
Static Replication Strategies for Content Availability in Vehicular
Ad-hoc Networks∗

Shyam Kapadia1,
†
, Bhaskar Krishnamachari1,2, Shahram Ghandeharizadeh1

1Department of Computer Science
2Department of Electrical Engineering

University of Southern California
Los Angeles, CA 90089, USA

Email:{kapadia,bkrishna,shahram}@usc.edu

Abstract

This study investigates replication strategies for reducing latency to desired content in a vehicular peer-to-peer
network. We provide a general constrained optimization formulation for efficient replication and study it via analysis
and simulations employing a discrete random walk mobility model for the vehicles. Our solution space comprises
of a family of popularity based replication schemes each characterized by an exponent n. We find that the optimal
replication exponent depends significantly on factors such as the total system storage, data item size, and vehicle
trip duration. With small data items and long client trip durations, n ∼ 0.5 i.e., a square-root replication scheme
provides the lowest aggregate latency across all data item requests. However, for short trip durations, n moves toward
1, making a linear replication scheme more favorable. For larger data items and long client trip durations, we find that
the optimal replication exponent is below 0.5. Finally, for these larger data items, if the client trip duration is short,
the optimal replication exponent is found to be a function of the total storage in the system. Subsequently, the above
observations are validated with two real data sets: one based on a city map with freeway traffic information and the
other employing encounter traces from a bus network.

∗A shortened version of this study, specifically, Section 7 was presented at ACM MDM in 2005.
†Corresponding author

1

Section Name Section No.
Small data items with long client trip duration 4

Analysis 4.1
Low density of replicas 4.1.1
High density of replicas 4.1.2

Simulation results 4.2
Small data items with short client trip duration 5

Analysis 5.1
Low density of replicas 5.1.1
High density of replicas 5.1.2

Simulation results 5.2
Large data items with long client trip duration 6
Large data items with short client trip duration 7
Evaluation employing a mobility model based on a map of San Francisco city 8
Evaluation employing real world bus traces 9

Table 1: Organization of this paper

1 Introduction

Advances in computer processing, data storage, and wireless communications have made it feasible to envision on-
demand delivery of content such as audio and video clips between mobile vehicles. The content exchanged between
the vehicles may vary from traffic information such as accident notifications and emergency vehicle arrival notifica-
tions to multimedia for entertainment such as audio files, cartoons, movies and other video files. A vehicle is equipped
with an AutoMata [2](formerly known as a C2P2 for Car-to-Car Peer-to-Peer [14]) device consisting of several giga-
bytes of storage, a fast processor and a short-range wireless interface with bandwidths of several tens of Mbps [3].
The AutoMata-equipped vehicles, forming an intermittently connected network [33, 29], collaborate to realize an
application for on-demand delivery of entertainment content.

In such a system, when a client vehicle issues a request for desired content not found in its local storage, this request
can be satisfied only when it is in the vicinity of another vehicle that carries the requested item. Therefore, a key
metric is availability latency, defined as the time between request issuance and request satisfaction. Clearly, the more
the number of vehicles carrying a certain data item, the lower will be its expected availability latency. However,
constraints on storage limit the number of unique data items that each vehicle can carry.

All data items in the system repository are not likely to be equally requested1. The aggregate availability latency
across all items is therefore the average latency for individual data items weighed by their respective popularities.
Hence, in order to minimize this aggregate latency metric, the popular data items warrant more replicas. We address
the following key question in this study: how many replicas should be allocated for each item in the repository in
order to minimize the aggregate availability latency?

Several parameters impact the optimal replication scheme. For instance, the mobility model of the vehicles impacts
how the expected availability latency for a data item decreases with the number of replicas for that item. The size of a
data item and the available bandwidth between devices dictates whether it is possible to download the entire data item
in a single encounter between a client and a vehicle carrying the requested item. Moreover, the client trip duration
bounds the maximum amount of time that a client is willing to wait for a request to be satisfied. The distribution of
the data item popularities is a key component of the aggregate latency metric. The available storage directly affects
the constraints under which the optimal replication strategy can be found.

Our primary contributions are as follows. We first provide a general optimization formulation for minimizing the

1It is found that Zipf’s law controls many of the features observed with the Internet, primarily because of different user preferences for different
files [4].

2

average availability latency subject to a storage constraint per vehicle. To solve this optimization, the solution space
we explore comprises a family of popularity-based replication schemes each characterized by an exponent n. This
exponent, n, defines the relation between the replicas of a data item and its popularity. We are interested in the optimal
replication exponent that minimizes the aggregate availability latency. With small data items and long client trip
durations, we find that n ∼ 0.5 i.e., a square-root replication scheme provides the lowest aggregate latency. However,
for short trip durations, we find that the optimal replication exponent (n) moves toward 1, making a linear replication
scheme more favorable. For larger data items and long client trip durations, we find that the optimal replication
exponent is below 0.5. In the limit for extremely large data items, a random (n = 0) replication scheme that allocates
the same number of replicas to all data items yields the minimum aggregate latency. Finally, for such data items, if the
client trip duration is short, we find that the optimal replication exponent is a function of the total storage in the system.
Specifically, in low storage scenarios, a linear scheme shows superior performance, while for moderate to high storage
scenarios a square-root replication scheme is preferred. Moreover, if the storage is abundant even a random replication
scheme is good enough to provide a low aggregate latency.

While the above results are based on a 2D random walk based mobility model for the vehicles, in the second part of
this study, we validate our model observations with vehicular movements obtained from real data sets. Specifically,
two independent validation phases are presented employing (a) A real map of an urban environment that dictates
the mobility transitions of the Markov model and (b) Fine grained mobility traces from a real environment comprising
buses moving around a university campus area. The observations from these studies indicate that a random walk-based
mobility model captures performance trends that may be applicable for a wide range of scenarios.

The snapshot of this paper with the section headings and the corresponding section numbers is listed in Table 1. The
rest of this paper is organized as follows. Section 2 gives a brief overview of the related work in the area. Section 3
presents the general optimization formulation and details about the family of frequency-based replication schemes
explored in our study. Section 4 employs mathematical analysis and simulations to determine the optimal replication
scheme for small data items and long client trip durations. The results for small data items are extended to consider
short client trip durations in Section 5. Sections 6 and 7 present the optimal replication scheme for larger data items
with long and short client trip durations, respectively. The above sections employ a 2D random walk-based mobility
model for the vehicles. Subsequently, representative results obtained with the random walk model are validated on a
map of the city of San Francisco in Section 8. This is followed by exploration of the performance of the replication
schemes on a real data set comprising of movement traces of buses in a small neighborhood in Amherst (Section 9).
Finally, Section 10 presents brief conclusions, some discussion and concrete future research directions.

2 Related work

Techniques to determine number of replicas are similar to assigning seats to different parties as a function of their
popularity, i.e., ratio of votes casted for a party to the total vote. Webster’s divisor method and its alternatives attributed
to Hamilton, Adams and Jefferson allocate storage to each replica (assign seats to a party) as a linear function of its
frequency of access (popularity). The divisor technique has been employed to determine the number of replicas of
a video clip in a distributed video-on-demand architecture [34]. Our proposed framework captures this technique by
setting a key parameter, denoted as n (see Section 3), to one.

Techniques to compute number of replicas for objects have been studied for both peer-to-peer networks [8] and mesh
community networks [10, 15]. Mobility of nodes is our primary contribution and separates these prior studies from
the work presented here. In the following, we provide an overview of these prior studies. Replication of objects is
important to their discovery in an un-structured peer-to-peer network. A smart replication technique minimizes search
size, defined as the number of walks required to locate a referenced data item. In [8], the divisor method is compared
with one that employs the square root of the frequency of access, demonstrating the superiority of the later.

Replication in MANETs has been explored in a wide variety of contexts. Hara [17] proposes three replica allocation
methods. The first one that allocates replicas to nodes only on the basis of their local preference to data items.
The second technique extends the first by considering the contents of the connected neighbors while performing

3

the allocation to remove some redundancy. The last technique discovers bi-connected components in the network
topology and allocates replicas accordingly. The frequency of access to data items is known in advance and does
not change. Moreover, the replica allocation is performed in a specific period termed the relocation period. Several
extensions to this work have been proposed where replica allocation methods have been extended to consider data
items with periodic [19, 21] and aperiodic [24, 20] updates. Further extensions to the proposed replica allocation
methods consider the stability of radio links [26], topology changes [27] and location history of the data item access
log [22, 23]. In [25], the authors consider data items that are correlated by virtue of being requested simultaneously and
present the performance of the replica allocation methods proposed earlier. Related studies [31, 35, 18] have appeared
in the context of cooperative caching in mobile ad-hoc networks where the objective is to use caching to reduce the
mobile node’s latency in accessing data items. All the above studies are based on simulations of the proposed replica
allocation methods.

Our study differs from the above in the following ways. We formulate a general optimization problem that minimizes
an aggregate latency metric subject to a storage constraint per vehicle. We propose a family of replication schemes
and explore which scheme provides optimal latency under a variety of scenarios by solving the optimization formu-
lation. The mobility of vehicles is represented by a Markov-based mobility model that is general enough to capture
a wide variety of mobility models such as Freeway, Highway, Random Way-point etc. We have analyzed the latency
performance obtained with such a mobility model via mathematical analysis and extensive simulations. The different
scenarios encompass vehicles with unbounded as well as finite trip durations, data items with different display times
etc.

In prior work [11], we have explored data discovery in an AutoMata system and proposed PAVAN as a policy frame-
work to predict the list of items available to a client during its journey along with their respective availability latencies.
The effectiveness of the predictions are then evaluated by the comparing the predicted lists with the actual lists em-
ploying suitable utility models. In other work [12], we explore three popular replication schemes, namely, linear,
square-root and random schemes for larger data items with short trip durations. This study significantly extends the
prior work along a number of dimensions such as different data item sizes, different client trip durations etc. Finally,
in our zebroid study [13], vehicles are employed as data carriers to further alleviate the availability latency of active
requests thereby causing dynamic data re-distribution across the system storage to better match the currently active
requests. Appropriate static replication schemes allocate replicas for data items at the bootstrap phase, after which
data carriers may be scheduled to improve client latency.

Another related area is that of Intelligent Transportation Systems (ITS). The vehicular network is viewed as a MANET
and messages are forwarded from one vehicle to another realizing several applications like vehicle accident notification
broadcast, pre-emptive emergency vehicle arrival information etc [5, 6]. The lessons learnt from this study may be
directly applicable to some ITS problems.

3 General framework

In this section, we first introduce some definitions and associated terminology used repeatedly in this paper. Then, we
provide a general optimization formulation for minimizing availability latency in the presence of storage constraints.
Table 2 summarizes the notation used in this study.

Assume a network of N mobile AutoMata devices, each with storage capacity of α bytes. The total storage capacity
of the system is ST =N ·α. There are T data items in the repository, each with a display time of ∆i seconds and display
bandwidth requirement of βi. Hence, the size of each item is given by Si = ∆i · βi. The frequency of access to item i
is denoted as fi with

∑T
j=1 fj = 1. Let the trip duration of the client AutoMata under consideration be γ.

