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Abstract—Fast and periodic collection of aggregated data where time slots are grouped into equal sized repeated frame
is of considerable interest for mission-critical and conthuous \We call the number of time slots in each frame sumedule
monitoring applications in sensor networks. In the many-teone length and assume that each node is scheduled to transmit in
communication paradigm, referred to as convergecast, we &us L
on applications wherein data packets are aggregated at eadiop only one S.|0t pgr frame, sending its own as well as a}ggregated
en-route to the sink along a tree-based routing topology, and data from its children. We also assume that the durationaif ea
address the problem of minimizing the convergecast schedal slot allows transmission for exactly one packet. Thus, ance
length by utilizing multiple frequency channels. The primay  pipelineis established, the sink will start receiving aggregated
hindrance in minimizing the schedule length is the presencef data from all the nodes in the network once in each frame.
interfering links. We prove that it is NP-complete to determine . L
whether all the interfering links in an arbitrary network ca n In this paper, we fF’CUS on the, problem of r_mn'm'?'ng the
be removed using at most a constant number of frequencies. SChedule length which, under this framework, is equivalent
We give a sufficient condition on the number of frequencies fo maximizing the data collection rate at the sink.
which all the interfering links can be removed, and propose a A natural approach to avoid interference and increase
polynomial time algorithm that minimizes the schedule lenth throughput in wireless networks is to use multiple freqyenc

in this case. We also prove that minimizing the schedule leniy . . .
for a given number of frequencies on an arbitrary network is channels. While there is a lot of research on single-channel

NP-complete, and describe a greedy scheme that gives a cargt  Scheduling protocol design for WSN, exploiting parallelis
factor approximation on unit disk graphs. When the routing tree  using multiple channels has not yet been well explored. Give

is not given as an input to the problem, we prove that a constan the fact that current WSN hardware already provides meltipl
factor approximation is still achievable for degree-bouned trees.  g04yencies, such as the 16 orthogonal frequencies with 5MH
Finally, we evaluate our algorithms through simulations ard . . .
compare their performance under different network parameters. Spacing Sl_JPPO”Gd by C_C2420 [5] radios on TmOtGSKY [_23_]’ it
is imperative to take their full advantage in order to mirdeni
interference and collisions - the two most predominant eaus
of packet losses - and thereby achieve faster data coltectio
Convergecasin wireless sensor networks (WSN) typicallyrate by parallel transmissions. In this work, we thus exploi
refers to the many-to-one communication pattern, whera dale benefits of utilizing multiple frequencies.
from a set of sources are routed toward a common sink. Often, )
many WSN applications [8], [14] require periodic summaried- Related Work and Paper Overview
or aggregates of these data rather than raw sensor reatings, The non-aggregated version of the convergecast problem
addition to quick delivery with minimum energy consumptionis considered by Gandhast al. in the presence of a single
In such cases, data coming from different sources can ¢igannel and TDMA protocols, where the goal is to minimize
aggregated at each hag-routeto the sink - eliminating the schedule length [11]. The authors describe an integeadi
redundancy, minimizing the number of transmissions, amguogramming formulation and propose a distributed schiedul
thereby saving energy and improving network throughpuj [17algorithm that requires at mostN time slots for general
[16]. In this paper, we consider the convergecast processavhnetworks, whereV is the number of nodes in the network.
aggregated data are periodically streamed from a set ofssurA similar study [6] is presented by Chet al. in which an
to a common sink over a tree-based routing topology, and reféP-completeness result is proved on minimizing the scteedul
to it asaggregated convergecagt5]. length under a single frequency for non-aggregated comverg
It is well known that contention-free medium access controbst. Minimizing the schedule length by using orthogonal
(MAC) protocols like TDMA (Time Division Multiple Access) codes or hopping sequences to get rid of interference isestud
offer better solutions for such periodic data collectioreligni- by Annamalaiet al, where they consider assigning different
nating collisions and retransmissions as opposed to cbaten time slots and code pair to interfering links [1].
based protocols [18]. We therefore consider TDMA protocols The problem of joint scheduling, routing, and transmission

|I. INTRODUCTION



power control to improve network throughput and interferdescribes the problem formulation and assumptions. In Sec-
ence was studied by Bhatiat al. [3], and also by Bhat tion Ill, we prove two complexity results on the aggre-
et al. [9]. A prominent recent work is by Moscibroda, ingated convergecast problem. In Section IV, we focus on unit
which scaling laws describing the achievable rate for aggréisk graphs and propose frequency and time slot assignment
gated convergecast in arbitrarily deployed sensor netsvar& schemes that achieve constant factor approximation on the
presented under the SINR (signal-to-interference-phisea optimal schedule length. In Section V, we consider aggre-
ratio) model [19]. Worst-case capacity results are alswgmto gated convergecast on arbitrary trees. Section VI presemts
by employing non-linear power assignment to nodes amgaluation results, and finally Section VII concludes thpgra
exploiting SINR-effects. Cruzt al. use a duality approach
to address the problem of finding an optimal link scheduling
and power control policy, which minimizes the total average We model the sensor network as an undirected graph
transmission power and support high data rates [7]. G = (V,E), whereV is the set of nodes andl is the set

