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Abstract—Fast and periodic collection of aggregated data
is of considerable interest for mission-critical and continuous
monitoring applications in sensor networks. In the many-to-one
communication paradigm, referred to as convergecast, we focus
on applications wherein data packets are aggregated at eachhop
en-route to the sink along a tree-based routing topology, and
address the problem of minimizing the convergecast schedule
length by utilizing multiple frequency channels. The primary
hindrance in minimizing the schedule length is the presenceof
interfering links. We prove that it is NP-complete to determine
whether all the interfering links in an arbitrary network ca n
be removed using at most a constant number of frequencies.
We give a sufficient condition on the number of frequencies for
which all the interfering links can be removed, and propose a
polynomial time algorithm that minimizes the schedule length
in this case. We also prove that minimizing the schedule length
for a given number of frequencies on an arbitrary network is
NP-complete, and describe a greedy scheme that gives a constant
factor approximation on unit disk graphs. When the routing tree
is not given as an input to the problem, we prove that a constant
factor approximation is still achievable for degree-bounded trees.
Finally, we evaluate our algorithms through simulations and
compare their performance under different network parameters.

I. I NTRODUCTION

Convergecastin wireless sensor networks (WSN) typically
refers to the many-to-one communication pattern, where data
from a set of sources are routed toward a common sink. Often,
many WSN applications [8], [14] require periodic summaries
or aggregates of these data rather than raw sensor readings,in
addition to quick delivery with minimum energy consumption.
In such cases, data coming from different sources can be
aggregated at each hopen-route to the sink - eliminating
redundancy, minimizing the number of transmissions, and
thereby saving energy and improving network throughput [17],
[16]. In this paper, we consider the convergecast process where
aggregated data are periodically streamed from a set of sources
to a common sink over a tree-based routing topology, and refer
to it asaggregated convergecast[15].

It is well known that contention-free medium access control
(MAC) protocols like TDMA (Time Division Multiple Access)
offer better solutions for such periodic data collection byelimi-
nating collisions and retransmissions as opposed to contention-
based protocols [18]. We therefore consider TDMA protocols

where time slots are grouped into equal sized repeated frames.
We call the number of time slots in each frame theschedule
length, and assume that each node is scheduled to transmit in
only one slot per frame, sending its own as well as aggregated
data from its children. We also assume that the duration of each
slot allows transmission for exactly one packet. Thus, oncea
pipelineis established, the sink will start receiving aggregated
data from all the nodes in the network once in each frame.
In this paper, we focus on the problem of minimizing the
schedule length which, under this framework, is equivalentto
maximizing the data collection rate at the sink.

A natural approach to avoid interference and increase
throughput in wireless networks is to use multiple frequency
channels. While there is a lot of research on single-channel
scheduling protocol design for WSN, exploiting parallelism
using multiple channels has not yet been well explored. Given
the fact that current WSN hardware already provides multiple
frequencies, such as the 16 orthogonal frequencies with 5MHz
spacing supported by CC2420 [5] radios on TmoteSky [23], it
is imperative to take their full advantage in order to minimize
interference and collisions - the two most predominant causes
of packet losses - and thereby achieve faster data collection
rate by parallel transmissions. In this work, we thus exploit
the benefits of utilizing multiple frequencies.

A. Related Work and Paper Overview

The non-aggregated version of the convergecast problem
is considered by Gandhamet al. in the presence of a single
channel and TDMA protocols, where the goal is to minimize
the schedule length [11]. The authors describe an integer linear
programming formulation and propose a distributed scheduling
algorithm that requires at most3N time slots for general
networks, whereN is the number of nodes in the network.
A similar study [6] is presented by Choiet al. in which an
NP-completeness result is proved on minimizing the schedule
length under a single frequency for non-aggregated converge-
cast. Minimizing the schedule length by using orthogonal
codes or hopping sequences to get rid of interference is studied
by Annamalaiet al., where they consider assigning different
time slots and code pair to interfering links [1].

The problem of joint scheduling, routing, and transmission
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power control to improve network throughput and interfer-
ence was studied by Bhatiaet al. [3], and also by Bhat
et al. [9]. A prominent recent work is by Moscibroda, in
which scaling laws describing the achievable rate for aggre-
gated convergecast in arbitrarily deployed sensor networks are
presented under the SINR (signal-to-interference-plus-noise-
ratio) model [19]. Worst-case capacity results are also proved
by employing non-linear power assignment to nodes and
exploiting SINR-effects. Cruzet al. use a duality approach
to address the problem of finding an optimal link scheduling
and power control policy, which minimizes the total average
transmission power and support high data rates [7].

In the context of general ad hoc networks, the use of mul-
tiple channels has been well researched. To improve network
throughput, Soet al. propose a MAC protocol that switches
channels dynamically and avoids the hidden terminal problem
using temporal synchronization [22]. A link-layer protocol
called SSCH is proposed by Bahlet al. that increases the
capacity of IEEE 802.11 networks by utilizing frequency
diversity [2]. In the context of WSN there exist fewer works
utilizing multiple channels. The first multi-frequency MAC
protocol, MMSN, is proposed by Zhouet al. where the goal
is to increase aggregated throughput [25].