We now define the normalized frequency of access to the item i, denoted Ri, is:

4

Database Parameters
T Number of data items.
Si Size of data item i.
∆i Display time of data item i.
βi Bandwidth requirement of data item i.
fi Frequency of access to data item i.

Replication Parameters
Ri Normalized frequency of access to data item i, Ri = (fi)

n
∑T

j=1(fj)n ; 0 ≤ n ≤ ∞
ri Number of replicas for data item i, ri = min (N, max (1, bRi·N·α

Si
c))

n Characterizes a particular replication scheme.
δi Average availability latency of data item i

δagg Aggregate availability latency for replication technique using the nth power, 0 ≤ n ≤ ∞, δagg =
∑T

j=1 δj · fj

AutoMata System Parameters
N Number of AutoMata devices in the system.
α Storage capacity per AutoMata.
γ Trip duration of the client AutoMata.
ST Total storage capacity of the AutoMata system, ST = N · α.

Table 2: Terms and their definitions

1

8

15

22

29

36

6

11

16

21

26

31

2 3 4 5

7 9 10 12

13 14 17 18

19 20 23 24

25 27 28 30

32 33 34 35

Start cell

Figure 1: An example 6× 6 map.

5

Ri =
(fi)n

∑T
j=1(fj)n

; 0 ≤ n ≤ ∞ (1)

Ri is normalized to a value between 0 and 1. The number of replicas for title i, denoted as ri, is:

ri = min (N, max (1, bRi ·N · α
Si

c)) (2)

This defines a family of replication schemes that computes the degree of replication of item i as the nth power of its
frequency of access. The exponent n characterizes a particular replication scheme. Hence, ri lies between 1 and N .
Note that ri includes the original copy of a clip. One may simplify Equation 2 by replacing the max function with
bRi·N ·α

Si
c. This would allow the value of ri to drop to zero for item i. This means that there is no copy of the clip in

the AutoMata network. In this case, a hybrid framework might provide access to the clip i. For example, a base station
employing IEEE 802.16 [16] might facilitate access to a wired infrastructure with remote servers containing the item
i. However, in this study, we assume at least one copy of every data item must be present in the ad-hoc network at all
times.

The availability latency for a given request for item i, denoted as δi, is defined as the time after which a client AutoMata
will find at least one replica of its requested item accessible to it, either directly or via multiple hops. Additionally, δi

must be greater than ∆i, the data item display time. If a replica for item i is not encountered for a given request, we set
δi to γ. This indicates that item i was not available to the client during its journey. Also, if ∆i exceeds γ for a certain
item i then we set δi to γ. We are interested in the availability latency observed across all the data items. Hence,
we augment the δi for every item i with its fi. This is termed the aggregate availability latency (δagg) metric. It is
computed as follows. For each item i, calculate the average availability latency (δi) based on the particular replication
scheme of interest. Then these availability latencies are combined into a single metric:

δagg =
T∑

i=1

δi · fi (3)

The aggregate availability latency, δagg , depends on the value chosen for n, since n determines the replicas per data
item. Intuitively, a higher number of replicas for data item i reduces the availability latency experienced by a request
for that data item. The core problem of interest here is to keep the aggregate availability latency as low as possible by
tuning the data item replication levels, in the presence of storage constraints. We assume that the data item repository
size is smaller than the total storage capacity of the system,

∑T
i=1 Si ≤ ST . Otherwise, data items cannot be replicated

when at least one replica of a data item must be present in the system. More formally, the optimization problem can
be stated as,

Minimize δagg , subject to
T∑

i=1

Si ≤ ST (4)

Implicit in this formulation is the design variable, namely, the desired replication for each data item. The value of n
in Equation 4 determines a ri value for each data item i with the objective to minimize δagg . This minimization is
a challenge when the total size of the database exceeds the storage capacity of a car,

∑T
i=1 Si > α. Otherwise, the

problem is trivial and can be solved by replicating the entire repository on each device.

The optimization space that defines what value of n provides the best δagg is quite large and consists of the following
parameters: (i) density of cars, (ii) data item display time, (iii) size of the data item, (iv) display bandwidth per data
item, (v) data item repository size, (vi) storage per car, (vii) client trip duration, (viii) frequency of access to the data
items, and (ix) mobility model for the cars. In this study, we determine how the aggregate availability latency and
hence the optimal replication scheme is affected by each of these parameters.

6

3.1 Model Preliminaries

In this section, we provide details about the discrete model adopted in this study for both analysis and simulations. We
assume a repository of homogeneous data items with identical bandwidth requirement, display time, and size (βi = β,
∆i = ∆, Si = S). Figure 1 shows an example map used in our study. The map constitutes a torus with fixed size
cells, a torus is considered to avoid border effects [32, 28]. The vehicles2 themselves are assumed to be distributed
across these cells of the map. Only AutoMatas within a cell communicate with each other either directly if they are in
radio-range or via other AutoMatas using multi-hop transmissions. In other words, the AutoMatas within a cell form
a connected sub-network. AutoMatas in adjacent cells cannot communicate with each other.

A Markovian mobility model describes the movement of the vehicles where the vehicles perform a 2D random walk on
the surface of the torus. Hence, in each time step, a vehicle in a given cell may transition to any one of its neighboring
4 cells. Each cell of the map constitutes a state. A map of size G×G yields G2 states. These states are self-contained
and a transition from one state to another is independent of the previous history of a car in that state. The aggregate of
the transitions from each cell (state) to every other state gives the G×G probability transition matrix Q = [qij] where
qij is the probability of transition from state i to state j.

Using Markov chains, it is possible to estimate the distribution of the steady-state probabilities of being in the various
cells, by solving Π = Π ∗Q, where Π is the vector representing the steady-state probabilities of being in the various
cells (states). While for the 2D random walk mobility model, due to symmetry, Π = 1

G , in general, the map may
represent an underlying city area where the transition probabilities for each cell may not be symmetric in each of the 4
possible directions. For example, in the example map depicted in Figure 1, the mobility model is weighted toward the
diagonal both from the left to right and vice-versa. This may be due to the presence of two major freeways running
across a city area that the map represents. Note that in order to incorporate directionality, the transition for a vehicle
from its current cell may incorporate the current as well as the previous location of the vehicle (see Section 8). In this
case, the model may not be strictly Markovian, however, by incorporating previous as well as current vehicle location
information in the state, the mobility model can still be solved employing Markov chains.

Without any loss of generality, to reduce the dimensionality of the problem, we express the data item display time, ∆,
as the amount of time required by an AutoMata equipped vehicle to travel ∆ cells. We express α as the number of
storage slots per AutoMata. Each storage slot stores a data item fragment equivalent to a single cell worth of data item
display time. Moreover, we assume the amount of data displayed in each cell is identical. Now, we represent both the
size of a data item and the storage slots in terms of the number of cells. This means that a data item has a display time
of ∆ cells and an AutoMata has α units of cell storage. For example, a data item with display time of 4 cells (∆ = 4)
requires 4 storage slots and an AutoMata provides 100 storage slots (α = 100). Hence, from hereon, we assume that
the size of the data item is indicated by its display time.

The trip duration (γ) is the maximum amount of time that a client vehicle is willing to wait for request satisfaction.
Here, it is expressed as the maximum number of discrete time steps that the client is willing to traverse before it gives
up on a given request for a data item. We also define availability latency (δi) for data item i in discrete terms, as the
number of steps after which a client AutoMata will encounter a replica of the requested data item i, either directly or
via multiple hops, for the data item display time (∆). Hence, the possible values of the availability latency are between
0 and γ. While in most cases, the trip duration is usually short, occasionally a client may specify an extremely large
value of γ indicating that it is willing to wait as long as it takes to satisfy an issued request. As we shall show in
the following sections, the long versus short client trip durations have a profound impact on the optimal replication
scheme that minimizes the aggregate availability latency.

2We use the term AutoMata and a vehicle (or car) interchangeably in this study, with the assumption that each vehicle is equipped with a single
AutoMata device.

7

4 Data items with small size and long client trip duration

In this section, we consider small data items with a display time of one, where the client trip duration is long. We first
present analytical approximations that capture the performance of availability latency for an item as a function of the
number of replicas for that item for both a low and high density of replicas. Subsequently, we employ simulations to
determine the optimal replication exponent that minimizes the aggregate availability latency.

4.1 Analysis of data items with display time = one

In this section, we assume data items with a display time of one cell and for a scenario with a sparse density of
data item replicas, derive a closed-form expression for the aggregate availability latency. Subsequently, we use this
expression to solve the optimization problem to reveal that a square-root replication scheme minimizes this latency.
Then, we derive an expression that approximates the aggregate availability latency in case of a high density of data
item replicas.

4.1.1 Sparse Scenario

In this section, we provide a formulation that captures scenarios with a low density of vehicles. For a given mobility
model of the vehicles, the relationship between δi and ri can be obtained using simulations. For illustration, we have
considered that vehicles follow a random walk-based mobility model on a 2D-torus. Aldous et al. [1] show that the
mean of the hitting time for a symmetric random walk on the surface of a 2D-torus is Θ(GlogG) where G is the
number of cells in the torus. Moreover, the mean of the meeting time for 2 random walks is half of the mean hitting
time. Furthermore, the distribution of the meeting times for an ergodic Markov chain can be approximated by an
exponential distribution of the same mean [1]. Hence,

P (δi > t) = exp
(−t

c ·G · logG

)
(5)

where the constant c ' 0.34 for G ≥ 25. Now since there are ri replicas, there are ri potential servers. Hence, the
the meeting time, or equivalently the availability latency for the data item i is the time till it encounters any of these ri

replicas for the first time. This can be modeled as a minimum of ri exponentials. Hence,

P (δi > t) = exp

(
−t

c · G
ri
· logG

)
(6)

Note, however that this formulation is valid only for the cases when G >> ri, which is the case for sparse scenarios.
The expected value of δi is given by:

δi =
c ·G · logG

ri
(7)

For a given 2D-torus, G is constant, hence we have δi ∝ 1
ri

or equivalently, δi = C
ri

where C = c ·G · logG.

Hence, we have the following optimization formulation,

Min

[
T∑

i=1

fi · C

ri

]
(8)

Subject to:

8

T∑

i=1

ri = N · α (9)

ri ≤ N ;∀ i = 1 to T (10)

ri ≥ 1 ;∀ i = 1 to T (11)

Theorem 1. In case of a sparse density of vehicles, a replication scheme that allocates data item replicas as a function
of the square-root of the frequency of access to data items minimizes the aggregate availability latency.

ri =

√
fi·N ·α∑T

j=1

√
fj

1
N ·α ≤

√
fi∑T

j=1

√
fj

≤ 1
α

max
(
1, min(

√
fi·C
γ0

, N)
)

in the general case

where γ0 is s.t.
∑T

i=1 ri = N · α
(12)

Proof. We solve the above optimization using the method of Lagrange multipliers. First, we prove part(i) of the
theorem.

