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Abstract
Today’s micro-processor cores reach high performance levels not only by their high clock rate but also
by the concurrent execution of a large number of instructions. Because of the relationship between
power and frequency, it becomes attractive to run an OoO (Out-of-Order) processor at a frequency
lower than its nominal frequency in the context of embedded or real-time systems. Unfortunately,
whereas OoO processors have high average throughput, their highly variable and hard-to-predict
execution rate make them unsuitable for real-time systems with hard or even soft deadlines. 

In this paper, we show that the throughput of an OoO processor can be stable and predictable by
controlling its MIPS (Mega Instructions Per Second) rate via a PID (Proportional, Integral, and
Differential gain) feedback controller and DVFS (Dynamic Voltage and Frequency Scaling). The
controller controls on-chip supply voltage (Vdd) and operating frequency in order to sustain a target
MIPS rate. The stabilized processor uses much less power per committed instruction, because of its
reduced average frequency. The EPI (Energy Per Instruction) is also lowered by an average of 28%
across our benchmark programs. Since a stable MIPS rate is maintained consistently and power/
energy per instruction is reduced, OoO processors stabilized by a feedback controller can realistically
be deployed in real-time systems with soft or hard deadlines. 

To demonstrate this capability we select a subset of the MiBench benchmarks that display the widest
execution rate variations and stabilize their MIPS rate in the context of a 1GHz Pentium III-like micro-
architecture.

1. Introduction

Limiting power has become one of the most critical design constraints for portable or mobile platforms as well as for desk-

top or server platforms. Besides technology and circuit design, architecture has a significant role to play in reducing power

dissipation for a given level of performance. DVFS (Dynamic Voltage and Frequency Scaling) schemes have been exploited

in various ways in processor designs to improve power efficiency [5, 10, 11, 17, 20, 22, 24, 26, 27, 29, 31, 36, 38]. A number

of control algorithms optimize power by tuning frequency and supply voltage, while meeting performance goals. DVFS is

very effective at regulating power since dynamic power consumption, which remains the dominant factor in the power equa-

tion, is proportional to the cube of the frequency. Lowering the on-chip operating frequency together with on-chip Vdd by a

factor k reduces power consumption by a factor k3 [31]. Thus many processors for mobile applications implement a DVFS

scheme nowadays.

Many mobile applications are real-time applications. The processor used in these applications must provide predictable turn-

around time for the tasks it runs. Power efficiency is a critical factor as well. Performance and power often clash: in general

higher performance requires more power. One way to achieve higher performance within a given power budget is to exploit

parallelism at all levels. OoO (Out-of-Order) processors exploit ILP (Instruction Level Parallelism), and, when optimized for

power efficiency, could be well suited for real-time embedded applications. Unfortunately, whereas OoO processors have
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high average throughput, their execution rate is highly variable, program-dependent and unpredictable because their superior

performance relies on speculation and cache hierarchies. This uncertainty makes it hard to estimate precisely their execution

time with techniques such as WCET (Worst Case Execution Time) analysis, on which software developers for real-time sys-

tems rely. Software developers can never be sure that the execution of their application will not overrun deadlines.

In this paper, we consider a processor as a supplier of QoS (Quality of Service). We show how to stabilize the performance

of an OoO processor at a predetermined, steady instruction throughput level with a PID feedback control approach, which is

equivalent to maintaining a constant level of QoS. By exploiting parallelism instead of frequency to reach a given perfor-

mance level, OoO processors stabilized by feedback control are power/energy efficient and their execution time becomes

predictable as well. 

The major contribution of this paper is to demonstrate that the throughput of an OoO processor (in term of the number of

committed instructions per second) can be stabilized so that real-time applications can meet their deadline right on time and,

at the same time, lower power and energy by minimizing the clock rate to meet the deadline. In this paper we provide

answers to the following questions:

• Is performance stabilization needed? In other words, does the processing rate of OoO processors vary widely across pro-
grams and program phases in a way that affects application developers?

• What are the major advantages achieved by performance stabilization?

• Can a control algorithm to stabilize the processor’s throughput be simple enough to be easily implemented in software or 
hardware?

• How do the values of the control parameters affect stabilization?

• How does the stabilized processor perform on actual program segments?

• How does a stabilized OoO processor compare with a traditional IO (in-order) processor in the context of real-time sys-
tems?