In the context of general ad hoc networks, the use of mdfif edges that represent communication links. We assGime
tiple channels has been well researched. To improve netw&kP€ connected. A fixed nodec V' is a given sink, and a
throughput, Scet al. propose a MAC protocol that switchesSPanning tred” = (V, Er C E) rooted ats is a given routing
channels dynamically and avoids the hidden terminal probld™€€ On the network. All the nodes excepare transmitters.

using temporal synchronization [22]. A link-layer protdcoperiNiTION 1. Two edges:, ez € Er form an interfering
called SSCH is proposed by Bakl al. that increases the edge structure if the transmitter of either edge has an inter

capacity of IEEE 802.11 networks by utilizing frequencyering link in G to the receiver of the other (see Fig. 1(a)).

diversity [2]. In the context of WSN there exist fewer works ) .
utilizing multiple channels. The first multi-frequency MAC_ V& assume each node has a single half-duplex transceiver,

protocol, MMSN, is proposed by Zhoet al. where the goal implying that it cannot receive multiple packets simultane
is to inc;ease adgregated throughput [25]. ously, and cannot transmit and receive simultaneously.lgée a

Most closely related is our previous work [15], in whicréssume transmissions on orthogonal channels do not irgerfe

we described a realistic simulation-based study on tresedJaW'th eac;h other. AIthoygh this assumption may fa.|l |n.prta§:t|
. S o . depending on the adjacent/alternate channel rejectiamesal
data collection utilizing transmission power control, tiple : : .
. . : . : for different types of transceivers, experimental res{dis]
frequencies, and efficient routing topologies. It is showat t .
. S . presented by Incadt al. show that the scheduling performance
once all the interfering links are removed by use of multipl

. ) o emains similar for CC2420 and Nordic nrf905 radios.
frequencies, the data collection rate becomes limited ley t . . : .
: . The scheduling problem we address in this work is the
maximum degree of the tree. We also showed that this rate ¢a

further be increased on degree-constrained trees. Ouergres ﬁ'owmg. Given a r_outmg treer on-a grath and K
. ; .. _orthogonal frequencieg, ..., fx, find an assignment of a
work is different from the rest in that we propose algorithm . .
: ) requency to each of the receivers and a time slot to each of
and prove several important theoretical results on theeagg

Il. PRELIMINARIES AND PROBLEM FORMULATION

. ; he edges (i.e., transmitters) Ththat minimizes the schedule
gated convergecast problem under multiple frequencies.

u : : L
key contributions are the following: ength subject to the following constraints:

o . 1) Interfering Link Constrairnt Two edges forming an in-
1) We prove that it is NP-complete to determine whether ~ terfering edge structure cannot be scheduled simultane-

removed using at most a constant number of frequenciesz) Adjacent Edge ConstrainNo two adjacent edges ifi
2) We give a sufficient condition on the number of frequen- * can pe scheduled simultaneously.

cies for which all the mFerfgrmg I|nk§ can be re.m,o‘(ed’ In our formulation we statically assign a frequency to each
and propose a polynomial time algorithm that minimize

L of the receivers. Although in practice, every sender-rexmei
the schc_adule length in this case. pair could potentially negotiate on a particular frequency
3) F(_Jr_a_g_lven number of frequencies, we a_lso prove th Lfore each packet transmission, switching frequencies if

minimizing the schedule Iength on an arbitrary networ ecessary, we argue that assigning different frequencitieet
'S NP-compIete, and describe a grgedy scheme.tq nsmitters that are children of the same parent does ot he
achieves a constant factor approxmatlon on t.he optimg nificantly in reducing the schedule length. This is beeau
schedule Ieng.th for the special case of unit disk grgpr}ﬁe single-transceiver radio cannot receive multiple p&k
4) We also cons!der the case when the routing tree is Iﬁé‘?rtnultaneously. Moreover, pair-wise per-packet freqyems-
given as an input to _the _problem, and_prove that tiation might create unnecessary overhead. Thus, in our
constant fa_ctor a.pprOX|mat|on on the optimal schedu Sceiver-basedfrequency assignment strategy, the children
Ie_ngth is still achievable for d_egree—b0unded _trees.. of the same parent transmit on the parent’s frequency, and
5) Finally, we eva_lluate our algorlthms through S'mu.lat'ontﬁerefore, a node ifi’ operates on at most two frequencies.
and show various trends in performance for different Fig. 1(c) illustrates aggregated convergecast with an exam
network parameters. ple in a network of 7 source nodes and 2 frequencies. The dot-
The rest of the paper is organized as follows: Section téd lines represent interfering links and the solid lingsesent
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a d d MFAP. For every, € V', create two nodes; andv; in G, and
2 b e f e
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join them with an edge; = (u;, v;), treatingu; as the parent
of v;. For every edge;; = (v],v}) € E’, create an interfering
link in G betweernu; andv;. Finally, create a root nodg and
add an edge;; = (u;, s) from eachu; to s, treatings as the
parent ofu;. This is an instance of the MFAP, where the tree
given by T = (V = {u;} U{vi} U{s}, Er = {ei} U {eis}).
Clearly, the reduction runs in polynomial time.