The Lagrangian for the optimization can be written as:

H =
T∑

i=1

fi · C
ri

+ ϕ

[
T∑

i=1

ri −N · α
]

(13)

We solve for ri as follows:

∂H

∂ri
= −fi · C

r2
i

+ ϕ = 0 (14)

ri =

√
C · fi

ϕ
(15)

Substituting ri in the constraint, we get:

ϕ =

(∑T
i=1

√
C · fi

N · α

)2

(16)

Finally, we get the optimal value of ri as,

ri =
√

fi ·N · α∑T
j=1

√
fj

(17)

The constraints are satisfied if 1
N ·α ≤

√
fi∑T

j=1

√
fj

≤ 1
α which proves part (i) of the theorem.

9

Without this condition on fi, the above optimization can be re-written as the following Lagrangian taking all the
constraints into account as:

G =
T∑

i=1

fi · C
ri

+ γ0

[
T∑

i=1

ri −N · α
]
−

T∑

i=1

γi · (ri −N · α)−
T∑

i=1

βi · (−ri + 1) (18)

The Kuhn Tucker Conditions for the modified Lagrangian are:

− fi · C

r2
i

+ γ0 − γi + βi = 0; ∀ i = 1 to T (19)

T∑

i=1

ri ≤ N · α, γ0 ≥ 0, and γ0

[
T∑

i=1

ri −N · α
]

= 0 (20)

ri ≤ N , γi ≥ 0, and γi · (ri −N) = 0; ∀ i = 1 to T (21)

− ri ≤ −1, βi ≥ 0, and βi · (−ri + 1) = 0; ∀ i = 1 to T (22)

Solving Equation 19, we get,

ri =

√
fi · C

γ0 − γi + βi
(23)

Equations 21 and 22 imply that either γi = 0 or ri = N and also either βi = 0 or ri = 1 respectively. Therefore, the
optimum solution for ri is given by,

ri = max

(
1, min(

√
fi · C

γ0
, N)

)
(24)

where γ0 is such that
∑T

i=1 ri = N · α proving part (ii) of the theorem.

Hence, in a sparse network, the optimal replication that minimizes the aggregate availability latency is obtained if the
number of replicas for a data item is proportional to the square root of the frequency of access for that data item. Cohen
et al. [8] proved that for unstructured peer-to-peer networks the expected search size is minimized using a square-root
replication strategy which is shown to be optimal. The aggregate availability latency metric in wireless mobile ad-hoc
networks is analogous to the expected search size used in peer-to-peer networks.

It should be noted that, in general, the optimal replication depends on how δi is related to ri i.e. δi = F (ri) and F (·)
is the function that will determine the optimal replication strategy. The above methodology can be used to be obtain
the optimal number of replicas as long as F (·) is differentiable.

Figure 2 shows the typical trend shown by δi for a 10× 10 torus, where ri is increased from 1 to N where N = 100.
In other words, in a G = 100 cell torus, N = 100 cars are deployed, with ri of them having a replica for the data item.
We only consider a single data item, a request for that item can be issued at any vehicle chosen uniformly at random
among all the cars. If the item is stored locally, the latency is 0. This result is independent of the storage per car

10

0 5 10 15 20
10

0

10
1

10
2

Number of replicas (r
i
)

A
ve

ra
ge

 a
va

ila
bi

lit
y

la
te

nc
y

Sparse−approximation
Simulation

0 20 40 60 80 100
10

−3

10
−2

10
−1

10
0

10
1

10
2

Number of replicas (r
i
)

A
ve

ra
ge

 a
va

ila
bi

lit
y

la
te

nc
y

Sparse−approximation
Simulation

(a) (b)

Figure 2: Sparse analysis (Equation 7) versus simulation obtained average availability latency for a data item as a
function of its replicas for a 10 × 10 torus, when the number of cars is set to 100. Figure 2(a) zooms into the sparse
replica part of the entire spectrum depicted in Figure 2(b).

because recall that a maximum of one copy of a given data item may be stored in a car. Figure 2(a) indicates that when
ri is small, (ri ≤ 20) the analytical approximation in Equation 7 is valid. Subsequently, latency reduces at a much
faster rate when compared to that predicted by the sparse approximation (see Figure 2(b)). This is because for a given
G, as ri increases, the latency till any one of the ri replicas is encountered can no longer be modeled as the minimum
of ri independent exponentials. In the next section, we provide an approximation that captures the high density case.

4.1.2 Dense scenario

In this section, we provide an analytical formulation that captures the trends shown by the availability latency in the
presence of a high density of replicas. Recall that N cars are distributed uniformly at random across G cells, ri of
the N cars carry a copy of the data item of interest. Here, we use the traditional definition of the expected availability
latency for title i, namely,

δi =
∞∑

k=0

k · P (δi = k) (25)

We first determine an expression for the case when the latency is 0. This occurs if the data item is locally stored at a
client or a data item replica is located in the same cell as the client at which the request is issued. Hence, the probability
that the latency experienced by a client is zero is given by the following expression:

P (δi = 0) =
ri

N
+ (1− ri

N
) ·

(
1−

(
1− 1

G

)ri
)

(26)

Figure 3(a) indicates that the analytical expression above matches the simulation results quite well. For a given car
density N , as the density of replicas increases, the probability that the availability latency experienced by a client is
zero also increases. Figure 3(b) shows how this probability varies with increasing car density. Given a torus comprising
G cells, increase in P (δi = 0) shows a decreasing steepness as N increases. This is because with increasing N , the
number of potential clients from which a request can be issued also goes up. Hence, a given value of ri implies a
greater percentage of the vehicles store the requested item i locally for a smaller N as compared to a larger one.
Consequently, the corresponding P (δi = 0) is lower for a smaller N as compared to a larger one.

11

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Replicas (r
i
)

P
(

δ i =
 0

)

Analysis
Simulation

0 50 100 150 200 250
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Replicas (r
i
)

P
(

δ i =
 0

)

N=50
N=100
N=150
N=200
N=250

(a) (b)

Figure 3: Figure 3(a) shows the validation of the analytical expression in Equation 26 for the probability that availabil-
ity latency is zero when N = 50. Figure 3(b) shows the probability that the availability latency is zero as a function
of the replicas for the data item for 5 different car densities {50, 100, 150, 200, 250}.

0 5 10 15 20
10

0

10
1

10
2

Number of replicas (r
i
)

A
ve

ra
ge

 a
va

ila
bi

lit
y

la
te

nc
y

Sparse−approximation
Simulation
Dense Approximation

0 20 40 60 80 100
10

−3

10
−2

10
−1

10
0

10
1

10
2

Number of replicas (r
i
)

A
ve

ra
ge

 a
va

ila
bi

lit
y

la
te

nc
y

Sparse−approximation
Simulation
Dense Approximation

(a) (b)

Figure 4: The complete picture depicting the availability latency for a data item obtained via simulations as compared
with its sparse and dense approximation as a function of its replicas for a 10 × 10 torus, when the number of cars is
set to 100. Figure 4(a) zooms into a part of Figure 4(b) that represents a sparse density of replicas.

12

We provide an approximation assuming a memoryless mobility model without regards to the shape of the region across
which the vehicles are moving. Define, Ak, the event that a data item i is encountered by the client for the first time
in the kth cell. This implies that the item i was not encountered in any of the previous k − 1 cells. Let P (Ak) denote
the probability of event Ak occurring. Note P (Ak) is a joint probability function. Let pk denote the probability of
encountering data item i in the kth cell, given that it was not encountered in the previous k− 1 cells. Note that pk is a
conditional probability. Also, p1 = P (δi = 0) as defined by Equation 26. Then,

pk = 1−
(

1− 1
G− k + 1

)ri

; 2 ≤ k ≤ G (27)

Note that the model assumes that not encountering the data item in the (k − 1)th cell increases the probability of
encountering it in the kth cell. Moreover, when k = G, pk = 1 no matter what the value of ri, meaning that
the maximum latency that a client will encounter will always be <= G. Although this is true for a high density of
replicas, this approximation is not valid for a sparse replica density where pk may not increase as k increases especially
for the first few steps of the client.

Recall, P (Ak) is a joint probability since encountering a data item for first time in the kth cell indicates that it was
not encountered in any of the previous k − 1 cells. Clearly, pk and pk−1 are conditional probabilities that are not
independent, hence, we use the following generalized multiplication rule to obtain the value of P (Ak) as,

P (En...E1) = P (En|En−1...E1) · P (En−1|En−2...E1)...P (E2|E1) · P (E1) (28)

P (Ak) = pk

k−1∏

j=1

(1− pj) ; 2 ≤ k ≤ G (29)

Then, the average availability latency (δi) for data item i is given by,

δi =
G∑

k=1

(k − 1)P (Ak) (30)

Figure 4 shows that the above equation captures the trend depicted by the average availability latency for higher replica
densities where the sparse and dense approximations are plotted together with the latency obtained via simulations.
However, when the dense approximation obtained in Equation 30 is plugged into the optimization presented in Sec-
tion 3, the resulting numerical solution that does not lend itself directly to determining the optimal replication exponent
n. Hence, we employ simulations to obtain the optimal replication exponent that minimizes the aggregate availability
latency.

4.2 Simulation results of data items with display time = one

We present simulation results indicating the replication exponent range that provides near optimal aggregate avail-
ability latency. We also show how this latency is affected individually by the different parameters in the optimization
space.

In all our experiments, we assume that the various data item popularities are distributed as per the Zipf’s law [36].
This means that the frequency of the rth popular data item is inversely proportional to its rank i.e.

13

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25

30

35

40

45

Replication Exponent (n)

A
gg

re
ga

te
 A

va
ila

bi
lit

y
La

te
nc

y
(δ

ag
g)

w=−0.5
w=−1.0
w=−1.5
w=−2.0

0 0.2 0.4 0.6 0.8 1
0

5

10

15

Replication Exponent (n)

A
gg

re
ga

te
 A

va
ila

bi
lit

y
La

te
nc

y
(δ

ag
g)

w=−0.5
w=−1.0
w=−1.5
w=−2.0

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Replication Exponent (n)

A
gg

re
ga

te
 A

va
ila

bi
lit

y
La

te
nc

y
(δ

ag
g)

w=−0.5
w=−1.0
w=−1.5
w=−2.0

(a) α = 4 (b) α = 10 (c) α = 25

Figure 5: Aggregate availability latency for different replication strategies for a 10 × 10 torus when T = 100 and
N = 50. Figures (a), (b), and (c) depict three different storage values per car: {4,10,25}.

fi =
1
iv∑T

j=1
1
jv

; 1 <= i <= T (31)

Here, the exponent v controls the skewness in the popularity distribution of the data items. We denote w = −v as the
skewness parameter. A higher absolute value of w indicates that most of the popularity weight is spread across the first
few popular titles. Note that the data item repository size is T and the denominator is simply a normalization constant.

Figure 5 depicts the latency performance for different replication schemes when storage per car is increased from 4
to 25 slots. The title repository size is T = 100 and the car density is N = 50 which implies that the total storage
ST is increased from 200 to 1250 slots. As expected the latency decreases as storage is increased. The replication
schemes with exponent values 0, 0.5, and 1 have been popularly studied in the literature and are labelled random,
square-root, and linear respectively. The value of w captures the skewness in the data item popularities, a higher
value of w indicates that most of the popularity weight is spread across the first few popular titles. Below we describe
the main observations from this figure.