Most closely related is our previous work [15], in which
we described a realistic simulation-based study on tree-based
data collection utilizing transmission power control, multiple
frequencies, and efficient routing topologies. It is shown that
once all the interfering links are removed by use of multiple
frequencies, the data collection rate becomes limited by the
maximum degree of the tree. We also showed that this rate can
further be increased on degree-constrained trees. Our present
work is different from the rest in that we propose algorithms
and prove several important theoretical results on the aggre-
gated convergecast problem under multiple frequencies. Our
key contributions are the following:

1) We prove that it is NP-complete to determine whether
all the interfering links in an arbitrary network can be
removed using at most a constant number of frequencies.

2) We give a sufficient condition on the number of frequen-
cies for which all the interfering links can be removed,
and propose a polynomial time algorithm that minimizes
the schedule length in this case.

3) For a given number of frequencies, we also prove that
minimizing the schedule length on an arbitrary network
is NP-complete, and describe a greedy scheme that
achieves a constant factor approximation on the optimal
schedule length for the special case of unit disk graphs.

4) We also consider the case when the routing tree is not
given as an input to the problem, and prove that a
constant factor approximation on the optimal schedule
length is still achievable for degree-bounded trees.

5) Finally, we evaluate our algorithms through simulations
and show various trends in performance for different
network parameters.

The rest of the paper is organized as follows: Section II

describes the problem formulation and assumptions. In Sec-
tion III, we prove two complexity results on the aggre-
gated convergecast problem. In Section IV, we focus on unit
disk graphs and propose frequency and time slot assignment
schemes that achieve constant factor approximation on the
optimal schedule length. In Section V, we consider aggre-
gated convergecast on arbitrary trees. Section VI presentsour
evaluation results, and finally Section VII concludes the paper.

II. PRELIMINARIES AND PROBLEM FORMULATION

We model the sensor network as an undirected graph
G = (V,E), whereV is the set of nodes andE is the set
of edges that represent communication links. We assumeG
to be connected. A fixed nodes ∈ V is a given sink, and a
spanning treeT = (V,ET ⊆ E) rooted ats is a given routing
tree on the network. All the nodes excepts are transmitters.

DEFINITION 1. Two edgese1, e2 ∈ ET form an interfering
edge structure if the transmitter of either edge has an inter-
fering link inG to the receiver of the other (see Fig. 1(a)).

We assume each node has a single half-duplex transceiver,
implying that it cannot receive multiple packets simultane-
ously, and cannot transmit and receive simultaneously. We also
assume transmissions on orthogonal channels do not interfere
with each other. Although this assumption may fail in practice
depending on the adjacent/alternate channel rejection values
for different types of transceivers, experimental results[15]
presented by Incelet al.show that the scheduling performance
remains similar for CC2420 and Nordic nrf905 radios.

The scheduling problem we address in this work is the
following. Given a routing treeT on a graphG and K
orthogonal frequenciesf1, . . . , fK , find an assignment of a
frequency to each of the receivers and a time slot to each of
the edges (i.e., transmitters) inT that minimizes the schedule
length subject to the following constraints:

1) Interfering Link Constraint: Two edges forming an in-
terfering edge structure cannot be scheduled simultane-
ously if their receivers are on the same frequency.

2) Adjacent Edge Constraint: No two adjacent edges inT
can be scheduled simultaneously.

In our formulation we statically assign a frequency to each
of the receivers. Although in practice, every sender-receiver
pair could potentially negotiate on a particular frequency
before each packet transmission, switching frequencies if
necessary, we argue that assigning different frequencies to the
transmitters that are children of the same parent does not help
significantly in reducing the schedule length. This is because
the single-transceiver radio cannot receive multiple packets
simultaneously. Moreover, pair-wise per-packet frequency ne-
gotiation might create unnecessary overhead. Thus, in our
receiver-basedfrequency assignment strategy, the children
of the same parent transmit on the parent’s frequency, and
therefore, a node inT operates on at most two frequencies.

Fig. 1(c) illustrates aggregated convergecast with an exam-
ple in a network of 7 source nodes and 2 frequencies. The dot-
ted lines represent interfering links and the solid lines represent
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Fig. 1. (a) Interfering edge structure. (c) Aggregated convergecast with seven
source nodes and two frequencies and (d) one frequency. (b) Pipeline with
two frequencies starts from frame 2 with a minimum schedule length 3.

tree edges. A number beside an edge represents the time slot
in which the edge is scheduled. The entries in Fig. 1(b) list the
source nodes from which data is received on the corresponding
time slot. For instance,s receives aggregated data fromb, e,
and f on the third time slot starting from frame 1. In this
case, it takes two frames to reach a pipeline, as the data from
g does not reachs in frame 1. Thus, from frame 2 onwards,
s receives aggregated data from all the nodes in the network
once in every three time slots; so the minimum schedule length
is 3. Note that, there may exist other assignments, such asf2
to a, c, ands, andf1 to b yielding the same schedule length.
However, if we had only one frequency, the minimum schedule
length would be6, as shown in Fig. 1(d).

III. A SSIGNMENT ONGENERAL GRAPHS

A. Optimal Frequency Assignment

From the illustration above, we observe that when multiple
frequencies are available, assigning different frequencies to the
receivers in an appropriate way could mitigate the effects of
interference and shorten the schedule length. In this subsec-
tion, we study the problem of finding theminimumnumber
of frequencies to removeall the interfering link constraints.
We say that an interfering link constraint is removed if the
two receivers (i.e., parents) of an interfering edge structure
are assigned different frequencies. In the following, we define
the Minimum Frequency Assignment Problemand prove its
hardness result.