Suppose’’ is vertex colorable using at mogtcolors, and
suppose; is assigned colof. Assign frequency; to u; in G,
and any one of the frequencies, sgyto s. Clearly, this needs
at mostq frequencies. Since no two adjacent vertieg¢sand
Fig. 1. (a) Interfering edge structure. (c) Aggregated eogecast with seven v;- in G" are assigned the same color, no two nodeandu;
source nodes and two frequencies and (d) one frequency.iblire with in &, which are the receivers of an interfering edge structure,
two frequencies starts from frame 2 with a minimum schedefgth 3. . .

are assigned the same frequency, because by construction an

tree edges. A number beside an edge represents the time isketrfering link exists betweem,; and v; wheneverv, and
in which the edge is scheduled. The entries in Fig. 1(b)Hiet tv; are adjacent inG’. Therefore, this frequency assignment
source nodes from which data is received on the correspgndiemoves all the interfering link constraints.
time slot. For instances receives aggregated data frdme, Conversely, suppose there exists a solution to the MFAP
and f on the third time slot starting from frame 1. In thisusing at mosiy frequencies. Ifu; is assigned frequency;,
case, it takes two frames to reach a pipeline, as the data frassign colorj to v; in G’. Clearly, this requires at most
g does not reacl in frame 1. Thus, from frame 2 onwards colors because the number of receiversiis one more than
s receives aggregated data from all the nodes in the netwdhle number of vertices ie’. Since all the interfering link
once in every three time slots; so the minimum schedule fengtonstraints are removed by such a frequency assignmeny, eve
is 3. Note that, there may exist other assignments, sucfy astwo nodesu; andu; that are receivers of an interfering edge
to a, ¢, ands, and f; to b yielding the same schedule lengthstructure are assigned different frequencies. And sineg th
However, if we had only one frequency, the minimum schedut@rresponding vertices; andv’; are adjacent irt’, they will

0q [

length would bes, as shown in Fig. 1(d). be assigned different colors, thus, yielding a proper dogpr
I1l. A SSIGNMENT ONGENERAL GRAPHS of . Therefqre, t_he theor_em_ fOIIOWfS'_ ”

o ) Theorem 1 implies that finding tainimumnumber of fre-
A. Optimal Frequency Assignment quencies which will remove all the interfering link consiita

From the illustration above, we observe that when multiplen an arbitrary graph is NP-hard. In the following, we give an
frequencies are available, assigning different frequesnici the upper bound on the number of such frequencies required.
receivers in an appropriate way could mitigate the effefts
interference and shorten the schedule length. In this subs

tion, we study the problem of finding thminimumnumber receivery; in G, create a vertexs; in Go. Create an edge

of frequencies to removall the interfering link constraints. . . . .
. - L2 .. . between two such verticeg and u; if their corresponding
We say that an interfering link constraint is removed if the :

two receivers (i.e., parents) of an interfering edge stmect rfeceivers are part of an m_terfermg gdge structure. The_m, t
: : . : ) number K., of frequencies that will remove all the inter-
are assigned different frequencies. In the following, winge . L
L . .. fering link constraints is bounded byK,,.. < A(G¢) + 1,
the Minimum Frequency Assignment Probleand prove its . .
where A(G¢) is the maximum node degree @G .
hardness result.
Minimum Frequency Assignment Problem (MFAP) Proof: Since we create an edge between every two
Given a treeT on an arbitrary graplG and an integer, vertices inG¢ whenever their corresponding receiversGn
is there a frequency assignment to the receiverE imsing at are part of an interfering edge structure, assigning dfier
mostq frequencies such that all the interfering link constrainfsequencies to every such receiver-pairGhis equivalent to
are removed? assigning different colors to adjacent verticesG:. Thus,
THEOREM 1. The MFAP is NP-complete. Kq: 1S €qual to the minimum of thg number of coIors_needed
to vertex colorG, called itschromatic numbel (G¢). Since
Proof: It is easy to show that MFAP is in NP. Given ax(G) < A(G) + 1, for arbitraryG, the lemma follows. =
particular assignment, one can verify using a non-detastiitn ~ We describe a simple scheme calledARGESTDE-
algorithm in polynomial time if at most frequencies are being GREEFIRST (LDF) in Algorithm 1, in which the receiver with
used, and if the receivers of every interfering edge strectuthe maximum degree iz is assigned the first available
are assigned different frequencies. frequency at every step. In Section VI, we compare the upper

Pemma 1. Construct a constraint graplGc = (Ve, Ec)
fom the original graphG = (V, E) as follows. For each



bound of Lemma 1 with LDF. all the edges incident on a node are assigned a slot first before
moving on to the next node, and because the slot assigned to
Algorithm 1 LARGESTDEGREEFIRST the new edge is the minimum possible that is different from al

. Input: Constraint graplic = (Vc, Ec) that already assigned to the edges incidentbuntil the ;"

- while Vi # ¢ do iteration. Thus, at the end ¢f+ 1)*" iteration, the number of

1
2
3. u <« vertex with maximum degree W X X .
4. Assign the first available frequency to that is different fromw's ~ SlOts usedN (i) 4- 1 is equal to the number of assigned edges

neighbors incident onv* which, in turn, equalsA(7T%*!). This proves
S ond e @ \u} the inductive step. Therefore, it holds at every iteratibthe

algorithm until the end wheh= |V | — 2, yielding a schedule
length equal to the maximum degree(7) = A(TIVI-1).