The random scheme allocates the same number of replicas per data item irrespective of their popularity. Hence, in
all cases, it yields the same aggregate availability latency irrespective of the value of w. As the replication exponent
increases from 0 to 1 progressively more replicas are allocated for the popular data items. This increase in the replicas
is accelerated for higher values of w that provide a bias for the popular titles. Hence, we see a sharp decrease in the
availability latency from n = 0 to n = 0.3 for w = −1.5 and w = −2. However, the maximum number of replicas
per data item can never exceed N . For a value of w = −0.5 in which case the popularity weight is spread more evenly
among all the data items, it almost doesn’t matter what the replication scheme is as seen by the flat latency curves for
w = −0.5.

When storage per car is low, α = 4, this represents a scenario with a sparse density of data item replicas. In this case,
the square-root replication scheme provides the minimum latency. Also, the range where the replication exponent n
varies from 0.4 to 0.6 shows a latency very close to the square-root scheme. This is true even when the data item
popularities are skewed. Moreover, the range 0.4 ≤ n ≤ 0.6 shows near optimal latency performance even when the
storage is increased (see Figures 5(b) and (c)). In other words, through the entire spectrum of the replica density, a
replication scheme defined by an exponent in this range will provide near optimal performance. For the rest of this
chapter, we will consider the square-root (n = 0.5) scheme as representative of this range and compare its performance
to the two extremes namely, random (n = 0) and linear (n = 1).

14

4.3 Scale-up experiments

In these set of experiments, we maintain a constant ratio of the total storage to the data item repository size (ST : T).
Figure 6 presents the performance of the three replication schemes when ST = 3000 and T = 600. Since ST = N ·α,
we vary the values of (N ,α) as {(50,60), (100,30), (150,20), (200,15), (250,12)}. Since the total storage in the system
ST remains the same the number of replicas allocated per data item also remains. As N increases, the number of
potential clients increases, this accounts for the slight upward trend in the latency curves for the different replication
schemes. With increasing skewness, for the same total storage, the latency realized by the square-root and linear
schemes reduces. This is because replicas assigned to the more popular data items result in lower latency for those
items because as the skewness parameter w increases, a higher popularity weight assigned to these data items. The
random replication scheme is blind to the popularity of the data items and hence shows similar latency performance
independent of the value of w. For all but w = −0.5 it performs an order of magnitude worse as compared to the
square-root scheme.

4.4 Variation in car density

Next, we study the effect of car density on the performance of the replication schemes. Figure 7 presents the perfor-
mance of the three replication schemes as a function of the car density when the storage per car is held constant at 3
for T = 100. Increase in the car density increases the total storage in the system. Hence, more replicas per data item
can be allocated resulting in an overall decrease in the aggregate availability latency. This is true for all replication
schemes. However, here for w = −0.5 and w = −1 (beyond N = 100), the random scheme shows slightly better
performance than the linear scheme. This is because for low skewness parameters assigning equal number of replicas
per data item is better than providing higher replicas for the popular data items which do not have a sufficiently high
popularity weight. However, for higher skewness in popularity, the behavior of the linear scheme starts paying richer
dividends in reducing the overall latency, hence, it outperforms the linear scheme. In all cases, the square-root scheme
always yields the lowest aggregate availability latency.

4.5 Variation in storage per car

The total storage in the system can also be increased by keeping the car density constant and increasing the storage
per car. Figure 8 shows the performance of the three replication schemes as a function of the storage per car when the
car density is held constant at 50 for T = 50. As expected increasing storage reduces the latency for all the schemes.
In case of w = −0.5, the random and linear scheme show a latency performance within 10− 20% of the square-root
scheme. However, with higher w values this difference blows up with the square-root scheme providing a much lower
latency as compared to the other two.

4.6 Variation in data item repository size

Finally, we consider the effect of increasing the data item repository size for a given value of car density and storage
per car. Figure 9 depicts the latency performance of the replication schemes as a function of T when N = 50 and
α = 15 giving ST = 750. For the same total storage, as the data item repository size increases, lesser replicas are
assigned per data item, resulting in an increase in the overall availability latency. With w = −0.5, all the schemes
show an almost linear increase in the latency as T increases. The increase in the latency becomes less significant
with increasing skewness because enough replicas can still be assigned to the popular data items which have a major
contribution to the aggregate availability latency. With w = −1.5 and w = −2, the random scheme shows a step
function like behavior because increase in data item repository size from 100 to 400 first causes a reduction in the
replicas for the popular data items. However, further increase in T from 400 to 700 does not change the number of
replicas for the popular data items causing minimal change in the aggregate availability latency values.

15

0 50 100 150 200 250
0

2

4

6

8

10

12

14

16

18

20

Number of cars (N)

A
gg

re
ga

te
 A

va
ila

bi
lit

y
La

te
nc

y
(δ

ag
g)

Sqrt
Linear
Random

0 50 100 150 200 250
10

0

10
1

10
2

10
3

10
4

Number of cars (N)

%
 o

f w
rt

 s
qr

t s
ch

em
e

Linear
Random

(a) w = −0.5 (b) w = −0.5

0 50 100 150 200 250
0

2

4

6

8

10

12

14

16

18

20

Number of cars (N)

A
gg

re
ga

te
 A

va
ila

bi
lit

y
La

te
nc

y
(δ

ag
g)

Sqrt
Linear
Random

0 50 100 150 200 250
10

0

10
1

10
2

10
3

10
4

Number of cars (N)

%
 o

f w
rt

 s
qr

t s
ch

em
e

Linear
Random

(c) w = −1.0 (d) w = −1.0

0 50 100 150 200 250
0

2

4

6

8

10

12

14

16

18

20

Number of cars (N)

A
gg

re
ga

te
 A

va
ila

bi
lit

y
La

te
nc

y
(δ

ag
g)

Sqrt
Linear
Random

0 50 100 150 200 250
10

0

10
1

10
2

10
3

10
4

Number of cars (N)

%
 o

f w
rt

 s
qr

t s
ch

em
e

Linear
Random

(e) w = −1.5 (f) w = −1.5

0 50 100 150 200 250
0

2

4

6

8

10

12

14

16

18

20

Number of cars (N)

A
gg

re
ga

te
 A

va
ila

bi
lit

y
La

te
nc

y
(δ

ag
g)

Sqrt
Linear
Random

0 50 100 150 200 250
10

0

10
1

10
2

10
3

10
4

Number of cars (N)

%
 o

f w
rt

 s
qr

t s
ch

em
e

Linear
Random

(g) w = −2.0 (h) w = −2.0

Figure 6: Scale-up experiments where the total storage to the data item repository size is held constant at ST

T = 3000
600 .

The number of cars and the storage per car are varied to realize ST = 3000.

16

0 50 100 150 200 250
0

10

20

30

40

50

60

Number of cars (N)

A
gg

re
ga

te
 A

va
ila

bi
lit

y
La

te
nc

y
(δ

ag
g)

Sqrt
Linear
Random

0 50 100 150 200 250
10

0

10
1

10
2

10
3

Number of cars (N)

%
 w

rt
 s

qu
ar

e−
ro

ot
 s

ch
em

e

Linear
Random

(a) w = −0.5 (b) w = −0.5

0 50 100 150 200 250
0

10

20

30

40

50

60

Number of cars (N)

A
gg

re
ga

te
 A

va
ila

bi
lit

y
La

te
nc

y
(δ

ag
g)

Sqrt
Linear
Random

0 50 100 150 200 250
10

0

10
1

10
2

10
3

Number of cars (N)

%
 w

rt
 s

qu
ar

e−
ro

ot
 s

ch
em

e

Linear
Random

(c) w = −1.0 (d) w = −1.0

0 50 100 150 200 250
0

10

20

30

40

50

60

Number of cars (N)

A
gg

re
ga

te
 A

va
ila

bi
lit

y
La

te
nc

y
(δ

ag
g)

Sqrt
Linear
Random

0 50 100 150 200 250
10

0

10
1

10
2

10
3

Number of cars (N)

%
 w

rt
 s

qu
ar

e−
ro

ot
 s

ch
em

e

Linear
Random

(e) w = −1.5 (f) w = −1.5

0 50 100 150 200 250
0

10

20

30

40

50

60

Number of cars (N)

A
gg

re
ga

te
 A

va
ila

bi
lit

y
La

te
nc

y
(δ

ag
g)

Sqrt
Linear
Random

0 50 100 150 200 250
10

0

10
1

10
2

10
3

Number of cars (N)

%
 w

rt
 s

qu
ar

e−
ro

ot
 s

ch
em

e

Linear
Random

(g) w = −2.0 (h) w = −2.0

Figure 7: Aggregate availability latency for the three replication schemes as a function of the car density when the
storage per car is fixed at 3. Here T = 100.

17

0 5 10 15 20 25 30
0

5

10

15

20

25

30

35

40

45

Storage per car (α)

A
gg

re
ga

te
 A

va
ila

bi
lit

y
La

te
nc

y
(δ

ag
g)

Sqrt
Linear
Random

0 5 10 15 20 25 30
10

0

10
1

10
2

10
3

10
4

Storage per car (α)

%
 w

rt
 s

qu
ar

e−
ro

ot
 s

ch
em

e

Linear
Random

(a) w = −0.5 (b) w = −0.5

0 5 10 15 20 25 30
0

5

10

15

20

25

30

35

40

45

Storage per car (α)

A
gg

re
ga

te
 A

va
ila

bi
lit

y
La

te
nc

y
(δ

ag
g)

Sqrt
Linear
Random

0 5 10 15 20 25 30
10

0

10
1

10
2

10
3

10
4

Storage per car (α)

%
 w

rt
 s

qu
ar

e−
ro

ot
 s

ch
em

e

Linear
Random

(c) w = −1.0 (d) w = −1.0

0 5 10 15 20 25 30
0

5

10

15

20

25

30

35

40

45

Storage per car (α)

A
gg

re
ga

te
 A

va
ila

bi
lit

y
La

te
nc

y
(δ

ag
g)

Sqrt
Linear
Random

0 5 10 15 20 25 30
10

0

10
1

10
2

10
3

10
4

Storage per car (α)

%
 w

rt
 s

qu
ar

e−
ro

ot
 s

ch
em

e

Linear
Random

(e) w = −1.5 (f) w = −1.5

0 5 10 15 20 25 30
0

5

10

15

20

25

30

35

40

45

Storage per car (α)

A
gg

re
ga

te
 A

va
ila

bi
lit

y
La

te
nc

y
(δ

ag
g)

Sqrt
Linear
Random

0 5 10 15 20 25 30
10

0

10
1

10
2

10
3

10
4

Storage per car (α)

%
 w

rt
 s

qu
ar

e−
ro

ot
 s

ch
em

e

Linear
Random

(g) w = −2.0 (h) w = −2.0

Figure 8: Aggregate availability latency for the three replication schemes as a function of the storage per car when
data item repository size is 50 and car density is 50.