Minimum Frequency Assignment Problem (MFAP):
Given a treeT on an arbitrary graphG and an integerq,
is there a frequency assignment to the receivers inT using at
mostq frequencies such that all the interfering link constraints
are removed?

THEOREM 1. The MFAP is NP-complete.

Proof: It is easy to show that MFAP is in NP. Given a
particular assignment, one can verify using a non-deterministic
algorithm in polynomial time if at mostq frequencies are being
used, and if the receivers of every interfering edge structure
are assigned different frequencies.

To show NP-hardness, we reduce an instanceG′ = (V ′, E′)
of the vertex color problem to an instanceG = (V,E) of the
MFAP. For everyv′i ∈ V ′, create two nodesui andvi in G, and
join them with an edgeei = (ui, vi), treatingui as the parent
of vi. For every edgee′ij = (v′i, v

′
j) ∈ E′, create an interfering

link in G betweenui andvj . Finally, create a root nodes, and
add an edgeeis = (ui, s) from eachui to s, treatings as the
parent ofui. This is an instance of the MFAP, where the tree
given by T = (V = {ui} ∪ {vi} ∪ {s}, ET = {ei} ∪ {eis}).
Clearly, the reduction runs in polynomial time.

SupposeG′ is vertex colorable using at mostq colors, and
supposev′i is assigned colorj. Assign frequencyfj to ui in G,
and any one of the frequencies, sayf1, to s. Clearly, this needs
at mostq frequencies. Since no two adjacent verticesv′i and
v′j in G′ are assigned the same color, no two nodesui anduj
in G, which are the receivers of an interfering edge structure,
are assigned the same frequency, because by construction an
interfering link exists betweenui and vj wheneverv′i and
v′j are adjacent inG′. Therefore, this frequency assignment
removes all the interfering link constraints.

Conversely, suppose there exists a solution to the MFAP
using at mostq frequencies. Ifui is assigned frequencyfj,
assign colorj to v′i in G′. Clearly, this requires at mostq
colors because the number of receivers inG is one more than
the number of vertices inG′. Since all the interfering link
constraints are removed by such a frequency assignment, every
two nodesui anduj that are receivers of an interfering edge
structure are assigned different frequencies. And since their
corresponding verticesv′i andv′j are adjacent inG′, they will
be assigned different colors, thus, yielding a proper coloring
of G′. Therefore, the theorem follows.

Theorem 1 implies that finding theminimumnumber of fre-
quencies which will remove all the interfering link constraints
on an arbitrary graph is NP-hard. In the following, we give an
upper bound on the number of such frequencies required.

L EMMA 1. Construct a constraint graphGC = (VC , EC)
from the original graphG = (V,E) as follows. For each
receivervi in G, create a vertexui in GC . Create an edge
between two such verticesui and uj if their corresponding
receivers are part of an interfering edge structure. Then, the
numberKmax of frequencies that will remove all the inter-
fering link constraints is bounded by:Kmax ≤ ∆(GC) + 1,
where∆(GC) is the maximum node degree inGC .

Proof: Since we create an edge between every two
vertices inGC whenever their corresponding receivers inG
are part of an interfering edge structure, assigning different
frequencies to every such receiver-pair inG is equivalent to
assigning different colors to adjacent vertices inGC . Thus,
Kmax is equal to the minimum of the number of colors needed
to vertex colorGC , called itschromatic numberχ(GC). Since
χ(G) ≤ ∆(G) + 1, for arbitraryG, the lemma follows.

We describe a simple scheme called LARGESTDE-
GREEFIRST (LDF) in Algorithm 1, in which the receiver with
the maximum degree inGC is assigned the first available
frequency at every step. In Section VI, we compare the upper
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bound of Lemma 1 with LDF.

Algorithm 1 LARGESTDEGREEFIRST

1. Input: Constraint graphGC = (VC , EC)
2. while VC 6= φ do
3. u← vertex with maximum degree inVC

4. Assign the first available frequency tou that is different fromu’s
neighbors

5. VC ← VC \ {u}
6. end while

Algorithm 2 BFS-TIMESLOTASSIGNMENT

1. Input: T = (V, ET )
2. while ET 6= φ do
3. e← next edge fromET in BFS order
4. Assign minimum time slot toe respecting adjacency constraint
5. ET ← ET \ {e}
6. end while

Once all the interfering link constraints are removed, the
problem of minimizing the schedule length on the graphG
reduces to one on the treeT . The remaining constraint that still
prevents simultaneous transmissions is the adjacent edge con-
straint, which cannot be removed by using multiple frequen-
cies. We propose an algorithm BFS-TIMESLOTASSIGNMENT

in Algorithm 2 that runs inO(|ET |
2) time and minimizes the

schedule length on a tree.
In each iteration (lines 2-6) of theBreadth-First Search

(BFS) time slot assignment, an edgee is chosen in the BFS
order (starting from any node), and is assigned the minimum
time slot that is different from all its adjacent edges. We prove
such an assignment gives a minimum schedule length equal
to the maximum degree∆(T ) of T .

THEOREM 2. The algorithmBFS-TIMESLOTASSIGNMENT

on a treeT gives a minimum schedule length equal to∆(T ).

