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ABSTRACT
Urban sensing, participatory sensing, and user activity recog-
nition can provide rich contextual information for mobile
applications such as social networking and location-based
services. However, continuously capturing this contextual
information on mobile devices is difficult due to battery life
limitations. In this paper, we present the framework design
for an Energy Efficient Mobile Sensing System (EEMSS)
that powers only necessary and energy efficient sensors and
manages sensors hierarchically to recognize user state as
well as detect state transitions. We also present the de-
sign, implementation, and evaluation of EEMSS that auto-
matically recognizes user daily activities in real time using
sensors on an off-the-shelf high-end smart phone. Evalua-
tion of EEMSS with 10 users over one week shows that it
increases the smart phone’s battery life by more than 75%
while maintaining both high accuracy and low latency in
identifying transitions between end-user activities.

1. INTRODUCTION
As Moore’s law continues doubling the number of transis-

tors in unit area every 18 months, defying several pessimistic
predictions, mobile phones are packing more functionalities
onto a single chip. A large fraction of the growth in func-
tionality is achieved through integrating complex sensing ca-
pabilities on mobile devices. Even mid-range mobile phones
now pack features that were primarily in the previous gener-
ation’s high-end mobile devices. For instance, current sens-
ing capabilities on mobile phones include WiFi, Bluetooth,
GPS, audio, video, light sensors, accelerometers and so on.
As such the mobile phone is no longer only a communication
device, but also a powerful environmental sensing unit that
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can monitor a user’s ambient context, both unobtrusively
and in real time.

On the application side, ambient sensing [1] has become a
primary input for a new class of mobile cooperative services
such as real time traffic monitoring [2] and social networking
applications such as Facebook [3] and MySpace [4]. Using
AI and data mining techniques, a user’s context can also be
used to learn about the interactions between user’s behavior
and the surrounding environment. Combining both the tech-
nology push and demand pull, more and more context aware
applications are trying to utilize various data sensed by ex-
isting embedded sensors. However, the critical piece that
provides services to these applications is user state recogni-
tion. A user state contains a combination of features such
as motion, location and background condition that together
describe one’s current condition. By extracting more mean-
ingful characteristics of devices, users and surroundings in
real time, applications can be more adaptive to the changing
environment and user preferences. For instance, it would be
much more convenient if our phones can automatically ad-
just the ring tone profile to appropriate volume and mode
according to the surroundings and the events in which the
users are participating.

A big hurdle for context detection, however, is the limited
battery capacity of mobile devices. The embedded sensors in
the mobile devices are major sources of power consumption.
For instance, a fully charged battery on Nokia N95 mobile
phone can support telephone conversation for longer than
ten hours, but our empirical results show that the battery
would be completed drained within six hours if the GPS
receiver is turned on, whether it can obtain GPS readings
or not. Hence, excessive power consumption may become a
major obstacle to broader acceptance context-aware mobile
applications, no matter how useful the service may be.

To address this problem, we present the design, implemen-
tation, and evaluation of EEMSS, an energy efficient mo-
bile sensing system that incorporates a hierarchical sensor
management scheme for power management. Based on var-
ious sensor readings, EEMSS automatically recognize user
state which describes the user’s real-time condition includ-
ing one’s motion (such as running and walking), location
(such as staying at home or on a freeway) and background



environment (such as sound and crowd level). The core com-
ponent of EEMSS is a sensor management scheme which de-
fines user states and state transition rules by an XML styled
state descriptor. This state descriptor is taken as system in-
put and is used by our sensor assignment functional block
to control sensors based on a user’s current condition at any
specific time.

The benefits of our sensor management scheme are three-
fold. First, the state descriptor supports flexibility since the
set of user states to be classified can be configured based
on the application requirements. Second, to achieve energy
efficiency, the sensor management scheme assigns the min-
imum set of sensors at any particular time as required and
invokes new sensors when state transitions happen. Other
sensors are activated when this minimum set of sensors de-
tects a state transition, with a corresponding new minimum
set of sensors assigned. In this way, a hierarchical sensor
management, which reconfigures the sent of active sensors
dynamically is achieved in state transitions. Lastly, our sen-
sor management scheme can be potentially extended as a
middleware that conducts sensor operations and provides
contextual information to higher layer applications or much
more sophisticated sensing projects with multiple types of
devices and sensors involved.

EEMSS is currently implemented and was evaluated on
Nokia N95 devices. EEMSS currently makes use of data
from the accelerometer, WiFi detector, GPS, and micro-
phone, which are all built-in sensors on the N95. EEMSS
also incorporates novel and efficient classification algorithms
for real-time user activity and background sound recogni-
tion. Using these algorithms, EEMSS can currently classify
such user states as “Walking”, “Vehicle”, “Resting”, “Home
talking”,“Home entertaining”,“Working”,“Meeting”,“Loud
office”, “Quiet place”, “Speech place”, and“Loud place”, all

specified by a combination of features obtained from differ-
ent sensor readings. We have also conducted a field study
with 10 users at two different university campuses to eval-
uate the performance of EEMSS. Our results show that
EEMSS is able to detect states with 92.56% accuracy and
improves the battery lifetime by over 75%.

The remainder of this paper is organized as follows. In
Section 2, we present previous relevant works and their re-
lations to our study. In Section 3, we propose the sensor
management scheme which is the core component of real-
time energy efficient mobile sensing system design. In Sec-
tion 4, we introduce a case study of EEMSS on Nokia N95
devices and present its architecture and implementation. In
Section 5, we list the empirical results of different sensor
power consumptions as one of the motivations of our system
design and discuss the sensor duty cycling impact on system
performance. In Section 6, we propose novel real-time ac-
tivity and background sound classification mechanisms that
result in good classification performance. The user study is
presented in Section 7, where we also evaluate our system
in terms of state recognition accuracy, state transition dis-
covery latency and device lifetime. Finally, we present the
conclusion and our future work direction in Section 8.

2. RELATED WORK
There has been a fair amount of work investigating multi-

sensor mobile applications and services in recent years. The
concept of sensor fusion is well-known in pervasive comput-
ing. For example, Gellersen et al. [5] pointed out the idea

that combining a diverse set of sensors that individually cap-
tures just a small aspect of an environment may result in a
total picture that better characterizes a situation than loca-
tion or vision based context.