18

0 100 200 300 400 500 600 700
0

10

20

30

40

50

60

70

80

Title Repository Size (T)

A
gg

re
ga

te
 A

va
ila

bi
lit

y
La

te
nc

y
(δ

ag
g)

Sqrt
Linear
Random

0 100 200 300 400 500 600 700
10

−1

10
0

10
1

10
2

10
3

10
4

Title Repository Size (T)

%
 w

rt
 s

qu
ar

e−
ro

ot
 s

ch
em

e

Linear
Random

(a) w = −0.5 (b) w = −0.5

0 100 200 300 400 500 600 700
0

10

20

30

40

50

60

70

80

Title Repository Size (T)

A
gg

re
ga

te
 A

va
ila

bi
lit

y
La

te
nc

y
(δ

ag
g)

Sqrt
Linear
Random

0 100 200 300 400 500 600 700
10

−1

10
0

10
1

10
2

10
3

10
4

Title Repository Size (T)

%
 w

rt
 s

qu
ar

e−
ro

ot
 s

ch
em

e

Linear
Random

(c) w = −1.0 (d) w = −1.0

0 100 200 300 400 500 600 700
0

10

20

30

40

50

60

70

80

Title Repository Size (T)

A
gg

re
ga

te
 A

va
ila

bi
lit

y
La

te
nc

y
(δ

ag
g)

Sqrt
Linear
Random

0 100 200 300 400 500 600 700
10

−1

10
0

10
1

10
2

10
3

10
4

Title Repository Size (T)

%
 w

rt
 s

qu
ar

e−
ro

ot
 s

ch
em

e

Linear
Random

(e) w = −1.5 (f) w = −1.5

0 100 200 300 400 500 600 700
0

10

20

30

40

50

60

70

80

Title Repository Size (T)

A
gg

re
ga

te
 A

va
ila

bi
lit

y
La

te
nc

y
(δ

ag
g)

Sqrt
Linear
Random

0 100 200 300 400 500 600 700
10

−1

10
0

10
1

10
2

10
3

10
4

Title Repository Size (T)

%
 w

rt
 s

qu
ar

e−
ro

ot
 s

ch
em

e

Linear
Random

(g) w = −2.0 (h) w = −2.0

Figure 9: Aggregate availability latency for the three replication schemes as a function of the data item repository size
for a car density of 50 and storage per car of 15.

19

5 Data items with small size and short client trip duration

The analysis and simulation results presented so far assumed that once a request is issued at a client, it is willing
to wait as long as it takes for its request to be satisfied. In other words, the client trip duration was assumed to be
unbounded. For the specific mobility model under consideration, namely 2D random walk on a torus, the maximum
latency experienced by a client is bounded [1] as long as at least one replica of every item is present in the system at
all times. However, in more practical scenarios, the client may have a certain maximum time it is willing to wait for
request resolution. This is captured by considering a finite trip duration, γ, for the client. The availability latency for
item i, δi, can be any value between 0 and γ − 1. If the client’s request is not satisfied, we set δi = γ indicating that
the client’s request for item i was not satisfied.

5.1 Analysis

As before with Section 4.1, here, we derive expressions for average availability latency of a data item as a function of
its replicas for a short client trip duration. Below, we present approximations in the case of low and high density of
replicas.

5.1.1 Sparse Approximation

Recall that latency in the case of a 2D-random walk on a torus can be modeled as an exponential distribution as:

P (δi > t) = λ · exp (−λ · t) (32)

where λ = ri

c·G·log G . The average availability latency with finite trip duration γ is then given by,

δi =
∫ γ

0

x · λ · exp (−λ · t)dx +
∫ ∞

γ

γ · λ · exp (−λ · t)dx (33)

Hence, we get

δi =
c ·G · log G

ri
· [1− exp (

−γ · ri

c ·G · log G
)] (34)

5.1.2 Dense Approximation

Recall that as defined in Section 4.1.2, Ak is the event that a data item i is encountered by the client for the first time
in the kth cell and P (Ak) is the probability that event Ak occurs. Also, pk is the probability of encountering data item
i in the kth cell, given that it was not encountered in the previous k − 1 cells. Then,

pk = 1−
(

1− 1
G− k + 1

)ri

; 2 ≤ k ≤ γ (35)

Also, we rewrite P (Ak) incorporating the finite trip duration constraint as,

20

0 10 20 30 40 50
10

−2

10
−1

10
0

10
1

Number of replicas (r
i
)

A
ve

ra
ge

 a
va

ila
bi

lit
y

la
te

nc
y

(δ
i)

Sparse−approximation
Simulation
Dense−approximation

Figure 10: Average availability latency for a data item as a function of its replicas for a finite trip duration γ of 10.
The simulation curves are plotted along with the sparse and dense approximations for finite trip duration for a 10× 10
torus, when the number of cars is set to 50.

P (Ak) = pk

k−1∏

j=1

(1− pj) ; 2 ≤ k ≤ γ (36)

Let P (Aγ+1) denote the probability of not encountering the data item i during the entire trip duration γ. Hence,

P (Aγ+1) =
γ∏

j=1

(1− pj) (37)

Then, the availability latency (δi) for data item i is given by,

δi =
γ+1∑

k=1

(k − 1)P (Ak) (38)

Figure 10 shows that the above approximations for low and high density of replicas matches the latency obtained by
simulations. In this case, the dense approximation is also valid for a low density of replicas because the finite trip
duration γ limits the maximum value of the availability latency. For a low density of replicas in most cases the latency
will be higher than γ and hence it will be bounded by γ. For a higher replica density, the value of γ is not as significant
since the latency for that item will be much lower than γ.

5.2 Simulation Results

Figure 11 depicts the latency performance for different replication schemes when storage per car is increased from
4 to 25 slots when the trip duration is set as 10. When storage per car is low, α = 4, this represents a constrained
storage scenario. The linear scheme that allocates more replicas to the popular data items shows superior performance
as compared to the square-root scheme. This is because in such scenarios the replicas per data item is small, hence,
only data items having a larger number of replicas will provide a latency less than γ. Since the popular data items are

21

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

7

8

9

10

Replication Exponent (n)

A
gg

re
ga

te
 A

va
ila

bi
lit

y
La

te
nc

y
(δ

ag
g)

w=−0.5
w=−1.0
w=−1.5
w=−2.0

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

7

8

9

10

Replication Exponent (n)

A
gg

re
ga

te
 A

va
ila

bi
lit

y
La

te
nc

y
(δ

ag
g)

w=−0.5
w=−1.0
w=−1.5
w=−2.0

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

7

8

9

10

Replication Exponent (n)

A
gg

re
ga

te
 A

va
ila

bi
lit

y
La

te
nc

y
(δ

ag
g)

w=−0.5
w=−1.0
w=−1.5
w=−2.0

(a) α = 4 (b) α = 10 (c) α = 25

Figure 11: Aggregate availability latency for different replication strategies for a 10×10 torus for a finite trip duration
of 10 when T = 100 and N = 50. Figures (a), (b), and (c) depict three different storage values per car: {4,10,25}.

the ones that requested more often allocating more replicas for these items lowers the aggregate availability latency.
Contrast this scenario with the case of unbounded trip duration where a square-root replication scheme always provided
the minimum latency (see Figure 5).

The optimal scheme here is a super-linear one which allocates most of the replicas to the first few popular data items
after satisfying the constraint that at least one copy of every data item must be present in the network. For a highly
skewed scenario, w = −2, allocating all the remaining storage for the most popular data item minimizes the latency.
This is because most of the popularity weight is associated with the most popular data item which is requested very
often.

As the storage per car is increased further the curves start becoming flatter and at α = 25, see Figure 11(c), a replication
scheme characterized by an exponent in the range, 0.3 ≤ n ≤ 1.0, shows near optimal performance. This is because
the storage is abundant enough for all these schemes to allocate a copy of the popular data items to every car bringing
the latency for these items to 0. The difference in the replicas allocated for the lesser popular data items has minimal
effect on the aggregate availability latency on account of their lower request rate. Recall, the frequency of access to
the data items follows a zipf distribution that depicts a heavy-tailed behavior.

6 Data items with large size and long client trip duration

All the results presented so far considered a homogeneous repository of data items with a display time (∆) of one. In
this section, we consider data items with a higher ∆. In such cases, the latency encountered by a client’s request is
given by the earliest time when a contiguous block of ∆ cells containing at least one replica of the requested item is
encountered. Here, we consider scenarios with long client trip durations and present a curve-fit based approximation
that captures the relation between the average availability latency and the number of data item replicas. Hence, we
present the optimal replication exponent that minimizes aggregate availability latency in the case of large data items
and long client trip durations.

Figure 12 depicts the average availability latency for a data item with a higher display time (∆ = {2, 3, 4, 5}) as a
function of the replicas for that item. For a given data item replica density, the latency increases with the display time.
As expected the latency reduces with increase in the replicas. A simple curve-fit on the latency curves for all the ∆
values yields a close-match with the expression of the form

δi =
C

rσ
i

(39)

22

0 2 4 6 8 10

10
1

10
2

10
3

10
4

Number of replicas (r
i
)

A
ve

ra
ge

 A
va

ila
bi

lit
y

La
te

nc
y

(δ
i)

∆=2
∆=3
∆=4
∆=5

σ=2.4843

σ=2.0848

σ=1.7007

σ=1.3414

Figure 12: Average availability latency for a data item as a function of its replicas for different data item display times
for a 10× 10 torus. The latency is given by C

rσ
i

where the exponent σ increases with data item display time.

∆ σ n = 1
σ+1

2 1.3414 0.4271
3 1.7007 0.3703
4 2.0848 0.3242
5 2.4843 0.287

Table 3: Approximate optimal replication exponents for data items with higher data item display times.

where σ represents the exponent for a given data item display time and C is a constant that is a function of the size
of the torus. Note that the value of σ for data items with a display time of one is one (see Equation 7). The values
of σ increase with data item display time. This indicates that an increase in the replicas provides a larger drop in the
latency for a data item with a higher display time. Intuitively, encountering a replica in a contiguous block of ∆ cells
becomes more and more difficult as ∆ increases. Hence, an increase in the replica density provides a faster reduction
in the latency for the higher ∆ items. This is captured by the increasing value of σ with ∆.

The specific formulation of Equation 39 has special significance. Equation 39 can be plugged in directly into the
optimization formulation in Section 4.1.1 to determine the optimum replication scheme that minimizes the availability
latency in case of data items with higher display times.

Corollary 1. In case of a sparse density of vehicles, with a repository of data items with higher display times (∆ > 1),
replication exponent n, such that n < 0.5, minimize the aggregate availability latency.

Proof. Following a similar procedure as the proof listed in Theorem 1, we obtain the optimal replication exponents for
the σ values capturing higher data item display times in Figure 12. Table 3 lists the display times and the corresponding
approximate optimal exponent values.

7 Data items with large size and short client trip duration

In this section, we consider scenarios with short client trip durations with data items having higher display times. This
implies that the client is only willing to wait for a short period for its request to be satisfied (denoted by γ). Otherwise

23

0 20 40 60 80 100
0

1

2

3

4

5

6

Storage slots per car (α)

sqrt
linear
random

Aggregate Availability Latency (δ
agg

)

0 50 100 150 200 250 300 350
−100

−50

0

50

100

150

200

Storage slots per car (α)

 Latency wrt sqrt scheme (%)

linear (n=1)

random (n=0)

Region I

Region II

(a) δagg (b) % Comparison wrt sqrt scheme (Γ)

Figure 13: Figure 13(a) shows δagg of the sqrt, linear and random replication schemes versus α for ∆ = 4 and
N = 200. Figure 13(b) shows the % comparison of the linear and random schemes wrt the sqrt scheme for this
scenario. Region I and Region II, respectively, indicate the parameter space where n = 1 and n = 0.5 perform the
best.

the request is tagged with a latency equal to γ.