Proof: The proof is by induction oni. Let T i = (V i, EiT )
denote the subtree ofT in the ith iteration constructed in the
BFS order, whereEiT comprises all the edges that are assigned
a slot, andV i comprises the set of nodes on which the edges
in EiT are incident. Note that,|EiT | = i, because at every
iteration exactly one edge is assigned a slot. Fori = 1, clearly
the number of slots used is1, equal to∆(T 1).

Now, assume that the number of slotsN(i) needed to
schedule the edges inT i is ∆(T i). In the (i+ 1)th iteration,
after assigning a slot to the next edge in BFS order, the number
of slots needed inT i+1 can either remain the same as before,
or increase by one. Thus,

N(i+ 1) = max {N(i), N(i) + 1} (1)

If it remains the same,N(i+1) is still the maximum degree
of T i+1 at end of(i+1)th iteration. Otherwise, if it increases
by one, the new edge must be incident on a nodev∗, common
to bothT i andT i+1, such that the number of incident edges
on v∗ that were already assigned a time slot at the end ofith

iteration was∆(T i). This is so because in the BFS traversal,

all the edges incident on a node are assigned a slot first before
moving on to the next node, and because the slot assigned to
the new edge is the minimum possible that is different from all
that already assigned to the edges incident onv∗ until the ith

iteration. Thus, at the end of(i+1)th iteration, the number of
slots usedN(i) + 1 is equal to the number of assigned edges
incident onv∗ which, in turn, equals∆(T i+1). This proves
the inductive step. Therefore, it holds at every iteration of the
algorithm until the end wheni = |V |− 2, yielding a schedule
length equal to the maximum degree∆(T ) = ∆(T |V |−1).
Now, since assigning different time slots to the adjacent edges
of T is equivalent to edge coloringT , which requires at least
∆(T ) colors, the schedule length is minimum.

B. Scheduling with Constant Number of Frequencies

We showed that when a sufficient number of frequencies is
available, all the interfering link constraints can be removed
and a minimum schedule length can be found in polynomial
time. However, typically there is a limitation on the number
of frequencies over which a given transceiver can operate. We
now study the problem of minimizing the schedule length on
an arbitrary graph when a constant number of frequencies
is available. First, we state a known result in Lemma 2 on
distance-2-edge-coloring(also calledstrong edge coloring) on
trees that we use in the proof of Theorem 3.

DEFINITION 2. Two edgese, e′ ∈ E in a graphG = (V,E)
are within distance 2 of each other if either they are adjacent
or if they are both incident on a common edge.

A distance-2-edge-coloringof G requires that every two
edges that are within distance 2 of each other have distinct
colors. The fewest such colors needed is called thestrong
chromatic index, sχ′(G), and finding it for general graphs is
known to be NP-hard [12]. It is easy to see that even when
all the receivers inG are assigned the same frequency, the
minimum schedule length is no more thansχ′(G).

L EMMA 2. The strong chromatic indexsχ′(T ) of a treeT =
(V,ET ) is given by [10]:

sχ′(T ) = max
(u,v)∈ET

{deg(u) + deg(v) − 1}

Multiple-Frequency Minimum Time Scheduling Prob-
lem (MFMTSP): Given a treeT on an arbitrary graphG, an
integerp, and a constant number of frequenciesq, is there an
assignment of frequencies to the receivers inT using at most
q frequencies, and an assignment of time slots to the edges in
T , such that the schedule length is at mostp?

THEOREM 3. The MFMTSP is NP-complete.

Proof: It is easy to show that the MFMTSP is in NP.
Given a particular assignment, one can use a non-deterministic
algorithm to verify in polynomial time that - (i) at mostq
frequencies andp time slots are used, (ii) either the receivers
of every interfering edge structure are assigned differentfre-
quencies or their edges are on different time slots, and (iii) all
adjacent edges are on different time slots.
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Fig. 2. Reduction for the MFMTSP: (a) Gadget for eachvi in G′ for q = 3;
(b) InstanceG′ of the vertex color problem; (c) InstanceG of the MFMTSP
as constructed fromG′ for q = 2.

To show NP-hardness, we reduce an instanceG′ = (V ′, E′)
of the vertex color problem to an instanceG = (V,E) of
the MFMTSP, as illustrated with an example in Fig. 2. Let
|V ′| = n. For every vertexvi ∈ V ′, create a setSi of q
pairs of nodes{(uis, vis) : s = 1, . . . , q} in G, and join each
pair with an edgeeis, treatinguis as the parent ofvis. Then,
create

(

q
2

)

= q(q − 1)/2 interfering links between all such
pairs in eachSi as follows. Consider eachuis in turn, for
s = 1, ..., q− 1, and create an interfering link fromuis to vil,
for all l > s. Thus, every two edges inSi form an interfering
edge structure. Next, for every edgeeij = (vi, vj) ∈ E′, create
q2 interfering links (and hence,q2 interfering edge structures)
in G by considering the two sets:Si = {(uis, vis) : s =
1, . . . , q} andSj = {(ujs, vjs) : s = 1, . . . , q}, and creating
an interfering link from eachuis to eachvjs. Then, for each
Si, construct a binary treeT ib creating additional nodes and
edges, and treating the{uis} nodes as leaves, fors = 1, . . . , q.
Finally, treating the roots ofT ib ’s as leaves create a binary
tree on top of it, and designate the root of it as the sinks.
The reduction clearly runs in polynomial time and creates an
instance of the MFMTSP. Next, we show that there exists a
solution to the vertex color problem using at mostp colors
if and only if there exists an assignment inT using at most
q frequencies and at mostp plus a constant number of time
slots.