Motion sensors have been widely used in monitoring and
recognizing human activities to provide guidance to specific
tasks. For example, in car manufacturing, a context-aware
wearable computing system designed by Stiefmeier et al. [6]
could support a production or maintenance worker by rec-
ognizing the worker’s actions and delivering just-in-time in-
formation about activities to be performed. They developed
a jacket with various sensors attached is developed in their
project.

A common low cost sensor used for detecting motion is
the accelerometer. With accelerometer as the main sensing
source, activity recognition is usually formulated as a clas-
sification problem where the training data is collected with
experimenters wearing one or more accelerometer sensors in
a certain period. Different kinds of classifiers can be trained
and compared in terms of the accuracy of classification [7,
8, 9]. For example, more than 20 human activities including
walking, watching TV, running, stretching and so on can be
recognized with fairly high accuracy [10]. While it is still not
clear what kind of classification algorithms works the best,
most of the existing works require accelerometer sensor(s) to
be installed on pre-identified position(s) near human body.

One way to make the sensing process less obtrusive is to
use the off-the-shelf mobile devices such that no external sen-
sors are needed. Several works have been conducted by using
the commodity cell phones as platforms [11, 12, 13, 14, 15,
16]. For example, “CenceMe” [13] enables members of social
networks to share their sensing presence with their“buddies”
in a secure manner. The system uses the integrated as well
as external sensors to capture the users’ status in terms of
activity, disposition, habits and surroundings. A CenceMe
prototype has been made available on Facebook, and the
implementation and evaluation of the CenceMe application
has also been discussed [14]. Similarly, “Sensay” [12] is a
context-aware mobile phone and uses data from a number
of sources to dynamically change cell phone ring tone, alert
type, as well as determine users’ “un-interruptible” states.

Researchers from different fields have studied and imple-
mented a large number of sensors including GPS, Bluetooth,
WiFi detector, oxygen sensor, accelerometer, electrocardio-
graph sensor, temperature sensor, light sensor, microphone,
camera, and so on, in projects such as urban/paticipatory
sensing, activity recognition and health monitoring [13, 14,
11, 17, 18, 19, 20].

This variety of sensors enables sensing systems to provide
extremely rich context information of the users for higher
layer applications such as human status tracking, social net-
working, and location based services. However, limited bat-
tery life significantly constrains how long and how often i
mobile sensing can be done. The case becomes more severe
if the sensors are all turned on continuously without any
controlling mechanism.

The problem of power management on mobile devices has
been well-explored. Viredaz et al. [21] surveyed many fun-
damental but effective methods for saving power on hand-
held devices. It has been suggested from the architecture
point of view that the system hardware should be designed
as a collection of inter-connected building blocks that could
function independently to enable independent power man-



agement. Dynamic frequency/voltage scaling [22] should
be adopted to reduce power consumption by configuring the
processor based on the requirements of the executing ap-
plications. In other words, the power-saving scheme should
be fully customized for real-time power consumption situ-
ation and the specific application requirements. However,
these methods are more suitable for lower-level system de-
sign rather than application development. Event driven
power-saving method is another important method to re-
duce extra power consumption as well. Shih et. al. [23]
focused on reducing the idle power, the power a device con-
sumes in a “standby” mode, such that a device turns off the
wireless network adaptor to avoid energy waste while not ac-
tively used. The device will be powered on only when there
is an incoming or outgoing call or when the user needs to
use the PDA for other purposes.

To further explore the concept of event-driven, a hierar-
chical power management method was used in [24]. In their
demo system “Turdecken”, a mote is used to wake up the
PDA, which in turn wakes up the computer by sending a
request message. Since the power required by the mote is
enough for holding the whole system standby, the power
consumption can be saved during system idle time.

In our system design, we build on many of these past ideas
and integrate them in the context of effective power man-
agement for sensors on mobile devices. We also use a hier-
archical approach for managing sensors, and do so in such a
way that still maintains accuracy in sensing the user’s state.
A similar idea was explored by the “SeeMon” system [25],
which achieves energy efficiency by only performing context
recognition when changes occur during the context monitor-
ing. However, “SeeMon” focuses on managing different sens-
ing sources and identifying condition changes rather than
conducting people-centric user state recognition.

3. SENSOR MANAGEMENT
METHODOLOGY

In our framework design for energy efficient mobile sens-
ing, energy efficiency is achieved by managing sensors in a hi-
erarchical way based on the user’s current state. Note that a
state may describe the user’s real-time condition which could
possibly represent one’s motion (such as running and walk-
ing), location (such as staying at home or on a freeway) and
background environment (such as sound and crowd level).

The core component of EEMSS is a sensor management
scheme that associates user states with particular sensors
and contains both the set of necessary sensors need to be
monitored and the sequence of future sensors to be turned on
to detect state transition. The sensor management scheme
uniquely describes the features of each user state by a par-
ticular sensing criteria and state transition will only take
into place once the criteria is satisfied. An example would
be that “meeting in office” requires the sensors to detect
both the existence of speech and the fact that the user is
currently located in office area. Note that although in this
paper we focus only on states that can be detected by in-
tegrated sensors on mobile devices, our sensor management
scheme is general enough that one can apply our infrastruc-
ture to mobile sensing systems that involves more sensors
and devices.

Sensor assignment is achieved by specifying an XML-format
state descriptor as system input that contains all the states

to be automatically classified by the sensing system as well
as sensor management rules for each state. The system will
parse the XML file as input and automatically generate a
sensor management module that serves as the core compo-
nent of EEMSS and controls sensors based on real-time sys-
tem feedback. In essence, the state descriptor consists of a
set of state names, sensors to be monitored, and conditions
for state transitions.

Figure 1 illustrates the general format of a state descrip-
tor. It can be seen that a user state is defined between the
“<State>” and “</State>” tags. For each state, the sen-
sor(s) to be monitored are specified by “<Sensor>” tags.
The hierarchical sensor management is achieved by assign-
ing new sensors based on previous sensor readings in order
to detect state transition. If the state transition criteria
has been satisfied, the user will be considered as entering
a new state (denoted by “<NextState>” in the descriptor)
and the sensor management algorithm will restart from the
new state. For example, based on the sample description
in Figure 1, if the user is at “state2” and “sensor2” returns
“sensor reading 2”which is not sufficient for state transition,
“sensor3”will be turned on immediately to further detect the
user’s status in order to identify state transition.