Now, since assigning different time slots to the adjacenesd
of T is equivalent to edge colorirfj, which requires at least

Algorithm 2 BFS-TIMESLOTASSIGNMENT

1. Input: T = (V, Er) . L
2 while By 4 ¢ do A(T) colors, the schedule length is minimum. [ |

3. e« next edge fromEy in BFS order . B. Scheduling with Constant Number of Frequencies

4.  Assign minimum time slot te respecting adjacency constraint

5. Ep < Er\{e} We showed that when a sufficient number of frequencies is
6. end while available, all the interfering link constraints can be reem

and a minimum schedule length can be found in polynomial
Once all the interfering link constraints are removed, théme. However, typically there is a limitation on the number

problem of minimizing the schedule length on the gragh of frequencies over which a given transceiver can operage. W
reduces to one on the trée The remaining constraint that still now study the problem of minimizing the schedule length on
prevents simultaneous transmissions is the adjacent edge @n arbitrary graph when a constant number of frequencies
straint, which cannot be removed by using multiple frequers available. First, we state a known result in Lemma 2 on
cies. We propose an algorithm BFSME SLOTASSIGNMENT  distance-2-edge-colorin@lso calledstrong edge coloringon
in Algorithm 2 that runs inO(|Er|?) time and minimizes the trees that we use in the proof of Theorem 3.

schedule length on a tree. DEFINITION 2. Two edges, ¢’ € E in a graphG = (V, E)

In each iteration (lines 2-6) of th8&readth-First Search A o :
(BES) time slot assignment, an edgés chosen in the BFS are within distance 2 of each other if either they are adjacen
' '9 . 9 ! or if they are both incident on a common edge.

order (starting from any node), and is assigned the minimum
time slot that is different from all its adjacent edges. Wever A distance-2-edge-coloringf G requires that every two
such an assignment gives a minimum schedule length eqedges that are within distance 2 of each other have distinct
to the maximum degreA(T) of T. colors. The fewest such colors needed is called dtieng
chromatic indexsx’(G), and finding it for general graphs is
known to be NP-hard [12]. It is easy to see that even when
all the receivers inG are assigned the same frequency, the
minimum schedule length is no more thag/ (G).

THEOREM 2. The algorithmBFS-TIME SLOTASSIGNMENT
on a treeT gives a minimum schedule length equalX¢T").

Proof: The proof is_ by ianth.ion on. LetT" = (v, Eéf) LEMMA 2. The strong chromatic indexy’(7T") of a treeT =
denote the subtree df in the " iteration constructed in the (V, Er) is given by [10]:

BFS order, wherd:i. comprises all the edges that are assigned’

a slot, and’* comprises the set of nodes on which the edges sx'(T) = max {deg(u) + deg(v) — 1}

in E% are incident. Note that,Ei.| = i, because at every (v €br

iteration exactly one edge is assigned a slot.#erl, clearly Multiple-Frequency Minimum Time Scheduling Prob-

the number of slots used is equal toA(T"). lem (MFMTSP): Given a treel’ on an arbitrary grapki/, an
Now, assume that the number of slaté(i) needed to integerp, and a constant number of frequenciess there an

schedule the edges " is A(77). In the (i + 1) iteration, assignment of frequencies to the receiverginsing at most

after assigning a slot to the next edge in BFS order, the numbgrrequencies, and an assignment of time slots to the edges in
of slots needed iff"*! can either remain the same as beforey gych that the schedule length is at mp®t

or increase by one. Thus,

N(i+1) = max {N(i), N(i) + 1} 1)

THEOREM 3. The MFMTSP is NP-complete.

Proof: It is easy to show that the MFMTSP is in NP.

If it remains the samey (i+1) is still the maximum degree Given a particular assignment, one can use a non-detetiinis
of T+1 at end of(i + 1)*" iteration. Otherwise, if it increasesalgorithm to verify in polynomial time that - (i) at most
by one, the new edge must be incident on a n@decommon frequencies ang time slots are used, (ii) either the receivers
to both T and T**!, such that the number of incident edgesf every interfering edge structure are assigned diffefient
on v* that were already assigned a time slot at the end’of quencies or their edges are on different time slots, anda(iii
iteration wasA (7). This is so because in the BFS traversaldjacent edges are on different time slots.



within eachS;. Also, since only non-adjacent vertices G4
may have the same color, two sets of ed§eand.S; that are
on the same time slot cannot have interfering links between
each other, because interfering links exist betwggand .S;
whenevery; andv; are adjacent irG’. Next, the lowest level
edges, which connect to tHe,;s } nodes, of all the binary trees
T}, Vi, can be scheduled using at mastime slots, because
all the edges in eacld; are assigned the same slot. Finally,
all the remaining edges in the binary tree can be scheduled in
polynomial time because a distance-2-edge-coloring cgstre
can be computed in polynomial time [21], and within number
of time slots no more than its strong chromatic index which,
from Lemma 2, equals at most

Conversely, suppose there exists a valid assignmeidt in
that uses at most frequencies and at mogtplus a constant
number of slots. Assign colors to the vertices @1 as
follows. For each frequency,, consider the set of edges
Eis = {(uss, ves)}, Which are assigned slof fort =1, ..., p,
in order. Since the edges iR;; are on the same slot and
Fig. 2. Reduction for the MFMTSP: (a) Gadget for eagtin G’ for ¢ = 3;  their receivers are on the same frequency, they cannot be par
(b) InstanceG’ of the/vertex color problem; (c) Instancg of the MFMTSP of an interfering edge structure, and so each one of them
as constructed frond’ for g = 2. L. ; .

must lie in a differentS;. Therefore, each edge if;; has
a corresponding vertex i’ no two of which are adjacent.