SupposeG′ is vertex colorable using at mostp colors, and
vi is assigned colort. First, assign frequencyfs to uis, for
s = 1, ..., q, in eachSi, and any one of theq frequencies,
sayf1, to all the parents in the rest of tree. Then, assign time
slot t to all the q edges connecting the pairs(uis, vis), for
s = 1, ..., q, in eachSi. Because all the receivers inSi are
on different frequencies, assigning the same time sot to all
the edges inSi does not violate the interfering link constraint

within eachSi. Also, since only non-adjacent vertices inG′

may have the same color, two sets of edgesSi andSj that are
on the same time slot cannot have interfering links between
each other, because interfering links exist betweenSi andSj
whenevervi andvj are adjacent inG′. Next, the lowest level
edges, which connect to the{uis} nodes, of all the binary trees
T ib , ∀i, can be scheduled using at most2 time slots, because
all the edges in eachSi are assigned the same slot. Finally,
all the remaining edges in the binary tree can be scheduled in
polynomial time because a distance-2-edge-coloring on trees
can be computed in polynomial time [21], and within number
of time slots no more than its strong chromatic index which,
from Lemma 2, equals at most5.

Conversely, suppose there exists a valid assignment inG
that uses at mostq frequencies and at mostp plus a constant
number of slots. Assign colors to the vertices inG′ as
follows. For each frequencyfs, consider the set of edges
Ets = {(uts, vts)}, which are assigned slott, for t = 1, ..., p,
in order. Since the edges inEts are on the same slot and
their receivers are on the same frequency, they cannot be part
of an interfering edge structure, and so each one of them
must lie in a differentSi. Therefore, each edge inEts has
a corresponding vertex inG′ no two of which are adjacent.
Select those edges inEts whose corresponding vertices are
unassigned, and assign colort to all of them. Repeat the
above assignment for all the frequenciesfs, for s = 1, . . . , q.
Clearly this uses at mostp colors and assigns different colors
to adjacent vertices. Also, because we run the above procedure
over all frequencies and over all time slots, and select an
edge fromEts only if its corresponding vertex is unassigned,
exactly one edge gets picked from eachSi. Therefore, every
node inG′ gets a proper color, and the theorem follows.

IV. A SSIGNMENT ONUNIT DISK GRAPHS

In this section, we consider aggregated convergecast in
networks that are modeled asunit disk graphs(UDG) on
the Euclidean plane and prove constant factor approximation
results on the optimal schedule length.

We divide the area covering all the nodes into a set of equal
sized grid cells{ci}, each of sizeα×α, as illustrated in Fig. 3.
Under a UDG model, there exists an edge between every two
nodes that are at most a unit distance apart from each other.

DEFINITION 3. Two cells are adjacent to each other if they
share a common edge or a common grid point.

DEFINITION 4. An edgeek is in cell ci if the receiver ofek
lies within ci.

Thus, a cell can have3, 5, or 8 adjacent cells depending
on whether it is a corner cell, an edge cell, or an interior cell,
respectively. Since the interfering links are of length at most
one, interference isspatially restricted, and thus we can reuse
time slots across cells that are spatially well separated.

A. Time Slot Assignment on Unit Disk Graphs

We begin this subsection with an upper bound on the
minimum schedule length. Letγci

denote thesetof time slots
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needed to schedule all the edges inci.

L EMMA 3. The minimum schedule lengthΓ for the whole
network is bounded by:Γ ≤ 4 · max

ci

{|γci
|} , ∀α ≥ 2

Proof: SinceG is a UDG, the distance between any two
adjacent nodes is at most one, and thus two edges that are
in non-adjacent cells must have their transmitters at leasttwo
hops away from the receiver of the other, for anyα ≥ 2.
Therefore, two such edges can be scheduled on the same time
slot regardless of their receiver frequencies, such ase1 ande4
in Fig 3 on frequencyf . Thus, the setγci

of time slots needed
to schedule all the edges inci can be reused in any other cell
cj that is non-adjacent toci, for anyα ≥ 2.

Construct a graphGΓ = (VΓ, EΓ), whose each vertexvi ∈
VΓ corresponds to a cellci, and an edge exists between any
two verticesvi and vj if their corresponding cellsci and cj
are adjacent to each other, as shown in Fig. 3. The minimum
number of colors needed to vertex colorGΓ is thus equal to
the minimum number of pair-wise disjoint setsγci

’s needed to
schedule all the links inG. Now, although vertex coloring on
a general graph is NP-complete [12], because of the regular
grid structure here, we can vertex colorGΓ using at most four
colors,C1, C2, C3, C4, as shown by a particular assignment
in Fig. 3. The coloring pattern used is as follows: Number the
vertices starting from1 in each row ofGΓ; then (i) assign
C1 to every odd vertex andC2 to every even vertex in the
odd numbered rows, and (ii) assignC3 to every odd vertex
andC4 to every even vertex in the even numbered rows. The
corresponding assignment of the four sets of time slots,γ1, γ2,
γ3, γ4, are shown within the cells. Note that no twoγj ’s have
a slot in common, and|γj | ≤ maxci

{|γci
|}, for j = 1, 2, 3, 4.

Therefore,Γ = |γ1∪γ2∪γ3∪γ4| = |γ1|+ |γ2|+ |γ3|+ |γ4| ≤
4 · max

ci

{|γci
|}.