There are three major advantages of using xml as the for-
mat of state descriptor. First, XML can represent the hierar-
chical relationship among sensor in a clear manner. Second,
the state descriptors can be modified with relative ease even
by someone with limited programming experience. Finally,
XML files are easily parsed by modern programming lan-
guages such as Java and Python thereby making the process
portable and easy to implement.

It is important to note that the system designer has to
be familiar with the operations of different sensors such as
assigning suitable sampling period and duty cycle to each
sensor in order to well maintain the sensing functionality.
Classification algorithms that recognize user status based
on different sensor readings also need to be pre-trained and
implemented as part of the system.

Various sensors makes the user’s contextual information
available in multiple dimensions, from which a rich set of
user states can be inferred. Different users or higher layer
applications may only be interested in a subset of states
with corresponding sensors that provide specific context in-
formation. For example, a ring tone adjustment application,
which can automatically adjust the cell phone alarm type,
may only need to know the property of background sound in
order to infer the current situation. A medical application
may require the system to monitor one’s surrounding tem-
perature, oxygen level and the user’s motion such as running
and walking to give advise to patient or doctors. In a per-
sonal safety application, an important factor that one may
care is whether the user is riding a vehicle or walking alone
such that the mobile client is able to send warning messages
to the user when he or she is detected walking in an unsafe
area at late night. These are all examples of mobile sens-
ing systems with particular context requests, by which our
framework design can be potentially adopted.

Here we also propose a possible extension of our EEMSS
design. In our current implementation, sensor management
rules are manually configured in the XML state descriptor
and sensor sampling intervals and duty cycles are chosen
based on extensive experiments (details of duty cycle assign-
ments will be discussed in Section 5). In order to provide an



Figure 1: The format of xml based state descriptor.

automated sensor assignment mechanism rather than man-
ually specifying sensing parameters, a sensor information
database could be built a priori on each mobile device that
stores the sensor power consumption statistics, sensor op-
eration methods and so on. As a result, the sensor man-
agement effort will be pushed from the developer-end to the
device-end where the sensor information database serves as
a stand-alone sensor management knowledge center. In this
scenario the sensor management scheme as well as the sen-
sor sampling parameters could be automatically generated
or computed based on the existing knowledge, thus human
input may not be required anymore.

4. EEMSS DESIGN AND IMPLEMENTATION
– A CASE STUDY

4.1 EEMSS: The Overview
As a case study, we have implemented the sensor manage-

ment scheme as the core component of our implementation
of EEMSS (energy efficient mobile sensing system) on Nokia
N95 devices. The N95 comes with several built-in sensors,
including GPS, WiFi detector, accelerometer, and embed-
ded microphone. The goal of the case study is to conduct a
prototype implementation and to quantify the performance
in terms of state recognition accuracy, detection latency, as
well as energy efficiency. As such we select a set of states
that describe the user’s daily activities and have defined the
state and sensor relationships in XML using the format in-
troduced in the previous section. Table 1 illustrates the set
of user states to be recognized by EEMSS and some of the

Figure 2: The sequential sensor management rules
used to detect state transitions when the user is
walking outdoors.

characteristics of these states.
For each user state, the mobile device will follow the sensor

management scheme and monitor certain sensors to detect
state transition, as shown in Table 1. If a state transition
happens, a new set of sensors will be turned on to recognize
one’s new activity. Here we select one of the user states
(Walking) and illustrate how the state transition is detected
when the user is walking outdoor. Figure 2 shows the hi-
erarchical decision rules. Recall that the hierarchical sensor
management are originally defined in the state descriptor
by specifying sensors to be monitored and sensing criteria
that trigger state transitions. It can be seen that the only
sensor that is being periodically sampled is GPS when the
user is walking, which returns both the Geo-coordinates and
the user’s speed information that can be used to infer user’s
mode of travel. If a significant amount of increase is found
on both user speed and recent distance of travel, a state
transition will happen and the user will be considered rid-
ing a vehicle. Once GPS times out due to lost of satellite
signal or because the user has stopped moving for a certain
amount of time, a WiFi scan will be performed to iden-
tify the current place by checking the surrounding wireless
access points. Note that the wireless access point sets for
one’s frequently visited places such as home, cafeteria, of-
fice, gym, etc. can be pre-assigned on the device. Finally,
the environment can be further sensed based on the audio
signal processing result. We will quantify the accuracy and
supported device lifetime by our system in Section 7.

It is important to note that the Nokia N95 device contains
more sensors such as Bluetooth, light sensor, and camera.
However, we chose not to use these sensors in EEMSS due
to either low technology penetration rate or sensitivity to
the phone’s physical placement. For example, experiments
have been conducted where a mobile device will probe and
count the neighboring Bluetooth devices, and the results
show that the number of such devices discovered is very low
(usually less than 5), even though a big crowd of people is
nearby. The light sensor is also not adopted in our study



State Name State Features Sensors Monitored
Location Motion Background Sound

Working Office Still Quiet Accelerometer, Microphone
Meeting Office Still Speech Accelerometer, Microphone

Office loud Office Still Lound Accelerometer, Microphone
Resting Home Still Quiet Accelerometer, Microphone

Home talking Home Still Speech Accelerometer, Microphone
Home entertaining Home Still Loud Accelerometer, Microphone

Place quiet Some Place Still Quiet Accelerometer, Microphone
Place speech Some Place Still Speech Accelerometer, Microphone
Place loud Some Place Still Loud Accelerometer, Microphone
Walking Keep on changing Moving Slowly N/A GPS
Vehicle Keep on changing Moving Fast N/A GPS

Table 1: The states and their features captured by our system (EEMSS).

because the result of light sensing by mobile phone depends
highly on the user’s habit of device placement therefore it
could potentially provide high percentage of false results.
Moreover, since we focus on an automated real-time state
recognition system design, the camera is also not consid-
ered as part of our study since N95 camera requires manual
switching on/off. Even though these sensors have not been
used in our case study, they still remain as important sensing
sources for our future study.

