled.
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The proof of this theorem follows by combining the following theorems 2
and 3. We first present and prove them before proving this result.

Theorem 2. A graph G, that is α-satisfying cannot be scheduled in less than
∆I

α
slots.

Proof. A graph G that is α-satisfying is given by :

∑

l∈I(i)

f(l) ≤ α,∀ i

Multiplying both sides by 1
τ

we have:

∑

l∈I(i)

f(l)

τ
≤

α

τ
,∀ i

The L.H.S can be rewritten in terms of w(l) as:

∑

l∈I(i)

w(l) ≤
α

τ
,∀ i

By definition 2 we have:

∆I ≤
α

τ

This implies that
∆I

α
≤

1

τ

1
τ

represents the total number of slots available per second. Thus, a graph

G, that is α-satisfying cannot be scheduled in less than ∆I

α
slots.

Theorem 3. A graph G can be scheduled in at most 3∆I slots.

We will require lemma 1 and 2, presented below, to prove this theorem. We
therefore present these lemma’s before we prove this theorem.

Lemma 1. The maximum clique size of the contention graph Gc is no more
than twice the maximum interference set ∆I for the graph G. i.e.

∆I ≥
∆c

2

Proof. The interference set I(vi), of a vertex vi ∈ V in the graph G and the
in-degree Din

vj
for the vertex vj ∈ Vdc of the directed contention graph Gdc such

that r(ej) = vi, ej ∈ V , are related as follows:

|I(vi)| = Din
vj

+ 1

Thus, ∆I = max
v ∈ Vdc

(Din
v ) + 1.
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We claim that max
v ∈ Vdc

(Din
v ) + 1 ≥ ∆c

2 .

To prove the above claim assuming max
v ∈ Vdc

(Din
v ) + 1 < ∆c

2 .

Consider the set of vertices forming the maximum clique in Gc and call this
set of vertices the set C. Since Vdc = Vc, the set C exists in Gdc as well. From
our assumption, for the graph Gdc, the in-degree of each vertex v ∈ C is less
than 1

2n − 1, where ∆c = n. Thus for these set of vertices the total number of
incoming edges is less than n( 1

2n − 1) which is equal to 1
2n2 − n.

However the total number of incoming edges, which is equal to the total

number of edges for this set of vertices belonging to C is n2

2 − n
2 . Since 1

2n2−n <
n2

2 − n
2 , it leads to contradiction.

Hence maxv∈Vdc
(Din

v ) + 1 ≥ ∆c

2 and hence ∆I ≥ ∆c

2 .

Lemma 2. The number of slots required to achieve a feasible schedule in the
graph G is no greater than 3

2∆c.

Proof. We first define a graph H, such that edges on this graph are vertices on
Gc and nodes in this graph are edges on Gc. Since Gc is the line graph of H,
edge coloring of H is vertex coloring of Gc. If ∆H is the maximum node degree
in H, then as shown by Shannon in [1] the maximum number of colors that will
be required to edge color the graph H will be 3

2∆H . However since Gc is the
line graph of H by construction ∆c ≥ ∆H and hence H can be edge colored in
3
2∆c colors.

The bound on the number of colors required for vertex coloring of the graph
Gc, gives us a bound on the number of slots required for a feasible schedule
in G. This statement is true since no two vertices in Gc, which share an edge
can have the same color in a feasible vertex coloring. Also, if two vertices in Gc

share an edge, the corresponding links in G cannot be scheduled simultaneously.
Therefore, interchanging a color for a slot, a feasible vertex coloring on Gc also
represents a feasible TDMA schedule for G satisfying a demand vector f . Thus,
the number of slots required to achieve a feasible schedule in the graph G is no
greater than 3

2∆c.

We can now prove theorem 3.

Proof. Theorem 3

By lemma 2, since the graph G can be scheduled in 3
2∆c slots this implies that

the graph G can be scheduled in 3∆I slots as well. This is because by lemma 1
∆I ≥ ∆c

2 .

Given the proofs of theorems 2 and 3, we can now prove theorem 1.

Proof. Theorem 1

Theorem 3 states that if we have 3∆I slots, we can guarantee a schedule for
the scenario represented by graph G. Theorem 2 states that the minimum
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number of slots required by an α-satisfying demand vector f is ∆I

α
. It can be

easily seen that by setting α = 1
3 the minimum number of slots required to

TDMA schedule a demand vector f matches the number of slots that guarantee
a feasible schedule for the graph G. This implies that for α ≤ 1

3 all demand rate
vectors f , that are α-satisfying , can be guaranteed a feasible TDMA schedule.
This proves our main theorem.

5 Related Work

The proof for the sufficiency condition guaranteeing schedulability of a demand
vector has been built upon ideas from two works. The work by Fang and Ben-
saou [2] states without proof that it can be shown for the clique capacity model
that a bandwidth constraint of 2

3 yields a feasible TDMA schedule. We use this
result, essentially proving it in lemma 2. The techniques of using bounds on
edge coloring to prove bounds on the number of time slots is similar to the work
by Kodialam and Nandagopal [3]. Kodialam and Nandagopal [3] show the suffi-
ciency condition for half-duplex systems with linear edge-rate constraints where
interference between non adjacent transmission links is eliminated through the
use of orthogonal channels.
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