B. Frequency Assignment on Unit Disk Graphs

Let Rci
= {v1, . . . , vn} denote the set of receivers onT in

ci, and letm : Rci
→ {f1, . . . , fK} be a mapping that assigns

a frequency to each of the receivers. Note that ifm(vj) = fk,
then the children ofvj transmit on frequencyfk.

DEFINITION 5. We define a load-balanced frequency assign-
ment in ci as an assignment of theK frequencies to the

receivers inRci
such that the maximum number of nodes

transmitting on the same frequency is minimized.

To formulate this, we define theload on fk in ci underm
as the total number of children of all receivers inRci

that are
assignedfk, and denote it bylmci

(fk). We call the number of
children ofvj its in-degree, and denote it bydegin(vj). Thus,

lmci
(fk) =

∑

vj∈Rci
,m(vj)=fk

degin(vj) (2)

Then, a load-balanced frequency assignmentm∗ in ci is:

m∗ = arg min
m

max
fk

{

lmci
(fk)

}

(3)

We denote the load on the maximally loaded frequency under
m∗ in ci by Lm

∗

ci
. Finding a load-balanced frequency assign-

ment is equivalent, as shown in Lemma 4, to scheduling jobs
on identical machines to minimize themakespan(last finishing
time of the given jobs), which is known to be NP-hard [13].
Below, we describe an algorithm FREQUENCYGREEDY in
Algorithm 3 that achieves a(4/3 − 1/3K)-approximation on
Lm

∗

ci
.

Algorithm 3 FREQUENCYGREEDY

1. In each cellci, do the following:
2. Sort the nodes inRci

in non-increasing order of their in-degrees. Let this
order be:degin(v1) ≥ degin(v2) ≥ . . . ≥ degin(vn)

3. Starting from v1, assign each successive node a frequency from
{f1, . . . , fK} that has theleast load on it so far, breaking ties arbitrarily.

L EMMA 4. The algorithmFREQUENCYGREEDY in each cell
ci gives a(4/3 − 1/3K)-approximation onLm

∗

ci
.

Proof: In the job scheduling problem, there areK iden-
tical machinesm1, . . . ,mK , andn jobs 1, . . . , n. Executing
a job j on any machine takes timetj > 0. Thus, if Ψ(k)
denote the set of jobs assigned to machinemk, then the
total time mk takes is

∑

j∈Ψ(k) tj , and the makespan is
max1≤k≤K{

∑

j∈Ψ(k) tj}. The objective is to find an assign-
ment of the jobs to the machines that minimizes the makespan.

In the load-balanced frequency assignment formulation,
map each receivervj ∈ Rci

to job j, anddegin(vj) to tj. Map
each frequencyfk to machinemk. The load onfk is therefore
equal to the total timemk takes. Thus, minimizing the maxi-
mum load over all the frequencies is equivalent to minimizing
the makespan over all the machines. Under this mapping,
FREQUENCYGREEDY is identical to Graham’s list schedul-
ing algorithm according to thelongest-processing-time-first
(LPT) [13], which achieves a(4/3 − 1/3K)-approximation
on the minimum makespan. Therefore, the lemma follows.

L EMMA 5. If Lφci
denote the load on the maximally loaded

frequency inci under mappingφ : Rci
→ {f1, . . . , fK}

achieved byFREQUENCYGREEDY, then any greedy time slot
assignment can schedule all the edges inci within 2Lφci

time
slots, i.e.,|γci

| ≤ 2Lφci
.

Proof: Consider a multi-graphH = ({f1, . . . , fK}, E′),
where for each edgee = (vi, vi′ ), vi, vi′ ∈ Rci

with
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φ(vi) 6= φ(vi′ ), we have an edge(φ(vi), φ(vi′ )) ∈ E′. Note
that these will be multi-edges; letn(fk, fk′) denote the number
of edges betweenfk andfk′ in H . Then,deg(fk) ≤ lφci

(fk),
where lφci

(fk) is the load onfk under φ in ci. By Ore’s
theorem [20], which generalizes Vizing’s theorem for edge
coloring on multi-graphs, it follows that the edges inH can be
colored usingmaxfk

{lφci
(fk)} colors. Therefore, all edges of

the forme = (vi, vi′ ) between two nodes inRci
with different

frequencies can be colored inmaxfk
{lφci

(fk)} = Lφci
colors.

All remaining edges either have only one end-point inRci
,

or have both end-points inRci
, with the same frequency; let

S(fk) denote the set of such edges with the end-point inRci

assigned frequencyfk. Note that|S(fk)| ≤ lφci
(fk), and edges

e ∈ S(fk), e
′ ∈ S(fk′) can be assigned the same time slot if

fk 6= fk′ . So all the remaining edges can be scheduled in
maxfk

|S(fk)| ≤ maxfk
{lφci

(fk)} time slots. Therefore, all
edges inci can be scheduled within2 maxfk

{lφci
(fk)} = 2Lφci

time slots, and the lemma follows.
We now prove a constant factor approximation result on the

optimal schedule length.

THEOREM 4. Given a treeT on a UDG G, and K fre-
quencies, there exists a greedy algorithmG that achieves
a constant factor8µα (4/3 − 1/3K)-approximation on the
optimal schedule length, whereµα > 0 is a constant for a
given cell sizeα ≥ 2.