As with the previous simulations, we assume that the cars employ a 2D random walk based mobility model. Here, we
set the client trip duration, γ, as 6, N = 200, and T = 100. We simulated a skewed distribution of access to the T data
items using a zipf distribution with a mean of 0.27. The distribution is shown to correspond to sale of movie theater
tickets in the United States [9].

Initially, all cars are distributed across the cells of the map as per the steady state distribution which is determined by
a random number generator initialized with a seed. Depending on the particular replication technique, the replicas for
each data item are calculated using Equation 2 and then distributed across the car. A car only contains a maximum
of one replica for a particular data item. The allocation of data item replicas across the cars is uniform. At each
step, depending on the current car location, it moves to one of its adjoining cell (including itself) as governed by the
mobility model. Another seed determines the choice of which cell a car moves to. Since γ = 6, each car performs six
transitions according to the mobility model. We performed the comparisons for several different data item distribution
seeds starting from the same initial car positions. Next, we varied the initial car positions by changing the initial seed.
Specifically, we chose 50 different initial seeds and for each of these we used 50 seeds that decide the distribution of
the data item replicas among the cars. Thus, each point in all the presented results is an average of 2500 simulations.

Below is an overview of the key lessons learned from these experiments with higher data item display times and a
short trip duration.

(a) The optimal value of n varies as a function of the scarcity of the network storage (b) When storage is scarce, the
optimal aggregate availability latency is realized by using a higher value of n. (c) Even a random scheme with n = 0
is good enough when storage is abundant relative to the repository size.

When storage is extremely scarce, with larger data item sizes (∆ > 1), linear (n = 1) scheme provides the best
performance. This is because it allocates more replicas for the popular data items at the cost of assigning very few for
the remaining data items. In this case, the contribution to δagg is a function of the δ for the more popular data items
since for the less popular data items there will be insufficient replicas to reduce their δ. On the other hand, since the
random scheme is blind to the data item access frequencies, on an average, it assigns equal number of replicas for each

24

data item thereby providing the worst performance.

The square root (n = 0.5) scheme assigns fewer replicas for the popular data items than the linear scheme. As we
increase the amount of storage, there is a cut-off point along the storage axis, where allocating more replicas for
the popular data items provides negligible improvement in δagg . It is beyond this point that the square root scheme
starts outperforming the linear scheme. This is because the square root scheme can use the extra storage savings for
allocating replicas for the less popular data items thereby reducing their δ.

To illustrate, Figure 13 shows the variation of δagg as a function of α for ∆ = 4. Since δagg is a function of the value
of n, hence, here we denote it as δagg(n = i). For Figure 13(b), the y-axis represents the percentage comparison of
the linear (n = 1) and the random (n = 0) schemes with respect to the square root (n = 0.5) scheme calculated as,
Γ =

(
δagg(n=i)−δagg(n=0.5)

δagg(n=0.5)

)
× 100; where i = {0, 1}.

Figure 13(b) shows two distinct regions in which the schemes with n = 0.5 and n = 1 perform well under certain
parameter settings within the design space. For α <= 20, the linear scheme (n = 1) performs the best. For 20 <=
α <= 360, the square root scheme (n = 0.5) performs the best. Beyond this value, even a random scheme (n = 0)
provides a competitive latency performance.

With ∆ = x and T = y, the value of α needed to replicate the entire database on each car is αdb = x · y. At a certain
storage threshold (earlier than αdb), the random scheme assigns enough replicas to the popular data items to bring
their δ down. In this case, all the data items have the same number of replicas, thereby producing a low δ for every
data item. Hence, from this point onward, even a random scheme provides adequate performance. However, this point
requires sufficient storage per car and hence a random scheme may be appropriate only for over-provisioned scenarios.
As illustrated in Figure 13(b) with N = 200, T = 100, and ∆ = 4, the storage threshold is around 360 slots per car.
For ∆ = 5, and 6, this threshold is approximately 450 and 540, respectively. These are loose upper bounds.

7.0.1 Aggregate availability latency as a function of car density (N)

Car density, which in turn affects the available storage in the system, has a major impact on the performance of δagg

for all the schemes. With the decrease in the car density to N = 100, the number of replicas allocated by the schemes
is reduced thereby giving comparatively larger values of δagg across the same storage axis. As α is increased, the drop
in the δagg curves for all the schemes is not as steep as seen in the case with N = 200. Again, this is because the
number of replicas is not increasing at such a high rate. The storage is reduced by an order of 2, hence a higher value
of α is needed to produce the same drop in δagg as was seen in the case with N = 200 cars. This is observed across
all values of ∆.

For all experiments, we also calculated the standard deviations (SD) and the standard error of the mean (SEM). The
95% confidence intervals determined as 1.96 ∗ SEM are quite small and accordingly the curves are quite smooth.
However, the standard deviation is quite large, especially for the cases when δagg is low for high values of ∆ and α.
This is because a low latency requires the data item to be present in every cell along the journey depending on the
value of ∆. As ∆ increases, it becomes increasingly difficult to meet this condition thereby showing a high variance
in δagg . The large SD value is an empirical observation about the nature of the random process.

8 Evaluation with a Map of San Francisco

In this section, we describe the performance of the various replication schemes when the vehicular movements are
dictated by an underlying map of the San Francisco Bay Area. Figure 14(a) depicts a section of the San Francisco Bay
area with the major freeways and their intersections. We superimpose a 2D-grid on this map and the individual cells
are labelled with the respective freeway id that they cover as shown in Figure 14(b). This 2D-grid serves to capture
the underlying map at a coarse granularity. Most of the probability mass is concentrated on the cells that represent the

25

880680
101 680

101 680
101/
85 237237237237 680
85 101/

237 101 680
237/
85 101101101 880680
85 101 880/

101 680
280 85 880 101680

280 280/
85 280280 880 280 680/

101

85 280280 880/
280 280280 101

85 880 101
85 880 101

85 880 101
85 880/

85 85 85 85 85 101
880 85 85 85/

101

880
880/
237

880
880

(a) (b)

Figure 14: A map of the San Francisco Bay Area obtained from http://maps.google.com is shown in Figure 14(a).
Figure 14(b) superimposes a 15× 15 grid on this map and labels the cells appropriately with the freeway IDs that they
overlap with.

Figure 15: The intersection between freeways 880 and 85 is captured in the figure along with the equivalent probability
transitions in the Markov model based on data obtained from Caltrans regarding the vehicular densities.

major freeways. The non-labelled cells have equal transition probabilities to each of its neighboring eight cells.

The outgoing transition probabilities at a cell that represents an intersection between two freeways are calculated as
follows. As an example, consider the intersection of the freeways 880 and 85 as shown in Figure 15. We obtained
the traffic density seen on the freeways before and after the intersection from Caltrans data provided by the California
department of transportation [30]. The website allowed real time gathering of vehicle traffic data. We considered a
time window between 7-8 pm for a particular week and averaged the vehicular density seen during this period. The
day-to-day statistics were quite similar, here, we show an example of how the actual data was converted into the
probability transition values that formed the basis of the Markov mobility model. Similar calculations were employed
to populate the entire transition probability matrix. Finally, we converted the 15×15 grid into a torus by allowing cars
at the boundaries to appear at the opposite ends with equal transition probabilities.

The transition matrix was used to generate the car movements. We provide a notion of directionality to the car
movements by ensuring that the next step for a cars movement takes into account both the current cell as well as the
previous cell which a car traversed. This is done by storing both the cell ids as part of the state of the Markov chain.
Consequently, the flip-flop movements of the cars is avoided thereby ensuring that car movements are constrained by
the underlying freeway structure of the map and are not entirely random. We used these car movements to investigate
the relative performance of the various replication schemes under such a scenario.

26

0 50 100 150 200 250
0

1

2

3

4

5

6

7

8

9

Number of cars

A
gg

re
ga

te
 A

va
ila

bi
lit

y
La

te
nc

y

linear
sqrt
random

0 50 100 150 200 250
0

5

10

15

20

25

Number of cars

La
te

nc
y

pe
rf

or
m

an
ce

 w
rt

 li
ne

ar

sqrt
random

(a) (b)

Figure 16: Performance of various replication schemes as a function of car density when T = 25, α = 2, and γ = 10.
Figure (b) shows the performance wrt the linear scheme.

8.1 Results with replication schemes

In this section, we present some representative results for the various replication schemes obtained by employing the
Markov mobility model previously derived from a map of the San Francisco Bay area. Below we describe the three
sets of experiments used in our evaluation for comparison of the linear, square-root, and random replication schemes.
As before, requests are issued, one at a time at each time-step at vehicles in a round-robin manner, as per a Zipf
distribution with a mean of 0.27. The three sets of experiments were:

• For data item repository size T set as 25, client trip duration, γ, set as 10, storage per car, α, set as 2, the
latency performance with the various replication schemes is studied as a function of increasing car density N
(see Figure 16).

• For data item repository size T set as 25, client trip duration, γ, set as 10, car density, N , set as 50, the latency
performance with the various replication schemes is studied as a function of increasing storage per car α (see
Figure 17).

• For car density, N , set as 50, client trip duration, γ, set as 10, storage per car, α, set as 2, the latency performance
with the various replication schemes is studied as a function of increasing data item repository size T (see
Figure 18).

In all cases, the main conclusion is that the linear replication scheme shows superior performance as seen in Section
for the case with data item size=1 and finite client trip duration. The trends seen with this model are similar to those
seen with a uniform Markov mobility model with equal transition probabilities. This is because the map for the former
causes some cells to be visited more than others, however, the movements of the vehicles still remain essentially
Markovian. This result suggests that the uniform probability transition matrix based Markov model may be a good
indicator of the performance that may be seen with a model derived from real maps.

9 Evaluation with real movement traces

In this section, we evaluate the latency performance of the static replication schemes using traces obtained from a bus-
based DTN test-bed called UMassDieselNet [7]. First, we briefly describe the test-bed and present some properties

27

0 1 2 3 4 5
0

1

2

3

4

5

6

7

8

9

Storage per car

A
gg

re
ga

te
 A

va
ila

bi
lit

y
La

te
nc

y

linear
sqrt
random

0 1 2 3 4 5
0

5

10

15

20

25

Storage per car

La
te

nc
y

pe
rf

or
m

an
ce

 w
rt

 li
ne

ar

sqrt
random

(a) (b)

Figure 17: Performance of various replication schemes as a function of storage per car when T = 25, N = 50, and
γ = 10. Figure (b) shows the performance wrt the linear scheme.

0 5 10 15 20 25 30
0

1

2

3

4

5

6

7

8

9

Number of titles

A
gg

re
ga

te
 A

va
ila

bi
lit

y
La

te
nc

y

linear
sqrt
random

0 5 10 15 20 25 30
0

5

10

15

20

25

Number of titles

La
te

nc
y

pe
rf

or
m

an
ce

 w
rt

 li
ne

ar

sqrt
random

(a) (b)

Figure 18: Performance of various replication schemes as a function of data item repository size when N = 50, α = 2,
and γ = 10. Figure (b) shows the performance wrt the linear scheme.