4.2 EEMSS: Architecture and Implementation
The main components of EEMSS, including sensor man-

agement and activity classification, have been implemented
on J2ME on Nokia N95 devices. The popularity of Java
programming and the wide support of J2ME by most of the
programmable smart phone devices ensure that our system
design achieves both portability and scalability. However,
the current version of J2ME does not provide APIs that al-
low direct access to some of the sensors such as WiFi and
accelerometer. To overcome this, we created a Python pro-
gram to gather and then share this sensor data over a local
socket connection.

The system can be viewed as a layered architecture that
consists of a sensor management module, a classification
module, and a sensor control interface which is responsi-
ble of turning sensors on and off, and obtaining sensed data.
We also implemented other components to facilitate debug-
ging and evaluation, including real-time user state updates,
logging, and user interfaces. Figure 3 illustrates the design
of the system architecture and the interactions among the
components.

As mentioned in the previous subsection, the sensor man-
agement module is the major control unit of the system. It
first parses a state description file that describes the sensor
management scheme, and then controls the sensors based
on the sensing criteria of each user state and state transi-
tion conditions by specifying the minimum set of sensors to
be monitored under different scenarios (states). The sen-
sor management module configures the sensors in real-time
according to the intermediate classification result acquired
from the classification module and informs the sensor con-
trol interface what sensors to be turned on and off in the
following step.

In our case study, the classification module is the con-
sumer of the sensor raw data. The classification module first
processes the raw sensing data into desired format. For ex-

Figure 3: System architecture of EEMSS implemen-
tation on Nokia N95. (1)System reads in the XML
state descriptor which contains the sensor manage-
ment scheme. (2)Management module determines
the sensors to be monitored based on current user
state which is specified by the sensor management
scheme. (3)Management module instructs the sen-
sor control interface to turn on/off sensors. (4)
Sensor control interface operates individual sensors.
(5) Sensor interface reports readings to classification
module. (6)Classification module determines the
user state. (7)Classification module forwards the in-
termediate classification result to management mod-
ule. (8) The user’s state is updated and recorded in
real-time. (9) The relevant information is also dis-
played on the smart phone screen.



Sensor Power(W) Current(A)
First Class
Accelerometer 0.0599 0.0150
Microphone 0.2786 0.0707

Second Class
GPS 0.3308 0.0862

WiFi Scan 1.4260 0.3497
Bluetooth Scan 0.1954 0.0486

Table 2: Power consumption summary for different
sensors on Nokia N95.

ample, the magnitude of 3-axis accelerometer sensing data is
computed, and FFT is performed on sound clips to conduct
frequency domain signal analysis. The classification module
returns user activity and position feature such as “moving
fast”, “walking”, “home wireless access point detected” and
“loud environment” by running classification algorithms on
processed sensing data. The resulting user activity and po-
sition information are both considered as intermediate state
which will be forwarded to the sensor management module.
The sensor management module then determines whether
the sensing results satisfy the sensing criteria and decides
sensor assignments according to the sensor management al-
gorithm.

The sensor interface contains APIs that provide direct ac-
cess to the sensors. Through these APIs, application can ob-
tain the sensor readings and instruct sensors to switch on/off
as well as change the sample rate. As mentioned previously,
due to J2ME limitations, GPS and embedded microphone
are operated through J2ME APIs while accelerometer and
WiFi detector are operated through Python APIs.

5. ENERGY CONSUMPTION MEASURE-
MENT AND SENSOR DUTY CYCLES

In this section, we present the energy consumption of each
sensor in the Nokia N95, to understand how to best co-
ordinate them in an effective way. We conducted a series
of energy consumption measurements on different built-in
sensors, including GPS, WiFi detector, microphone and ac-
celerometer. We also discuss the implementation of duty
cycling mechanisms on the sensors to reduce the energy cost.

5.1 Energy Consumption Measurement
The sensors on a mobile phone can be categorized into

two classes. The first class includes the accelerometer and
microphone. These sensors operate continuously and require
an explicit signal to be turned off. Moreover, both the ac-
celerometer and the microphone need to be activated for a
period of time to obtain meaningful sensing data. The sec-
ond class of sensors includes GPS, WiFi detector, and Blue-
tooth scanner. These sensors gather instantaneous samples,
and are automatically turned off when the sampling interval
is over.

For both classes, the energy cost of the sensors depends
not only on the instant power drain, but also on the op-
erating duration of the sensors. For example, due to API
and hardware limitations, the GPS on Nokia N95s require
a certain amount of time to successfully synchronize with
satellites and will remain active for about 30 seconds after
a location query. As such, the overall energy consumption
even to collect a single GPS sample is quite significant. In

our work, assisted-GPS is used to help reduce the satellite
synchronization time to less than 10 seconds in outdoor lo-
cations. A WiFi scan takes less than 2 seconds to finish,
and a Bluetooth scan takes around 10 seconds to complete,
with the duration increasing linearly with the number of
Bluetooth devices in the neighborhood.

We measure sensor energy consumptions through Nokia
Energy Profiler [26], a stand-alone application that allows
developers to test and monitor application energy usage in
real time. Measurement results are summarized in Table 2.
From these results, it can be seen that energy consumed
by different sensors vary greatly. Among these sensors, ac-
celerometer consumes the least amount of power compared
to other sensors. accelerometer is also very sensitive such
that it is able to capture the change of body movement
which could be an indicator of state transition with high
probability. Being sampled periodically, accelerometer could
be used as triggers to invoke other sensors if necessary. On
the other hand, due to the large power drain and long ini-
tialization time, GPS is used only when it is necessary and
the readings are guaranteed, such as the user is moving out-
doors, in order to provide location tracking and mode of
travel classification.

5.2 Sensor Duty Cycle Assignment and
Computation Time

Although the sensor management scheme guarantees that
only the minimum set of sensors are monitored at any spe-
cific time, assigning an appropriate duty cycle to each sensor
(i.e., the sensor will adopt periodic sensing and sleeping in-
stead of being sampled continuously) should further reduce
the energy consumption while keeping the original sensing
capabilities.