Proof: Algorithm G consists of two phases: (i) run
FREQUENCYGREEDY in eachci, and (ii) runanygreedy time
slot assignment scheme for the whole network. One possible
scheme is to greedily schedule amaximal number of edges
simultaneously at each iteration.

Let the schedule length ofG be ΓG , and that of an optimal
algorithmOPT be ΓOPT . We seek a lower bound onΓOPT .

Because of UDG, the tree edges are of length at most one,
and thus for a given cell sizeα, at most a constant number
of them can fit within any cellci. Moreover, because of
interfering links, there exists a constantµα > 0, depending
on α and the deployment distribution, such that at mostµα
edges inany ci whose receivers are on the same frequency
can be scheduled simultaneously byOPT .

Now, regardless of the assignment chosen byOPT , it will
take at leastLm

∗

ci
/µα time slots to schedule all the edges inci.

This is becauseLm
∗

ci
is theminimumof the maximumnumber

of edges that are on the same frequency inci. So, whatever
frequency assignmentOPT chooses, the number of edges that
are on the same frequency inci must be at leastLm

∗

ci
. Thus,

ΓOPT ≥ Lm
∗

ci
/µα, ∀ci, ⇒ ΓOPT ≥ maxci

{Lm
∗

ci
}/µα; so

max
ci

{Lm
∗

ci
} ≤ µα · ΓOPT (4)

By running FREQUENCYGREEDY in ci, Lemma 4 implies

Lφci
≤ (4/3 − 1/3K) · Lm

∗

ci
(5)

and by running any greedy time slot assignment scheme in the
whole network, Lemma 5 implies:

|γci
| ≤ 2Lφci

(6)

Then, from Lemma 3 and (6) it follows that the number of
time slots needed to schedule the entire network byG is:

ΓG ≤ 4 · max
ci

{|γci
|} ≤ 8 · max

ci

{

Lφci

}

≤ 8 · max
ci

{

(4/3 − 1/3K) · Lm
∗

ci

}

≤ 8µα (4/3 − 1/3K) · ΓOPT (7)

Therefore, the theorem follows.

V. A SSIGNMENT ONARBITRARY TREESUNDER UDG

In our discussion so far, we assumed that the routing treeT
onG was given as an input to the problem. We now consider
the case when it is not (sinks is still given), thus implying
thatOPT can construct anyarbitrary tree T rooted ats to
minimize the schedule length. In this section, we incorporate
the construction ofT as part of the greedy algorithm, and seek
for properties ofT that would still guarantee a constant factor
approximation on the optimal schedule length in UDG.

THEOREM 5. Given a UDGG and K frequencies, there
exists an algorithmH that achieves a constant factor8µα∆C -
approximation on the optimal schedule length, whereµα > 0
is a constant for a given cell sizeα ≥ 2, and ∆C > 0 is a
constant.

Proof: SinceOPT can construct any arbitrary treeT on
G, we seek for a lower bound onΓOPT independent ofT .

Let Vci
denote the set of nodes inci. Note thatVci

is
independent ofT , and depends only onG. BecauseOPT can
schedule simultaneously at most a constant numberµα > 0
of nodes (i.e., edges) inany ci whose parents are on the
same frequency, the best it could do withK frequencies is
to distribute the nodes inVci

evenlyamong all the frequencies
so that⌈|Vci

|/K⌉ is the minimumof the maximumnumber
of nodes transmitting on the same frequency. Thus,ΓOPT ≥
⌈|Vci

|/K⌉/µα, ∀ci, ⇒ ΓOPT ≥ maxci
{⌈|Vci

|/K⌉}/µα; so

max
ci

{⌈|Vci
|/K⌉} ≤ µα · ΓOPT (8)

SupposeRci
(T ) = {v1, . . . , vn} denote the set of

receivers in ci for any arbitrary treeT , and suppose
∆in(T ) be the maximum in-degree of a node inT . Then,
maxvj∈Rci

(T ){deg
in(vj)} ≤ ∆in(T ), and |Rci

(T )| ≤ |Vci
|.

Define acyclic frequency assignment under mappingψ :
Rci

(T ) → {f1, . . . , fK} as follows:

ψ(vi) =

{

i mod K, if i 6= qK
K, if i = qK

(9)

whereq ∈ N
+, a positive integer. It is easy to see that the

maximum number of receivers that are on the same frequency
is

⌈

|Rci
(T )|/K

⌉

. Therefore, the loadLψci
on the maximally

loaded frequency inci is bounded by the following:

Lψci
≤

⌈

|Rci
(T )|/K

⌉

· max
vj∈Rci

(T )

{

degin(vj)
}

≤ ⌈|Vci
|/K⌉ · ∆in(T ) (10)
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Now, the loadLφci
on the maximally loaded frequency

produced by FREQUENCYGREEDY is no more thanLψci
; thus

Lφci
≤ Lψci

≤ ⌈|Vci
|/K⌉ · ∆in(T ) (11)

Then, doing any greedy time slot assignment and using
Lemma 3 and Lemma 5 as before, and (11) it follows that:

ΓH ≤ 8 · max
ci

{

⌈|Vci
|/K⌉ · ∆in(T )

}

(12)

Since |Vci
| and∆in(T ) are independent of each other, we

can take the maximum separately on the two terms; thus,

ΓH ≤ 8 · max
ci

{⌈|Vci
|/K⌉} · max

ci

{

∆in(T )
}

= 8 · max
ci

{⌈|Vci
|/K⌉} · ∆in(T )

≤ 8µα∆in(T ) · ΓOPT (13)

Thus, (13) implies that so long as the maximum in-degree
of a node inT is bounded by a constant∆C > 0, the theorem
holds. Although finding a degree-bounded spanning tree on a
general graph is known to be NP-hard [12], for any UDG it
is always possible to find a spanning tree of degree at most
5 [24]. Therefore, the theorem follows.