28

0 10 20 30 40 50 60
0

5

10

15

20

25

Trace id

N
o

of
 a

ct
iv

e
bu

se
s

Figure 19: The number of active buses for each trace representing the bus encounters for each day of a 60-day period.
The buses operated from 7am to 5pm.

of the mobility model followed by the buses. Then, we describe the details of the experimental set-up and the results
comparing the square-root, linear, and random replication schemes under different parameter settings using these
traces.

9.1 UMassDieselNet Traces

In this section, we briefly describe the details of the UMassDieselNet test-bed and present some properties of the
mobility model that characterizes the movement of the vehicles that are part of the test-bed. The UMassDieselNet
network operates daily around the UMass campus and the surrounding county. It comprises of 30 buses equipped with
a Linux based computer coupled with a IEEE 802.11b wireless interface that permits ad-hoc communication between
the buses when they are in radio range. An IEEE 802.11b access point is also connected to the brick computer that
allows DHCP access to passengers within the bus. The traces are available for a period of 60 days, the logs describe
every encounter between every pair of buses that occurred during the day. These traces do not contain the logs for
accesses made between the passengers and the access point within the bus. The identity of the buses involved in the
encounter, the time of encounter and amount of data transmitted during the encounter are logged in the trace files.
Certain buses had long routes while others had short ones. Unfortunately, due to technical difficulties, the GPS device
on the buses were unable to provide details about the bus locations during the encounter.

Figure 19 shows the number of buses that were active on each day of the 60 day period during which the traces were
collected. We only considered traces where the number of active buses was greater than 15. This accounted for 52
traces. In general, the traces indicated a sparse density of buses where there was a high degree of locality in the
encounters. In other words, if 2 buses encounter each other at the beginning then they will continue to encounter
each other more frequently than other buses. This is captured in Figure 20 where we set a minimum separation time
between two consecutive encounters of the same pair of buses to consider it a different encounter. In Figure 20(b), the
separation time is set as 20 seconds as compared to 0 seconds set for Figure 20(a).

9.2 Experimental Set-up

In this section, we describe the details of the simulation set-up used for evaluation of the replication schemes employing
the UMassDieselNet traces. Each trace represents the movements of buses during that particular day. There is no

29

0 500 1000 1500 2000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time between encounters

C
D

F

0 500 1000 1500 2000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time between encounters

C
D

F

(a) Separation = 0s (b) Separation = 20s

Figure 20: The CDF of the time between encounters averaged across all the traces for 2 different separation times 0s
(Figure 20(a)) and 20s (Figure 20(b)).

correlation between trace movements across days. Hence, we process each trace at a time and then average the results
observed across all the days noting that the average is indicative of the performance seen on most days. However,
certain days do appear as outliers since the number of active buses differs from day-to-day.

As before we consider a finite data item repository of size T . Each bus is assumed to carry α storage slots. Replicas for
each data item are determined based on a replication scheme and then allocated across the buses uniformly at random.
The constraint is that at least one copy of every data item must be present in the network at all times. We consider
the three representative replication schemes: random, square-root, and linear and study the relative performance of the
schemes.

Since the buses only operate for a finite amount of time we consider two separate metrics (i) Average availability
latency for satisfied requests (ii) Normalized unsatisfied request rate. Requests for the T titles are generated as per
a zipf distribution with an exponent w = −0.73. The duration during which the buses were active during a day is
determined apriori and subject to this duration requests are issued at equal inter-arrival times. A generated request is
assigned to a bus chosen uniformly at random. A request is assumed to be satisfied either if the data item requested
is locally stored or another bus carrying the requested item is encountered at some point after the request is issued.
Those requests that are not satisfied at the end of the day are tagged as unsatisfied requests.

9.3 Results

In this section, we briefly describe the main results from evaluation of the performance of the replication schemes
using the UMassDieselNet traces. For the first set of experiments we vary the values of (T ,α) as {(5,1), (10,2),
(15,3), (20,4), (25,5)}, see Figure 21. The linear replication scheme provides the lowest average availability latency
for satisfied requests (about 10 − 25% better than the square-root scheme). The linear and square-root scheme show
similar performance in terms of the normalized unsatisfied requests. The random scheme shows poor performance
both in terms of latency as well as the normalized unsatisfied requests.

Figure 22 shows the performance of the replication schemes when the data item repository size is fixed at 25 and the
storage per bus is increased. Increase in storage leads to increase in the replicas per data item, hence, as expected
for all schemes, the latency and the normalized unsatisfied requests go down. The linear scheme continues to show
superior performance with respect to both metrics.

30

0 5 10 15 20 25
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Number of Titles (T)

A
va

ila
bi

lit
y

La
te

nc
y

fo
r

S
at

is
fie

d
R

eq
ue

st
s

(s
ec

s)

Random
Sqrt
Linear

0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

Number of Titles (T)
U

ns
at

is
fie

d
R

eq
ue

st
 M

et
ric

Random
Sqrt
Linear

(a) (b)

Figure 21: Aggregate availability latency for satisfied requests and the aggregate unsatisfied request metric for the
random, square-root, and linear replication schemes are shown in Figure 21(a) and (b) respectively. The ratio of the
storage per car to the data item repository size, α

T is maintained as 1:5.

0 2 4 6 8 10
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Storage per Car (α)

A
va

ila
bi

lit
y

La
te

nc
y

fo
r

S
at

is
fie

d
R

eq
ue

st
s

(s
ec

s)

Random
Sqrt
Linear

0 2 4 6 8 10
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Storage per Car (α)

A
va

ila
bi

lit
y

La
te

nc
y

fo
r

S
at

is
fie

d
R

eq
ue

st
s

(s
ec

s)

Random
Sqrt
Linear

(a) (b)

Figure 22: Aggregate availability latency for satisfied requests (Figure 22(a)) and the aggregate unsatisfied request
metric (Figure 22(b)) as a function of the storage per car for a data item repository size of 25.

31

0 5 10 15 20 25
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Number of Titles (T)

A
va

ila
bi

lit
y

La
te

nc
y

fo
r

S
at

is
fie

d
R

eq
ue

st
s

(s
ec

s)

Random
Sqrt
Linear

0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

Number of Titles (T)

U
ns

at
is

fie
d

R
eq

ue
st

 M
et

ric

Random
Sqrt
Linear

(a) (b)

Figure 23: Aggregate availability latency for satisfied requests (Figure 23(a)) and the aggregate unsatisfied request
metric (Figure 23(b)) as a function of the data item repository size when storage per car α is fixed at 3.

Figure 23 shows the performance of the replication schemes when the storage per bus is fixed at 3 and the data item
repository size is increased. As the data item repository size is increased, lesser replicas are allocated per data item
resulting in an increase in the latency as well as the unsatisfied requests. Initially the increase in latency is linear but
slowly becomes sub-linear. Note that the data item repository size cannot be made arbitrarily large since the number
of active buses is constrained. As before the linear scheme always shows the best performance.

The mobility model provided by the traces represents an extremely sparse density of buses where inherently there is
a limit to the maximum amount of time for request satisfaction (namely the last encounter time on the trace). The
finite trip duration in conjunction with the low density and encounter model favors a linear scheme which allocates
more replicas for the popular data items. The popular data items are requested more frequently and within the finite
time for request satisfaction, have a higher probability of being satisfied on account of the larger number of replicas.
The square-root scheme tries to allocate replicas less aggressively to the more popular data items in favor of the less
popular ones. This hurts its performance since the less popular data items have a very low probability of being satisfied.
Notwithstandingly, in such scenarios, a random scheme that allocates replicas equally across the data items shows the
worst performance.

We now consider an equivalent scenario with the Markov mobility and study its properties in terms of the time be-
tween encounters (see Figure 24). The aim is to capture a similar scenario as depicted by the UMassDieselNet traces
(compare with Figure 20(a)). We consider a similar set-up to experimental scenario described in Figure 21. Similar
to the trends seen with the traces, Figure 25 shows that the linear replication scheme outperforms the square-root and
the random schemes in terms of the latency for satisfied requests. The performance in terms of the normalized unsat-
isfied requests is quite similar for the three schemes. These results suggest that the results obtained from the Markov
mobility model may be applicable across a vast range of scenarios comprising different mobility models. Adequate
adjustment to the transition probabilities of the Markov model may enable this model to suitably capture the mobility
trends of other models such as Manhattan, Highway, Random way-point etc.

10 Conclusions, Discussion, and Future Research Directions

In this study, we have systematically explored how data replication impacts the user latency to desired content in a
vehicular network. We present an optimization formulation that minimizes availability latency across a repository of

32

0 50 100 150
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time between encounters

C
D

F

Figure 24: CDF of the time between encounters from the Markov model for a 25× 25 torus with a car density of 15.

0 5 10 15 20 25
0

50

100

150

200

250

300

Number of Titles (T)

A
va

ila
bi

lit
y

La
te

nc
y

fo
r

S
at

is
fie

d
R

eq
ue

st
s

linear
sqrt
random

0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

Number of Titles (T)

U
ns

at
is

fie
d

R
eq

ue
st

 M
et

ric

linear
sqrt
random

(a) (b)

Figure 25: Aggregate availability latency for satisfied requests and the aggregate unsatisfied request metric as obtained
from an equivalent scenario employing the Markov model. The ratio of the storage per car to the data item repository
size, α

T is maintained as 1:5.

33

data items subject to storage constraints per vehicle. The solution to this optimization yielded the optimal replication
scheme, characterized by an exponent n that defines the number of replicas for a data item as a function of its pop-
ularity. Using mathematical analysis and simulations, we showed how the optimal replication exponent varied as a
function of the three critical factors: data item size, the client trip duration, and the total storage in the system. While
the evaluation above was based on the assumption of a random walk mobility model for the vehicles, we validated
a subset of our observations employing two real data sets. The first was based on a city map with freeway traffic
information while the second employed traces listing encounters between buses that were part of a small test-bed.

While our study indicates that replication has a significant impact on latency performance in an AutoMata-based
application, we did not directly address how a replication scheme may be realized. A promising approach is to employ
a two-tier architecture [11] comprising of a low-bandwidth control plane between the base-station and vehicles, and
a high-bandwidth data plane representing the ad-hoc, peer-to-peer network between vehicles. While all the data
exchange takes place via the data plane, the control plane enables centralized information gathering at a suitable
dispatcher. The dispatcher is aware of information such as the total number of cars, the available storage per car, the
data item requests etc. On the basis of the target replication scheme to be realized, the dispatcher computes the total
number of replicas to be maintained for each data item. Hence, every time a request is satisfied, depending on the
current replicas of the requested item in the system, the dispatcher decides whether a client vehicle should create a
new copy of that item. If such a process is followed, then after a cold-start phase where replicas are being created and
deleted, the data item replica distribution will approximate the targeted one.