Table 3 summarizes the duty cycles for each of the four
sensors implemented in EEMSS. It can be seen that ac-
celerometer and microphone sensing both perform duty cy-
cling where the sensor will be turned on and off repeatedly
based on the parameters shown in Table 3. Note that even
though the energy cost can be saved by reducing sensing in-
tervals, if the sampling period is too short the sensor read-
ings will not be sufficient to represent the real condition. On
the other hand, while a longer sensing period could increase
the robustness of state recognition, it would also consume
more energy. The same tradeoff applies for sleep interval
as well. A longer sleep interval may reduce power battery
consumption, but the detection latency will be increased.
There are two reasons for assigning longer duty cycles to
the microphone versus the accelerometer, as indicated by the
parameters in Table 3. First, the accelerometer draws sig-
nificantly less power, and is hence able to be sampled more
frequently with smaller impact on battery lifetime. Second,
the accelerometer captures user motion change, which toler-
ates less detection delay compared to identifying background
sound type.

GPS is queried periodically when the user is moving out-
doors, to provide location and speed information. We allow
5 minutes, a relatively long duration for the GPS to lock
satellite signal. We found in our experiments that under
some circumstances (e.g.: when the user is walking between
two tall buildings or taking a bus), the N95 GPS may be
either temporarily unavailable or needs a much longer time
than usual to acquire the signal. Therefore, a longer timeout
duration is required for the GPS to successfully get readings



Sensor Duty Cycles Computation Time
Accelerometer 6 seconds sensing + 10 seconds sleeping < 0.1 second
Microphone 4 seconds sensing + 180 seconds sleeping Quiet: < 0.5 second. Loud/Speech: ∼ 10 seconds.

GPS GPS query every 20 seconds, timeout in 5 minutes < 0.1 second
WiFi scan Event triggering based sensing < 0.1 second

Table 3: Sensor duty cycles and device computation time of sensing data.

again. WiFi scanning is event-based rather than something
that needs to be done periodically. In EEMSS, a WiFi scan
is performed under two scenarios: (1) when the user is de-
tected as moving, a WiFi scan is conducted to check if the
user has left his or her recent range, and (2) when the user
has arrived at a new place, we compare the nearby wireless
access points set with known ones in order to identify the
user’s current location.

Even though the duty cycle parameters have been re-
fined through extensive empirical tests, the parameters fi-
nally adopted by EEMSS (see Table 3) may not be optimal
due to the fact that in our current implementation, the pa-
rameters are manually tuned based on detection accuracy
and energy consumption of each sensor. No optimization or
dynamic adjustment has been implemented. We will leave
finding the optimal sampling interval and duty cycles, as well
as dynamically assigning suitable duty cycles to each sensor
based on user’s state as future work. Ideally, algorithms
can be designed that that could further reduce the energy
consumption while maintaining accuracy and low latency.

The device computation time based on sensor duty cycle
parameters, including the time for sensor data processing
and user status classification, are also summarized in Ta-
ble 3. Except for loud audio signal processing and classif-
fcation, which takes approximately 10 seconds to complete
(mainly consumed at the FFT stage), most of the compu-
tations are able to finish immediately, which enables our
system to conduct real-time state recognition.

6. SENSOR INFERENCE AND
CLASSIFICATION

As discussed in the previous section, the functionalities
and features of each sensor have to be systematically studied
in order to be better utilized to convey user context infor-
mation. In this section, we discuss the sensing capabilities
and potential human activities that could be inferred from
sensors including GPS and WiFi detector. We also propose
and implement classification algorithms that are differen-
tiable from previous works which identify user activities as
well as background sound types in real-time based on ac-
celerometer and microphone readings.

6.1 GPS Sensing and Mode of Travel
Classification

Besides providing real-time location tracking, GPS can
be used to detect the user’s basic mode of travel since it
is able to return both the Geo-coordinates and the moving
speed of the user. By combining the instantaneously velocity
information and the recent distance of travel measured by
comparing current position with previous ones it is possible
to robustly distinguishing one’s basic mode of travel such
as walking or riding a vehicle. The mode of travel classifier
based on GPS is simply performed by checking the recent

moving distance and speed hence we do not present the de-
tail here. The classifier is trained by several location track-
ing records of user and certain threshold values are identified
and implemented into the classification algorithm.

Being periodically queried, GPS on N95 device can also
be used to indicate that the user has entered a building or
other indoor environment since a location request timeout
will occur when the satellite signals are not reachable by the
mobile device. 1

6.2 WiFi Scanning and Usage
The MAC address of visible wireless access points around

the user can be returned to the mobile device by performing
a WiFi scan. Since MAC address is uniquely assigned, it
is possible to tag a particular location by the set of access
points visible in that location. Therefore the mobile device is
able to automatically identify its current location by simply
checking nearby access points. For example, it is easy to tell
that the user is at home if the WiFi scan result matches his
or her home access point set that is pre-memorized by the
device. In our EEMSS implementation, the wireless access
points feature of the user’s home and office (if applicable)
will be pre-recorded for recognition purpose 2. WiFi scan
can also be used to monitor a user’s moving range since
a wireless access point normally covers an area of radius
20-30m and the previous seen access points will be gone
if the user has moving out of that range. In our system
implementation, if the user is detected moving continuously
by accelerometer, GPS will be turned on to start sampling
location information immediately after WiFi scan indicates
that the user has left his or her recent range.

6.3 Real-time Motion Classification Based on
Accelerometer Sensing

Activity classification based on accelerometer readings has
been widely studied using various machine learning tools.
However, in most of the previous works one or more ac-
celerometer sensors have to be attached to specific body
positions. Moreover, several data features have to be ex-
tracted from the sensor readings in order to design sophis-
ticated classifiers to recognize detailed activities which are
not suitable for real-time implementation.

In our system design, since the mobile phone device is the
only source of accelerometer readings which could be placed
at various locations due to individual habit, it becomes ex-
tremely difficult to perform fully detailed motion classifica-

1Obtaining instant speed as well as the location request
timeout functionality are both supported by J2ME API.
2SKYHOOK wireless [27] system is a good example of imple-
menting wireless access point checking in positioning. How-
ever, since the main goal of our work is achieving energy ef-
ficiency in mobile sensing, WiFi positioning is implemented
only for recognizing one’s frequently visited places such as
home and office.