To show NP-hardness, we reduce an instaiite- (V', E')  Select those edges iB;, whose corresponding vertices are
of the vertex color problem to an instancé = (V, E) of ynassigned, and assign colorto all of them. Repeat the
the MFMTSP, as illustrated with an example in Flg 2. L%bove assignment for all the frequencﬁs for s = 1,....q.
V'] = n. For every vertexy; € V', create a setS; of ¢ Clearly this uses at mogtcolors and assigns different colors
pairs of nodes{ (uis, vis) : s =1,...,¢} in G, and join each tg adjacent vertices. Also, because we run the above preeedu
pair with an edge;, treatingu;s as the parent of;s. Then, over all frequencies and over all time slots, and select an
create (%) = ¢(¢ — 1)/2 interfering links between all such edge fromE;, only if its corresponding vertex is unassigned,
pairs in eachS; as follows. Consider each;, in turn, for exactly one edge gets picked from eagh Therefore, every

s=1,..,q—1, and create an interfering link from;; t0 vi;, node inG’ gets a proper color, and the theorem followsm
for all [ > s. Thus, every two edges if; form an interfering

edge structure. Next, for every edge = (v;,v;) € F', create IV. ASSIGNMENT ONUNIT DISK GRAPHS

q? interfering links (and hence? interfering edge structures) In this section, we consider aggregated convergecast in
in G by considering the two setsS; = {(u;s,vs) : s = networks that are modeled amit disk graphs(UDG) on
1,...,q} and S; = {(ujs,v;s) : s = 1,...,¢}, and creating the Euclidean plane and prove constant factor approximatio
an interfering link from eachu;s to eachv;,. Then, for each results on the optimal schedule length.

S;, construct a binary tre@; creating additional nodes and We divide the area covering all the nodes into a set of equal
edges, and treating tHex;; } nodes as leaves, far=1,...,q. sized grid cells(c;}, each of sizexx «, as illustrated in Fig. 3.
Finally, treating the roots of}’'s as leaves create a binaryunder a UDG model, there exists an edge between every two
tree on top of it, and designate the root of it as the sink nodes that are at most a unit distance apart from each other.
The reduction clearly runs in polynomial time and creates ]y
instance of the MFMTSP. Next, we show that there exists
solution to the vertex color problem using at mestolors
if and only if there exists an assignmentThusing at most DEFINITION 4. An edgee; is in cell ¢; if the receiver ofe,
g frequencies and at mostplus a constant number of timelies within ¢;.

slots. Thus, a cell can hav8, 5, or 8 adjacent cells depending
Suppose’ is vertex colorable using at mostcolors, and on whether it is a corner cell, an edge cell, or an interiok, cel

v; is assigned colot. First, assign frequency; to u;, for yrespectively. Since the interfering links are of length atsin

s = 1,..,q, In eachS;, and any one of thg frequencies, one, interference ispatially restricted and thus we can reuse

say f1, to all the parents in the rest of tree. Then, assign timgne slots across cells that are spatially well separated.
slot ¢ to all the ¢ edges connecting the paifs;s, v;s), for

s = 1,..,q, in eachS;. Because all the receivers i§; are A- Time Slot Assignment on Unit Disk Graphs
on different frequencies, assigning the same time sot to allWe begin this subsection with an upper bound on the
the edges ir5; does not violate the interfering link constrainiminimum schedule length. Let., denote thesetof time slots

FINITION 3. Two cells are adjacent to each other if they
share a common edge or a common grid point.



—_— : receivers in R., such that the maximum number of nodes

® © 3 4 —— Corner cc e . e
e hld | comereel transmitting on the same frequency is minimized.
€17 €2 €3] ey Edge cell

o Ineriorcell To formulate this, we define thead on f; in ¢; underm
! o (’r o as the total number of children of all receiversiy, that are

” 2 " 2 )X"A’X‘ assignedfy, and denote it by (fi). We call the number of

9 €10 e ‘12 ’x"’x"x“ children ofv; its in-degree and denote it byleg™ (v;). Thus,

n b T =Y deg™(vy) @

13 ‘14 15 16 =

o vjeRciam('Uj)*fk
7 V4 73 V4 g [‘l : CD4 Then, a load-balanced frequency assignmeftin ¢; is:

* . m
m™ = argmin max {07 (f% 3
Fig. 3. Four pair-wise disjoint sets of time slots, v2, 3, 74 schedule the ¢ m fi { c (f )} ( )

hole network. Each set; to a distinct colo€;, for j = 1,2, 3, 4. :
whole network. Each sef; maps to a distinct coloc, for j We denote the load on the maximally loaded frequency under

m* in ¢; by ng*. Finding a load-balanced frequency assign-
ment is equivalent, as shown in Lemma 4, to scheduling jobs
LEMMA 3. The minimum schedule lengih for the whole on identical machines to minimize tineakesparlast finishing
network is bounded byl” < 4 - max {|n., |}, Va > 2 time of the given jobs), which is known to be NP-hard [13].