Second, this study can extended in terms of heterogeneity with respect to several parameters. The data item repository
may have a mix of different data item sizes, the vehicles may have different amounts of available storage and different
trip durations depending on their data item request preferences, and popularity distribution of the data items may
change over time, especially when new items are introduced in the system. Each of these extensions adds another
dimension in terms of the practicality of realizing such a system.

Third, we do not explicitly address contention and bandwidth issues within our model. Recently, Jindal et al. [28]
have provided a contention model that can be easily incorporated in our study promising a richer evaluation.

The methodology by which we handle data items with larger sizes is slightly restrictive, in that once the download of
the item has begun, the entire download should finish un-interrupted. However, another approach may be to employ
suitable buffers, so that partial download of an item can be suitably resumed at a later time, as and when other vehicles
with a copy of that item appear in the vicinity of the requesting client. It may be useful to compare results obtained
with this approach with the existing results listed in this study.

Fourth, our study is based on static replication schemes, in that we do not explore any dynamic data re-organization
schemes that reactively or pro-actively change the replica distribution depending on the requested items. In a related
study, once static replication schemes have allocated replicas for the various data items, vehicles are employed as data
carriers [13] to deliver data items from server vehicles carrying items to clients requesting them. The study shows that
significant latency improvements can be obtained by employing these intermediate data carriers.

Finally, vehicular ad-hoc networks are an emerging area and even though this study considers audio and video content,
the nature of the content and also the application domain in general might vary. Specifically, many of the results may
be general enough to be applicable in a wide variety of contexts such as in intermittently connected mobile networks,
mobile sensor networks, and other delay tolerant networks.

11 Acknowledgments

This research was supported in part by NSF grants numbered CNS-0435505 (NeTS NOSS), CNS-0347621 (CA-
REER), IIS-0307908, National Library of Medicine LM07061-01, and an unrestricted cash gift from Microsoft Re-
search.

34

References

[1] D. Aldous and J. Fill. Reversible markov chains and random walks on graphs. Manuscript under preparation,
http://stat.www.berkeley.edu/users/a ldous/RWG/book.html.

[2] F. Bar, W. Baer, S. Ghandeharizadeh, and F. Ordonez. Automata. Video at
http://www.youtube.com/watch?v=nrRFbLRjeZM.

[3] S. Bararia, S. Ghandeharizadeh, and S. Kapadia. Evaluation of 802.11a for streaming data in ad-hoc networks.
In Proc. of the 4th Workshop on Applications and Services in Wireless Networks (ASWN), 2004.

[4] L. Breaslau, P. Cao, L. Fan, G. Phillips, and S. Shenker. Web Caching and Zipf-like Distributions: Evidence and
Implications. In Proc. of IEEE Infocom, pages 126–134, 1999.

[5] L. Briesemeister and G. Hommel. Role-based multicast in highly mobile but sparsely connected ad hoc networks.
In Proc. of ACM MobiHOC, pages 45–50, August 2000.

[6] L. Briesemeister, L. Schafers, and G. Hommel. Disseminating Messages among Highly Mobile Hosts based on
Inter-Vehicle Communication. In Proc. of IEEE Intelligent Vehicle Symposium, pages 522–527, October 2000.

[7] J. Burgess, B. Gallagher, D. Jensen, and B. Levine. MaxProp: Routing for Vehicle-Based Disruption-Tolerant
Networking. In Proc. of IEEE Infocom, April 2006.

[8] E. Cohen and S. Shenker. Replication strategies in unstructured peer-to-peer networks. In Proc. of ACM SIG-
COMM, pages 177–190. ACM Press, 2002.

[9] A. Dan, D. Dias, R. Mukherjee, D. Sitaram, and R. Tewari. Buffering and Caching in Large-Scale Video Servers.
In Proc. of COMPCON, 1995.

[10] S. Ghandeharizadeh and T. Helmi. An Evaluation of Alternative Continuous Media Replication Techniques in
Wireless Peer-to-Peer Networks. In Proc. of the 3rd International ACM Workshop on Data Engineering for
Wireless and Mobile Access (MobiDE, in conjunction with MobiCom’03), September 2003.

[11] S. Ghandeharizadeh, S. Kapadia, and B. Krishnamachari. PAVAN: A Policy for Content Availability in Vehicular
Ad-hoc Networks. In Proc. of the 1st ACM Workshop on Vehicular Ad Hoc Networks (VANET). ACM Press, 2004.

[12] S. Ghandeharizadeh, S. Kapadia, and B. Krishnamachari. Comparison of Replication Strategies for Content
Availability in C2P2 networks. In Proc. of the 6th International Conference on Mobile Data Management
(MDM), May 2005.

[13] S. Ghandeharizadeh, S. Kapadia, and B. Krishnamachari. An evaluation of availability latency in carrier-based
wehicular ad-hoc networks. In Proc. of the 5th ACM international workshop on Data engineering for wireless
and mobile access, pages 75–82, New York, NY, USA, 2006. ACM Press.

[14] S. Ghandeharizadeh and B. Krishnamachari. C2P2: A Peer-to-Peer Network for On-Demand Automobile Infor-
mation Services. In Proc. of the 1st International Workshop on Grid and Peer-to-Peer Computing Impacts on
Large Scale Heterogeneous Distributed Database Systems (Globe’04), 2004.

[15] S. Ghandeharizadeh, B. Krishnamachari, and S. Song. Placement of Continuous Media in Wireless Peer-to-Peer
Networks. IEEE Transactions on Multimedia, April 2004.

[16] IEEE 802.16 Working Group. Emerging IEEE 802.16 WirelessMAN Standards for Broadband Wireless Access.
Intel Technology journal, 8(3), 2004.

[17] T. Hara. Effective Replica Allocation in Ad Hoc Networks for Improving Data Accessibility. In Proc. of IEEE
Infocom, pages 1568–1576, 2001.

[18] T. Hara. Cooperative caching by mobile clients in push-based information systems. In Proc. of the 11th Interna-
tional Conference on Information and Knowledge Management (CIKM), 2002.

35

[19] T. Hara. Replica allocation in ad hoc networks with periodic data update. In Proc. of the 3rd International
Conference on Mobile Data Management(MDM), pages 79–86, Washington, DC, USA, 2002. IEEE Computer
Society.

[20] T. Hara. Replicating Data with Aperiodic Update in Ad Hoc Networks. In Proc. of IASTED International
Conference on Communications, Internet and Information Technology (CIIT), pages 242–247, 2002.

[21] T. Hara. Replica allocation methods in ad hoc networks with data update. ACM/Kluwer Journal on Mobile
Networks and Applications (MONET), 8(4):343–354, 2003.

[22] T. Hara. Location management of data items in mobile ad hoc networks. In Proc. of the 2005 ACM symposium
on Applied computing (SAC), pages 1174–1175, New York, NY, USA, 2005. ACM Press.

[23] T. Hara. Strategies for data location management in mobile ad hoc networks. In Proc. of IEEE International
Conference on Parallel and Distributed Systems (ICPADS), 2005.

[24] T. Hara and S. Madria. Dynamic data replication using aperiodic updates in mobile ad-hoc networks. In Proc. of
International Conference on Database Systems for Advanced Applications (DASFAA), pages pp.869–881, Jeju
Island, Korea, 2004.

[25] T. Hara, N. Murakami, and S. Nishio. Replica allocation for correlated data items in ad hoc sensor networks.
SIGMOD Rec., 33(1):38–43, 2004.

[26] T. Hara, Y.-H.Loh, and S.Nishio. Data Replication Methods Based on the Stability of Radio Links in Ad Hoc
Networks. In Proc. of International Workshop on Mobility in Databases and Distributed Systems (MDDS), pages
969–973, 2003.

[27] H. Hayashi, T. Hara, and S. Nishio. A Replica Allocation Method Adapting to Topology Changes in Ad Hoc
Networks. In Proc. of International Conference on Database and Expert Systems Applications (DEXA), 2005.

[28] A. Jindal and K. Psounis. Performance analysis of epidemic routing under contention. In Proc. of International
Conference on Communications and Mobile Computing, pages 539–544, New York, NY, USA, 2006. ACM
Press.

[29] C. Lochert, H. Hartenstein, J. Tian, H. Fler, D. Hermann, and M. Mauve. A routing strategy for vehicular ad hoc
networks in city environments. In Proc. of the IEEE Intelligent Vehicles Symposium, pages 156–161, Columbus,
OH, USA, June 2003.

[30] California Department of Transportation. Caltrans. http://www.dot.ca.gov/.

[31] F. Sailhan and V. Issarny. Cooperative caching in ad hoc networks. In Proc. of the 4th International Conference
on Mobile Data Management (MDM), 2003.

[32] A. Spyropoulous, K. Psounis, and C. Raghavendra. Single-copy routing in intermittently connected mobile
networks. In Proc. of IEEE SECON, 2004.

[33] W. Sun, H. Yamaguchi, and S. Kusumoto. A study on performance evaluation of real-time data transmission on
vehicular ad hoc networks. In Proc. of the 7th International Conference on Mobile Data Management (MDM),
page 126, 2006.

[34] J. Wolf, P. Yu, and H. Shachnai. DASD Dancing: A Disk Load Blanacing Optimization Scheme for Video-on-
Demand Computer. In Proc. of ACM SIGMETRICS, pages 157–166, May 1995.

[35] L. Yin and G. Cao. Supporting cooperative caching in ad hoc networks. In Proc. of IEEE Infocom, 2004.

[36] G. K. Zipf. The Psychobiology of Language. Boston: Houghton-Mifflin, 1935.

36

Shyam Kapadia received his Ph.D and M.S. degrees in Computer Science from the University of Southern California in
2003 and 2007 respectively. Prior to that he received his B.E. in Computer Engineering from the Mumbai University
in India in 2000. He is currently a software engineer at the Internet and Services Business Unit at Cisco Systems.
His primary research interests include designing efficient data delivery mechanisms for wireless ad-hoc and sensor
networks including vehicular networks.

Bhaskar Krishnamachari received his B.E. in Electrical Engineering at The Cooper Union, New York, in 1998, and his
M.S. and Ph.D. degrees from Cornell University in 1999 and 2002 respectively. He is currently the Philip and Cayley
MacDonald Early Career Chair Assistant Professor in the Department of Electrical Engineering at the University of
Southern California. His primary research interest is in the design and analysis of efficient mechanisms for operating
wireless sensor networks.

Shahram Ghandeharizadeh received his Ph.D. degree in computer science from the University of Wisconsin, Madison,
in 1990. Since then, he has been on the faculty at the University of Southern California. In 1992, Dr. Ghandeharizadeh
received the National Science Foundation Young Investigator’s Award for his research on the physical design of par-
allel database systems. In 1995, he received an award from the School of Engineering at USC in recognition of his
research activities. His primary research interests include design and implementation of multimedia storage managers,
parallel database systems, and active databases. He has served on the organizing committees of numerous confer-
ences and was the general co-chair of ACM Multimedia 2000. His activities are supported by several grants from
the National Science Foundation, Department of Defense, Microsoft, BMC Software, and Hewlett-Packard. He is
the director of the database laboratory at USC. He was a member of ACM SIGMOD executive committee and the
Editor-in-Chief of ACM SIGMOD DiSC from 2003 to 2006. He also serves as a member of the Council of Directors
of Kodaikanal International School.

37