Mode STDV Range of Magnitude
Still 0 - 1.0334
Walk 9.2616 - 21.3776
Run 35.3768 - 52.3076

Vehicle 4.0204 - 12.6627

Table 4: Standard deviation range of accelerometer
magnitude readings for different user activities

Still Vehicle Walking Running
Still 99.44% 0.56% 0 0

Vehicle 8.81% 73.86% 16.29% 1.04%
Walking 1.18% 10.62% 88.20% 0
Running 0 0 0 100%

Table 5: Classification results based on standard de-
viation of accelerometer magnitude values. The first
column represents the ground truth while the first
row represents the classification results based on ac-
celerometer readings.

tion like in previous study [10]. As a matter of fact, only
the standard deviation of accelerometer magnitude values is
extracted as one of the independent features of phone place-
ment in order to conduct real-time motion classification in
our work.

We have collected accelerometer data in 53 different ex-
periments distributed in two weeks in order to train the clas-
sifier. The lengths of experiment vary from several minutes
to hours. Within each empirical interval, the person tags the
ground truth of his/her activity information for analysis and
comparison purposes. The standard deviation for different
activities within each empirical interval is computed off-line.
Table 4 shows the range of standard deviation distribution
based on different data sets collected.

It can be found out that there exist certain standard devi-
ation threshold values that could well separate stable, walk-
ing, running, and vehicle mode with high accuracy. In order
to verify this observation, we have implemented a real-time
motion classification algorithm on N95 mobile phone that
compares the standard deviation of accelerometer magni-
tude values with the thresholds in order to distinguish the
user’s motion. The device is carried by the user without ex-
plicit requirement of where the phone should be placed. 26
experiments have been conducted each containing a combi-
nation of different user motions. The standard deviation of
accelerometer magnitude is computed every 6 seconds, and
right after which the user’s motion is being classified. Ta-
ble 5 shows the classification results in percentage of recog-
nition accuracy. It can be seen that the algorithm works
very well for extreme conditions such as stable and running.
Furthermore, even though the classifier tends to be confused
with walking and vehicle mode due to feature overlap, the
accuracy is still well maintained above 70%.

In our case study of EEMSS, since we do not explicitly
require the system to identify states such as “Running” and
that GPS is already sufficient to distinguish the mode of
travel states including“Walking” and “Vehicle” as described
in Section 6.1, the accelerometer is simply used to trigger
other sensors such as WiFi detector whenever user motion
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Figure 4: Comparison of frequency domain features
of different audio signals.

is detected. The accelerometer will only be turned on as
classification tool of user motion when the GPS becomes
unavailable. However, note that the framework design of
EEMSS is general enough that allows one to specify new
states such as “Running” in the XML state descriptor as
well as the corresponding sensor management rule (e.g.: ac-
celerometer classification is required). The state descriptor
will be parsed and understood by the system which in turn
make sensor control decisions accordingly.

6.4 Real-time Background Sound Recognition
Real time background sound recognition mechanism has

also been implemented on Nokia N95 mobile phones. The
device records a real time audio clip using microphone sensor
and the recorded sound clip will go through two classifica-
tion steps (Figure 6). First, by measuring the energy level
of the audio signal, the mobile client is able to identify if
the environment is silent or loud. Note that the energy E
of a time domain signal x(n) is defined by E =

∑
n |x(n)2|.

Next, if the environment is considered loud, both time and
frequency domains of the audio signal are further examined
in order to recognize the existence of speech. Specifically,
speech signals usually have higher silence ratio (SR) [28]
(SR is the ratio between the amount of silent time and the
total amount of the audio data) and significant amount of
low frequency components. If speech is not detected, the
background environment will simply be considered as “loud”
or “noisy”, and no further classification algorithm will be
conducted to distinguish music, noise and other types of
sound due to their vast variety of the signal features com-
pared to speech. SR is computed by picking a suitable
threshold and then measuring the total amount of time do-
main signal whose amplitude is below the threshold value.
The Fast Fourier Transform has been implemented such that
the mobile device is also able to conduct frequency domain
analysis to the sound signal in real time. Figure 4 shows
the frequency domain features of four types of audio clips,
including a male’s speech, a female’s speech, a noise clip
and a music clip. It can be seen clearly that as compared
to others, speech signals have significantly more weight on
low frequency spectrum from 300Hz to 600Hz. In order to
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Figure 5: Frequency histogram plots after applying
SSCH to sound clips described in Figure 4.

Figure 6: Decision tree based background sound
classification algorithm.

accomplish speech detection in real time, we have imple-
mented the SSCH (Subband Spectral Centroid Histogram)
algorithm [29] on mobile devices. Specifically, SSCH passes
the power spectrum of the recorded sound clip to a set of
highly overlapping bandpass filters and then computes the
spectral centroid 3 on each subband and finally constructs
a histogram of the subband spectral centroid values. The
peak of SSCH is then compared with speech peak frequency
thresholds (300Hz - 600Hz) for speech detection purpose.
Figure 5 illustrates the outputs of applying SSCH algorithm
to the sound clips shown in Figure 4. It can be found out
clearly that the histogram peaks closely follow the frequency
peaks in the original power spectrum.

The classification algorithm is trained and examined on
the same data set including1085 speech clips, 86 music clips
and 336 noise clips, all with 4 seconds length which are

3The spectral centroid C of a signal is defined as the
weighted average of the frequency components with mag-

nitudes as the weights: C =
∑

f f ·X(f)∑
f X(f)

Speech Music Noise
SRthres = 0.6 95.31% 18.00% 26.07%
SRthres = 0.7 91.14% 16.00% 18.17%
SRthres = 0.8 70.91% 10.00% 11.66%
SRthres = 0.9 32.64% 8.00% 8.59%

Table 6: Percentage of sound clips classified as
“speech” for different SRthres values.

recorded by Nokia N95 devices. We investigate the effect
of different SR thresholds (denoted by SRthres) on classifi-
cation accuracy. The results of speech detection percentage
are shown in Table 6. It can be seen that as SR threshold
increases, the number of false positive results are reduced
with sacrifice of speech detection accuracy. We will choose
SRthres = 0.7 throughout our study which provides more
than 90% of detection accuracy and less than 20% false pos-
itive results. The above classification results show that a
4-second sample of audio clip is long enough for the classi-
fier to identify the background sound type. It is also impor-
tant to note that the complexity of the SSCH algorithm is
O(N2) and as the filter overlaps are small, the running time
is empirically observed to be close to linear. Empirical re-
sults show that on average the overall processing time of a 4
seconds sound clip is lower than 10 seconds on N95 devices,
which is acceptable for real time implementation.