Below, we describe an algorithmREQUENCYGREEDY in

_ Proof: SinceG is a UDG, the distance between any Wajgorithm 3 that achieves &t/3 — 1/3K )-approximation on
adjacent nodes is at most one, and thus two edges that pie

in non-adjacent cells must have their transmitters at lvest
hops away from the receiver of the other, for any> 2. Algorithm 3 FREQUENCYGREEDY

R ITaaval
Therefore, two such edges can be scheduled on the same HG ach celle,, do the following:

slot regardless of their receiver frequencies, suck; ande, 2. Sort the nodes itk in non-increasing order of their in-degrees. Let this
in Fig 3 on frequencyf. Thus, the set., of time slots needed  order be:deg™ (v1) > deg'™ (v2) > ... > deg*™ (vn)
to schedule all the edges i can be reused in any other cell* SN0 om v, seson each successe poce o recuency o
¢; that is non-adjacent te;, for any o > 2.

Construct a graplér = (Vr, Er), whose each vertex; €
Vr corresponds to a cell;, and an edge exists between anyEMMA 4. The algorithmFREQUENCYGREEDY in each cell
two verticesv; andv; if their corresponding cellg; andc; ¢; gives a(4/3 — 1/3K)-approximation onLZj*.
are adjacent to each other, as shown in Fig. 3. The minimum
number of colors needed to vertex colGr is thus equal to

the minimum number of pair-wise disjoint sefs’s needed to a job j on any machine takes timg > 0. Thus, if ¥ (k)

schedule all the links 7. Now, although vertex coloring on enote the set of iobs assianed 1o machine. then the
a general graph is NP-complete [12], because of the reguld J 9 e

grid structure here, we can vertex cot@r using at most four total time my; takes is Zie‘l’(’@ tj, and the makespan is

colors, Cy, Cy, Cs, C4, as shown by a particular asmgnmenlinaXlSkSK{ZJE‘I’(k) ti}- The objective is to find an assign
N . . . ment of the jobs to the machines that minimizes the makespan.
in Fig. 3. The coloring pattern used is as follows: Number the . ;

In the load-balanced frequency assignment formulation,

vertices starting froml in each row ofGr; then (i) assign map each receiver, € R, to job j, anddeg™ (v;) to ;. Map

C; to every odd vertex and’; to every even vertex in the . .
. ) each frequency;, to machinemn;. The load onfy, is therefore
odd numbered rows, and (ii) assigry to every odd vertex . I :
equal to the total timen; takes. Thus, minimizing the maxi-

andC to every even vertex in the even numbered rows. Tr}ﬁ}um load over all the frequencies is equivalent to minirmgzin
corresponding assignment of the four sets of time sigtsy-, q N "y

v3, 74, are shown within the cells. Note that no twgs have the makespan over _all_the _machmes. Unqer _th|s mapping.
. . FREQUENCYGREEDY is identical to Graham'’s list schedul-
a slot in common, angly;| < max.,{|v.,|}, forj =1,2,3,4.

ing algorithm according to théongest-processing-time-first
Therefore[" = 1 Uy2Uns Unal = |l + 7] + sl + sl < (LPT) [13], which achieves &4/3 — 1/3K)-approximation

needed to schedule all the edges:jn

Proof: In the job scheduling problem, there aké iden-
tical machinesny,...,mg, andn jobs 1,...,n. Executing

4 H}:?X{l%i”' . on the minimum makespan. Therefore, the lemma folloms.
B. Frequency Assignment on Unit Disk Graphs LEMMA 5. If L? denote the load on the maximally loaded
Let R., = {v1,...,v,} denote the set of receivers @hin frequency inc¢; under mappinge : R., — {fi,...,fx}
ci,andletm : R., — {f1,..., [k} be a mapping that assignsachieved byFREQUENCYGREEDY, then any greedy time slot
a frequency to each of the receivers. Note that{fv;) = fr, assignment can schedule all the edgeg;invithin 2L¢ time

then the children ob; transmit on frequencyy. slots, i.e.,|ve,| < 2L .
DEFINITION 5. We define a load-balanced frequency assign- Proof: Consider a multi-graptf = ({f1,..., fx}, E’),

ment in¢; as an assignment of th& frequencies to the where for each edge = (v;,vir), v, vy € R, with



o(v;) # &(vir), we have an edgép(v;), ¢(vi)) € E'. Note Then, from Lemma 3 and (6) it follows that the number of
that these will be multi-edges; le{ fx, fi) denote the number time slots needed to schedule the entire networlGlig:
of edges betweerf, and fi, in H. Then,deg(fi) <12 (fx),

where I (f;) is the load onf; under ¢ in c;. By ‘Ore’s Ig < 4-max{|y|} < S'H}:?X{Lfi}
theorem [20], which generalizes Vizing’'s theorem for edge < 4 0. Lt

coloring on multi-graphs, it follows that the edgesfincan be < 8 max {( /3-1/3K)- L, }

colored usingmaxy, {I? (fx)} colors. Therefore, all edges of < 8uq(4/3—1/3K) -Topr (7)

the forme = (v;, v;/) between two nodes iR, with different

frequencies can be colored inax;, {I (f,)} = L? colors. Therefore, the theorem follows. ]
All remaining edges either have only one end-poinfip,

or have both end-points i.,, with the same frequency; let V. ASSIGNMENT ONARBITRARY TREESUNDER UDG