VI. EVALUATION

In this section, we evaluate the performance of our algo-
rithms through simulations on UDG. We construct connected
networks by randomly placing nodes on a square region of
maximum size200×200 unit2 and connecting any two nodes
that are at most25 units from each other. Note that we scale
up the UDG by a factor of25 just for convenience. We assume
that the interference range for each node is also25 units.

A. Frequency Bounds

Fig. 4 shows the number the frequencies needed as a func-
tion of density to remove all the interfering links as calculated
from algorithm LARGESTDEGREEFIRST (LDF) and from the
upper bound∆(GC)+1 on the constraint graphGC , for given
shortest path trees. Here, we keep the number of nodesN fixed
at 200 and vary the lengthl of the square region from200 to
20 so the densityd = N/l2 varies from0.005 to 0.5.

The trend shows that the number of frequencies initially
increases with density because of increasing interference.
However, as the network gets denser, it reaches a peak and
then steadily decreases to1, because the number of parents
on the tree becomes fewer and the network gradually turns
into a single hop network with the sink as the only parent. We
also observe that for sparser networks there is a significantgap
between the upper bound and the LDF scheme as compared
to that in denser networks. This is because in sparser settings
there are many parents, resulting in higher∆(GC), and
assigning a distinct frequency to the largest degree parent
according to LDF removes more interfering links at every step
than it does for denser settings when the parents are fewer and
have similar degrees.
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Fig. 4. Number of frequencies required to remove all the interfering links
as a function of network density for shortest path trees.
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Fig. 5. Schedule length of the greedy algorithmG with different network
sizes on shortest path trees;K is the number of frequencies.

B. Schedule Length

We evaluate the performance of our greedy algorithmG of
Theorem 4 forl = 200 on two types of trees: (i) shortest path
trees (SPT), and (ii) minimum interference trees (MIT). We
note that the constant factor approximations in our algorithms
depend on the parameterµα, which decreases with decreasing
α. However, the smallestα for which Lemma 3 holds is 2.
Thus, in our experiments we choseα = 50, which is again
scaled up 25 times, as is the UDG.

1) Shortest Path Tree:Fig. 5 shows the schedule length
of the greedy algorithmG with different number of nodes on
shortest path trees. The different curves are for differentnum-
ber of frequencies. We observe that multiple frequencies help
in reducing the schedule length, and this reduction increases
with increasing network size, as the curve for single frequency
and those for multiple frequencies diverge from each other.
We also notice that the schedule lengths with three or more
frequencies do not differ much, implying that interferenceis
mostly eliminated with three frequencies and so having more
frequencies is redundant.

2) Minimum Interference Tree:Since interference is one
of the limiting factors in minimizing the schedule length, we
study the performance of our approximation algorithms on
interference-optimal trees. We use an existing greedy algo-
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Fig. 6. Schedule length of the greedy algorithmG on SPT and MIT for
different network sizes;K is the number of frequencies.

rithm LIFE [4] to construct minimum interference spanning
trees. LIFE uses a particular interference model, in which the
outgoing edge interferenceIout(e) for an edgee = (u, v) is
defined as the number of nodes covered by the union of the
two disks centered atu and v, each of radius|uv|, where
|uv| denotes the Euclidean distance betweenu and v. The
interferenceIout(G) of a graphG is defined as the maximum
edge interference over all edges. The greedy strategy in LIFE is
to construct a minimum spanning tree considering the weight
of an edgee asIout(e).

Fig. 6 shows the schedule length computed by algorithm
G on SPTs with one frequency, and on MITs with one and
three frequencies, for different network sizes. As expected,
we observe a significant reduction in the schedule length for
larger networks on MITs. Comparing Fig. 5 and Fig. 6, we
notice that the curve for MIT with even one frequency is
lower than those for SPT with multiple frequencies, implying
that interference-optimal trees can also give benefits similar
to multiple frequencies in terms of reducing the schedule
length. The increasing gain in larger networks is due to smaller
maximum node degree on MIT compared to that of SPT. For
this particular plot with one frequency, the average maximum
node degree on MIT is between 4 and 9, whereas on SPT it
is between 8 and 34, with more than 20 beyond 450 nodes.

VII. C ONCLUSIONS

We proved two NP-completeness results on the problem of
minimizing the schedule length of aggregated convergecastin
sensor networks and proposed algorithms that achieve constant
factor approximations on unit disk graphs. We also evaluated
our algorithms through simulations and showed various trends
in performance for different network parameters. Even though
we considered protocol/graph-based network and interference
models as opposed to physical/SINR-based models [19] as
a first step in this paper, the results presented in [15] show
that graph-based models provide a decent approximation to
SINR-model behavior. Studying scheduling protocols utilizing
multiple frequencies under SINR-based models remain as part
of our future work. From the simulation results we observed
that the schedule length improved significantly for minimum

interference trees; however the trees are not guaranteed tobe
degree-bounded, which is a necessary condition for Theorem5
to hold. Exploring the problem of constructing interference-
optimal degree-bounded trees is also part of our future work.
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