7. PERFORMANCE EVALUATION

7.1 Method
In this section, we present an evaluation of EEMSS, as-

sessing its effectiveness in terms of state recognition accu-
racy, state transition detection latency, as well as energy
efficiency. Our empirical studies are organized based on the
following two phases:

• Phase I - Lab Study
We conducted a lab study over 1.5 months with our
team members, to calibrate our classification parame-
ters (e.g., the parameters used to determine mode of
travel based on GPS readings), determine the duty cy-
cles for different sensors (e.g: the sampling frequency
of accelerometer, GPS and microphone), and perform
system energy consumption measurement. During the
lab study, participants recorded the ground truth ac-
tivities and the sensor readings, recognition results
were logged by the mobile device for off-line analy-
sis. The energy consumption is measured by using the
Nokia Energy Profiler[26] which was turned on in the
background continuously to record the power usage.

• Phase II - User Trial
We also conducted a user trial in November 2008 at two
different universities. The main purpose of this user
trial was to test the EEMSS system in a real setting.
We recruited 10 users including undergraduate, grad-
uate students, faculties and family members through
online mailing lists and flyers. Each participant was
provided with a Nokia N95 device with EEMSS in-
stalled. Basic instructions on how to operate the mo-
bile device were also introduced. During this experi-
ment, each user carried an N95 device for two days and



Figure 7: Recognized daily activities of a sample
CMU user.

kept a diary to manually record ground truth for com-
parison purpose. A standardized booklet was given
to each participant containing three simple questions
tagged by time for each record. Specifically, we asked
participants to record their motion (e.g.: walking, in
vehicle, etc), location, as well as surrounding condition
(e.g.: quiet, loud, speech, etc). We then compared di-
ary entries to our recognition results. At the end of
the EEMSS evaluation period, we collected more than
260 running hours of EEMSS application, with more
than 300 state transitions have been detected by our
applications.

7.2 Results

7.2.1 State Recognition Records
Besides providing real-time user state update, EEMSS

keeps tracking the user’s location by recording the Geo-
coordinates of the user when he or she is moving outdoor
(recall that GPS is turned on continuously and the location
information is retrieved every 20 seconds in this scenario).
Figure 7 and 8 visualize the data collected by EEMSS on
2-D maps. They show the daily traces captured by EEMSS
of two different participants from CMU and USC on two
campus maps respectively. Within the time frame of these
two traces, the EEMSS application keeps running and the
phone has not been recharged. Different types of curves are
used to indicate different modes of travel. Specifically, the
dashed ones represent vehicle mode whereas the solid ones
represent walking mode. Both users have reported that they
took buses to school according to their ground truth diaries.
The dashed curves are found to match the bus routes per-
fectly. The solid curves show the traces that the user is
walking between home and bus station, within university
campus and so on.

Besides monitoring location change and mode of travel of
the user in real-time, EEMSS also automatically detects the
surrounding condition when the user is identified to be still
at some places in order to infer the user’s activities. In Fig-
ure 7 and 8, by probing background sound, the surrounding
conditions of the user can be classified as quiet, loud and
containing speech. Consequently, the system is able to infer
that the user is working, meeting, resting, etc. by combin-
ing the detected background condition with location infor-
mation obtained by WiFi scan.

Figure 8: Recognized daily activities of a sample
USC user.
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Figure 9: The state recognition accuracy for all 10
participants.

7.2.2 State Recognition Accuracy
First, we have examined the overall state recognition ac-

curacy for each participant by comparing the system recog-
nized state log with the ground truth records. The percent-
age values of detection accuracy is measured by the ratio of
number of correctly recognized state records over the total
number of records and are shown in Figure 9. According to
this figure, the recognition accuracy varies slightly from one
user to another, which suggests that our classification algo-
rithms do not bias due to individual varieties. The average
recognition accuracy over all users is found to be 92.56%
with a standard deviation of 2.53%.

Since in Section 6.4 we have already presented the per-
formance of our background sound classifier which is imple-
mented on EEMSS and the WiFi detection based location
recognition provides high accuracy (this is due to the fact
that no classification algorithm is implemented here other
than performing simple data comparison), we could be able
to narrow down our study of recognition accuracy by ag-
gregating all the 11 states into three super states namely
“Walking”, “Vehicle” and “At some place” featured by one’s
location and mode of travel information. Table 7 shows the
percentage of recognition accuracy for these states. The first
column represents the ground truth while the first row rep-
resents the returned states of EEMSS. It can be seen that
the accuracy is very high when the user is staying at some
place such as home, office, etc. compared to traveling out-
doors. From this table, 12.64% of walking time and 10.59%
of vehicle time is categorized as “At some place”. This is
because that GPS readings are unavailable due to the de-



At some place Walking Vehicle
At some place 99.17% 0.78% 0.05%

Walking 12.64% 84.29% 3.07%
Vehicle 10.59% 15.29% 74.12%

Table 7: EEMSS confusion matrix of recognizing
“Walking”, “Vehicle” and “At some place”. The first
column represents the ground truth while the first
row represents the recognition results. For example,
“At some place” is recognized as “Walking” in 0.78%
of the time.

Walking Vehicle At some place
Walking N/A < 40 sec < 5 min
Vehicle < 1.5 min N/A N/A

At some place < 1 min N/A N/A

Table 8: Average state transition detection latency.

vice limitations which causes the location timeout and hence
the system considers that the user has entered some place.
However, this false conclusion can be self-corrected since the
accelerometer is able to monitor the motion of the user when
he or she is considered still and hence GPS will be turned
back on immediately as the user keeps moving. The rea-
son that riding a vehicle is recognized as walking is due to
the fact that although we have implemented algorithms that
prevent the system to consider regular slow motions of ve-
hicles as walking, there exists extreme conditions where the
vehicle is moving very slowly and thus being recognized as
the wrong state. We plan to incorporate other mechanism
in EEMSS such as combining more than one sensor readings
such as accelerometer and GPS to differentiate one’s mode
of travel.

Note that the difference between Table 7 and Table 5 is
that in Table 5 the motion classification is performed based
on accelerometer readings whereas in Table 7 we show the
recognition accuracy results of EEMSS system. Specifically,
in our current EEMSS system implementation, once the user
is moving outdoors, GPS will be continuously sampled which
not only provides location update but acts as a single source
of mode of travel classification such as walking and riding a
vehicle. Accelerometer is not turned on during this period
to reduce energy cost. However, when GPS becomes un-
available accelerometer could be activated to monitor and
detect one’s motion as well as mode of travel.