S(fr) denote the set of such edges with the end-poin®in  |n our discussion so far, we assumed that the routingZree
assigned frequencfy,. Note that|S(fx)| <12 (fx), and edges on (v was given as an input to the problem. We now consider
e € S(fr),€’ € S(fw) can be assigned the same time slot e case when it is not (sink is still given), thus implying

fx # fi- So all the remaining edges can be scheduled jRat OPT can construct anwrbitrary tree T' rooted ats to
maxy, [S(fr)| < maxy, {I2(fx)} time slots. Therefore, all minimize the schedule length. In this section, we incorfora
edges inc; can be scheduled withimaxy, {12, (fx)} = 2L%,  the construction of” as part of the greedy algorithm, and seek
time slots, and the lemma follows. B for properties ofl” that would still guarantee a constant factor

We now prove a constant factor approximation result on thgyproximation on the optimal schedule length in UDG.
optimal schedule length. ) )
THEOREM 5. Given a UDG G and K frequencies, there

THEOREM 4. Given a treeT’ on a UDG G, and K fre-  gyists an algorithnH{ that achieves a constant fact®fi, Ac-
guencies, there exists a greedy algorittgnthat achieves approximation on the optimal schedule length, whege> 0

a constant factor8u,, (4/3 — 1/3K)—approximation on the s 5 constant for a given cell size > 2, and A¢ > 0 is a
optimal schedule length, wheye, > 0 is a constant for a ¢onstant.

given cell sizex > 2.
Proof: SinceOPT can construct any arbitrary trée on

Proof: AIgorithm. G consists of_ two phases: (i) U, we seek for a lower bound dip »¢ independent off".
FREQUENCYGREEDY in eachc;, and (i) runanygreedy time | V.. denote the set of nodes in. Note thatV, is
slot assignment scheme for the whole network. One pOSSimﬁepenaent of", and depends only of. Becaus&) PT lcan
scheme is to greedily schedulenzaximalnumber of edges ¢ hoqule simultaneously at most a constant number> 0

simultaneously at each iteration. _of nodes (i.e., edges) imany ¢; whose parents are on the
Let the schedule length &f beI'g, and that of an optimal same frequency, the best it could do with frequencies is

algorithmOPT bel'opr. We seek a lower bound diorr. 14 gistribute the nodes if., evenlyamong all the frequencies

Because of UDG, the tree edges are of length at most Oes’thatHVciI/KW is the minimumof the maximumnumber

and thus for a given cell siza, at most a constant numberof nodes transmitting on the same frequency. THuspr >

of them can fit within any celle;. Moreover, because of VoK Ve = T > VoK - 50
interfering links, there exists a constamt > 0, depending (Ve / K1/ 1a; Ve, opr 2 maxe {[|Ve/ K1} o

on « and the deployment distribution, such that at most max {[|Ve,|/K|} < pa - Topr (8)
edges inany ¢; whose receivers are on the same frequency ci
can be scheduled simultaneously YT Suppose R.,(T) = {vi,...,v,} denote the set of

Now, regardless of the assignment choserCdyT’, it will - receivers inc; for any arbitrary treeT, and suppose
take at leasL;! /1. time slots to schedule all the edgesein  A™*(T') be the maximum in-degree of a node T Then,
This is becauseLZj* is theminimumof the maximurnumber max, cg_ (r){deg™(v;)} < A" (T), and|R.,(T)| < |V,|.
of edges that are on the same frequency;inSo, whatever  Define acyclic frequency assignment under mapping:

frequency assignme@ PT chooses, the number of*edges thaRCi (T) — {f1,-.., [} as follows:
are on the same frequency i must be at leasL;’ . Thus, _ L
Topr > Lg*/ua,Vq, =Topr > maxci{LZj*}/ua; SO b(vr) = { 1 mod K, I.f i #qK ©)
i K, if i=qK
max{L¢} } < pia - Topr 4)

whereq € NT, a positive integer. It is easy to see that the
By running FRREQUENCYGREEDY in ¢;, Lemma 4 implies maximum number of receivers that are on the same frequency
é 3 rm® is [|Rc,(T)|/K]. Therefore, the load.¥ on the maximally
Le, = (4/3-1/3K) - Lg; ) loaded frequency ir; is bounded by the following:
and by running any greedy time slot assignment scheme in the

whole network, Lemma 5 implies: LE < [|Re(T)I/K] 'ng%??((T) {deg™ (v;)}
e | < 2L, (6) < (IVel/KT7-A™(T) (10)



Now, the load Lfi on the maximally loaded frequency a5 B —o- LargestDegreeFirst |

- c

produced by REQUENCYGREEDY iS no more tharL}fi; thus

N
o
T

L? < LY <[|V,|/K] - A™(T) (11)

Then, doing any greedy time slot assignment and using
Lemma 3 and Lemma 5 as before, and (11) it follows that:

T < 8- max {[[V,|/K]- A™(T)} (12)

Number of frequencies

w
T Glagy,

Since|V,,| and A™(T) are independent of each other, we
can take the maximum separately on the two terms; thus,

[

mn 0 0.65 0.‘1 O.‘15 0‘.2 0]25 013 O..‘?yS 0‘.4 O.‘45 0.5
Py < 8 max{[|Vo,|/K 1} max {A™ (1)) =

= &-max { HV;: |/K1} . Am(T) Fig. 4. Number of frequencies required to remove all theriating links
[ ‘ as a function of network density for shortest path trees.