7.2.3 State Transition Detection Latency
Necessary sensors have been assigned for each user state

by the sensor management scheme to monitor state transi-
tion, and reading changes of specific sensors indicate that
the user status has been updated. Thus, state transition
detection latency is mainly bounded by the duty cycles of
the monitoring sensors as well as relevant parameters such
as GPS location request timeout value and the ones used
in classification module for increasing recognition accuracy.
The entries in Table 8 illustrate the state transition detection
latencies among “Walking”, “Vehicle” and “At some place”
by the EEMSS. It can be seen that Vehicle mode could be
quickly detected since only one or two GPS queries are re-
quired to identify the sudden change on user location. The
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Figure 11: Average N95 lifetime comparison of run-
ning EEMSS, CenceMe and the case where all sen-
sors are powered.

time required to recognize that the user has arrived at some
place is less than 5 minutes which is the period allowed for
GPS location request timeout, and after which a WiFi scan
will be performed immediately to recognize one’s current
location. Note that it takes longer time to detect the transi-
tion from riding a vehicle to walking because such a period
is required to distinguish the slow motion of vehicle and
walking. Since the accelerometer is sampled every 6 seconds
when the user is still, user motion can be detected in less
than 6 seconds and the user will be considered walking as
soon as WiFi scan is triggered by accelerometer and indi-
cates that the user has moved out of his recent position.
Such a process normally takes less than 1 minute, as shown
in Table 8. Similarly, the background sound change will be
detected in less than 3 minutes which is the duty cycle for
microphone (this is not shown in the table).

7.2.4 Device Lifetime Test
The benefit of low energy consumption of EEMSS has

been verified through lab studies lasting for 12 days. Dur-
ing each day of the study period two researchers have each
carried a fully charged N95 smart phone with EEMSS ap-
plication running on the background and the device lifetime
has been examined. The average device lifetime result with
EEMSS application running on a fully charged Nokia N95
device is 11.33 hours with regular cell phone functionalities.
Note that the device lifetime may vary due to different user
behaviors. For example, if the user stays at home most of
the time with little activities, the device may stay active
for much longer time since only accelerometer and micro-
phone will be periodically monitored as compared to the
case where one spends most of the time traveling outdoor
and the device lifetime will significantly decrease due to ex-
tensive GPS usage. We have tested the device lifetime by
turning on GPS, accelerometer and microphone on N95 de-
vice with the same sampling frequencies as used in EEMSS,
and WiFi scanning is performed every 5 minutes. (Note that
in EEMSS the WiFi scan is only conducted when the user
is leaving or arriving at some places.) The device lifetime
is found to be less than 5 hours regardless of user activ-
ity since no sensor management mechanism is implemented
and all the sensors will be periodically sampled until running
out of battery. In [14] it has been shown that the CenceMe
application can last for around 6.22 hours with no other
applications running on the phone. Although the compar-
ison may not be comprehensive it is the only known result
so far that describes the device lifetime with an mobile ur-
ban sensing application running. Note that there exist some



Figure 10: Power usage at a glance.

differences between CenceMe and EEMSS implementations.
For example, CenceMe adopts an audio sampling duration
of 30 seconds and the implements a 60 seconds duty cycle
for the microphone, whereas in EEMSS the audio sampling
duration is only 4 seconds and the microphone duty cycle
is 180 seconds. On the other hand, CenceMe implements
an approximately 10 minutes duty cycle for GPS whereas in
EEMSS GPS will be turned on continuously when the user
is moving outdoors to provide location tracking. Moreover,
CenceMe contains data upload cycles and Bluetooth probing
that require extra power usage which are not implemented
in our system. The results of battery life durations are sum-
marized in Figure 11, and it can be seen that EEMSS gains
more than 75% running hours compared to CenceMe and
even larger amount compared to the case where a urban
sensing is conducted without sensor management.

To visulize the effect of sensor management, Figure 10 il-
lustrates the energy consumption model of our system at a
glance in a 20 minutes interval when the user walks from his
office to a library. It can be seen that at the beginning of the
test when the user is sitting in the office, only accelerome-
ter and microphone is being sampled to detect user move-
ment and identify background sound type. When movement
is detected, WiFi scanning will be performed to determine
whether the user has left the recent location. Note that
multiple WiFi scans may be required until the user leaves
his previous position. As the user walks towards the library,
GPS is turned on in order to provide positioning information
and we allow 5 minutes for GPS timeout as the user enters
the library where no GPS signal can be received. Finally,
a WiFi scan is performed to recognize the current location
and accelerometer will be turned back on for user motion
detection.

8. CONCLUSIONS AND FUTURE WORK
DIRECTIONS

Mobile device based sensing is able to provide rich con-
textual information about users and their environment for
higher layer applications. However, the energy consumption
by these sensors, coupled with limited battery capacities,

makes it infeasible to be continuously running such sensors.
In this paper, we presented the design, implementation,

and evaluation of an Energy Efficient Mobile Sensing Sys-
tem (EEMSS). The core component of EEMSS is a sensor
management scheme for mobile devices that operates sensors
hierarchically, by selectively turning on the minimum set of
sensors to monitor user state and triggers new set of sensors
if necessary to achieve state transition detection. Energy
consumption is reduced by shutting down unnecessary sen-
sors at any particular time. Our implementation of EEMSS
was on Nokia N95 devices that uses our sensor management
scheme to manage built-in sensors on the N95, including
GPS, WiFi detector, accelerometer and microphone in order
to achieve human daily activity recognition. We also pro-
posed and implemented novel classification algorithms for
accelerometer and microphone readings that work in real-
time and lead to good performance. Finally, we evaluated
EEMSS with 10 users from two universities and were able to
provide a high level of accuracy for state recognition, accept-
able state transition detection latency, as well as more than
75% gain on device lifetime compared to existing systems.

For future work, we plan on designing more sophisticated
algorithms that dynamically assign sensor duty cycles to fur-
ther reduce the energy consumption while maintaining low
latency for state transition detection as well as high recog-
nition accuracy. We also plan on implementing our sensor
management scheme on more complex sensing applications
which contain many more types of sensors.
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