< 8uaA™(T)-Topr (13) %

50

t

Thus, (13) implies that so long as the maximum in-degree
of a node inT" is bounded by a constark- > 0, the theorem
holds. Although finding a degree-bounded spanning tree on a
general graph is known to be NP-hard [12], for any UDG it
is always possible to find a spanning tree of degree at most
5 [24]. Therefore, the theorem follows. ]
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VI. EVALUATION o
In this section, we evaluate the performance of our algo- 10}
rithms through simulations on UDG. We construct connected
networks by randomly placing nodes on a square region of
maximum size200 x 2 it and connecting any two nodes
00 (.)O un gany Fig. 5. Schedule length of the greedy algoritlinwith different network
that are at mos25 units from each other. NOte that we SCaI%izes on shortest path treeX; is the number of frequencies.
up the UDG by a factor 025 just for convenience. We assume

that the interference range for each node is asanits. B. Schedule Length

5 . . . . . .
100 200 300 400 500 600 700 800
Number of nodes

We evaluate the performance of our greedy algorithrof
Theorem 4 forl = 200 on two types of trees: (i) shortest path
Fig. 4 shows the number the frequencies needed as a fumees (SPT), and (ii) minimum interference trees (MIT). We
tion of density to remove all the interfering links as caéted note that the constant factor approximations in our algori
from algorithm LARGESTDEGREEFIRST (LDF) and from the depend on the parametey,, which decreases with decreasing
upper bound\(G¢)+1 on the constraint grapfi -, for given  «. However, the smallest for which Lemma 3 holds is 2.
shortest path trees. Here, we keep the number of nofeeed  Thus, in our experiments we chose= 50, which is again
at 200 and vary the lengtlh of the square region fror200 to  scaled up 25 times, as is the UDG.
20 so the densityl = N/i? varies from0.005 to 0.5. 1) Shortest Path TreeFig. 5 shows the schedule length
The trend shows that the number of frequencies initiallyf the greedy algorithng with different number of nodes on
increases with density because of increasing interferenshortest path trees. The different curves are for diffenemt-
However, as the network gets denser, it reaches a peak &ed of frequencies. We observe that multiple frequencigs he
then steadily decreases 1o because the number of parentin reducing the schedule length, and this reduction ine®as
on the tree becomes fewer and the network gradually tumih increasing network size, as the curve for single fregye
into a single hop network with the sink as the only parent. Wand those for multiple frequencies diverge from each other.
also observe that for sparser networks there is a signifga@mt We also notice that the schedule lengths with three or more
between the upper bound and the LDF scheme as compareduencies do not differ much, implying that interferense
to that in denser networks. This is because in sparser gettimostly eliminated with three frequencies and so having more
there are many parents, resulting in high&{G¢), and frequencies is redundant.
assigning a distinct frequency to the largest degree paren®) Minimum Interference TreeSince interference is one
according to LDF removes more interfering links at everpsteof the limiting factors in minimizing the schedule lengthe w
than it does for denser settings when the parents are fewler atudy the performance of our approximation algorithms on
have similar degrees. interference-optimal trees. We use an existing greedy-algo

A. Frequency Bounds
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Fig. 6. Schedule length of the greedy algorittgnon SPT and MIT for

different network sizesi is the number of frequencies.
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rithm LIFE [4] to construct minimum interference spanning[ﬁ]
trees. LFE uses a particular interference model, in which the
outgoing edge interferencg,,.(e) for an edgee = (u,v) is  [7]
defined as the number of nodes covered by the union of the
two disks centered at and v, each of radiuguv|, where (g
|uv| denotes the Euclidean distance betweemand v. The
interferencel,,.;(G) of a graphG is defined as the maximum

. L 9

edge interference over all edges. The greedy strategyFin ik
to construct a minimum spanning tree considering the weight
of an edgee as I, (¢). (10]

Fig. 6 shows the schedule length computed by algorithyy)
G on SPTs with one frequency, and on MITs with one and
three frequencies, for different network sizes. As expbct
we observe a significant reduction in the schedule length for
larger networks on MITs. Comparing Fig. 5 and Fig. 6, w#3]
notice that the curve for MIT with even one frequency iﬁ4]
lower than those for SPT with multiple frequencies, imptyin
that interference-optimal trees can also give benefitslaimi
to multiple frequencies in terms of reducing the schedul®
length. The increasing gain in larger networks is due to Emnal
maximum node degree on MIT compared to that of SPT. FBfl
this particular plot with one frequency, the average maximu
node degree on MIT is between 4 and 9, whereas on SPTif
is between 8 and 34, with more than 20 beyond 450 nodes.

VII. CONCLUSIONS (18]

We proved two NP-completeness results on the problem of
minimizing the schedule length of aggregated convergenas
sensor networks and proposed algorithms that achievearinst2o]
factor approximations on unit disk graphs. We also evathiat&1]
our algorithms through simulations and showed variougdgen
in performance for different network parameters. Even gou [22]
we considered protocol/graph-based network and interéere
models as opposed to physical/SINR-based models [19]
a first step in this paper, the results presented in [15] show
that graph-based models provide a decent approximationlél
SINR-model behavior. Studying scheduling protocols zitiljy
multiple frequencies under SINR-based models remain &s pas)
of our future work. From the simulation results we observed
that the schedule length improved significantly for minimum

interference trees; however the trees are not guarantelee to
degree-bounded, which is a necessary condition for Thebrem
to hold. Exploring the problem of constructing interferenc
optimal degree-bounded trees is also part of our future work
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