In Sections 2 and 3 we introduce our proposed framework for real-time application development and then review prior work

on this topic. In Section 4, we evaluate the variability of instruction throughput in out-of-order processors, and demonstrate

that stabilization is required for real-time systems with deadlines. In Section 5, we propose a PID feedback control approach

integrated with a performance-to-frequency mapper to stabilize the MIPS rate of OoO processors by DVFS. In Section 6, we

show the effects of the controller configuration on the quality of the stabilization. In Section 7, we use simulation to compare

the stabilized out-of-order processor with the baseline out-of-order processor. In Section 8, we compare the stabilized OoO

processor with an in-order (IO) processor. Sensitivity of the controller design to cache sizes is covered in Section 9. In Sec-

tions 10 and 11, we summarize our contributions and conclude.

2. Proposed Framework for Real-Time Applications Development

To apply our proposed framework, the required execution rate (MIPS) of the processor must be known beforehand based on

the throughput demands of target applications. This is done by analyzing the code statically and counting the worst-case

number of instructions executed for each task. Given the time constraints to complete the tasks, the MIPS rate of the selected

processor must be sufficient to meet the deadline of the most demanding task. Then the parameters of the PID controller

must be adjusted so that deadlines for all tasks are met right on time, at the lowest possible frequency and without wasting

energy in idle cycles. Fortunately, as we will see, the selection of PID parameters is quite robust across hardware platforms.
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This process is far easier than a classical WCET analysis. Figure 1 illustrates two different approaches to develop a real-time

application. With our stabilization framework shown in Figure 1(b), the development of a real-time application is much sim-

pler than with the traditional approach shown in Figure 1(a) because an accurate mathematical model for the performance of

an OoO processor with a cache hierarchy is very hard to develop [15, 34]. OoO processors and hardware controlled caches

currently are anathema to real-time application developers. With the stabilization framework, WCET analysis is no longer

necessary to guarantee real-time deadlines. Our framework in effect shields the application developer from the intricacies of

the microarchitecture. The major issue becomes the choice of a stabilized processor which can maintain the required MIPS

rate. In this paper the instruction set architecture is a RISC-like architecture (Simplescalar PISA). Complex ISAs such as the

x86 ISA which take multiple RISC-like micro-ops to execute will require more effort since micro-ops execution rate must be

stabilized instead of the instruction execution rate. The application developer will have to be aware of the number of micro-

ops per instruction to estimate the target micro-op rate. But this would be true whether or not the processor is stabilized and

whether the processor is OoO or IO.

3. Related Work

Several research papers have focused on WCET analysis for OoO processors in the hope that they can be deployed in real-

time applications [15, 34]. This is a very hard problem because of all the complex and unpredictable features of OoO proces-

sors such as speculative execution and hierarchical cache memories. Our approach is not the usual approach of analyzing the

contributions of all the architectural features to WCET and of bounding their values in some reliable way, but rather, our

Start

Choose faster COTS processor or 
increase the performance of a processor

Is target Turn‐
around time 
achievable?

No

End

Yes

Static Code Analysis of the 
Target Application Program

Draw Control‐Flow Graph

Math model for 
Processor

WCET Analysis

(a) Classical approach to 
develop a RT application

Start

Statically profile the code of the Task: 
# of instructions in worst case trace

Calculate the required (lowest) MIPS 
rate which meets the deadline

Setup the controller parameters

Is settling time 
small enough?

No

End

Yes

Is 
Power/Energy 
small enough?

No

Yes

(b) Stabilization framework to 
develop a RT application

Processor MIPS 
profile obtained 
by simulation or 
experiment

Set the TARGET MIPS
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Dynamic MIPS Rate Stabilization in Out-of-Order Processors 13 January 2009 4



approach is to force the processor to sustain a steady target MIPS rate. If the worst-case number of instructions in the

dynamic trace of an application is known, and if we have a stabilized processor with quasi-deterministic MIPS rate, the exe-

cution time of the target application can be estimated precisely upfront, by simply counting the worst-case number of

instructions needed by the execution of each task.

Power and energy consumption bring up many issues such as hotspots, cooling costs and energy budget, and many studies

have addressed them. In [31] the problem of finding the optimal trade-off between heat and performance is resolved by an

RC-model based PID controller such that the processor always keeps running within the envelope of the power (heat) budget

while pushing performance as much as possible. As the mathematical RC model is well-defined and as the effect of heat dis-

sipation on temperature is a rather slow process, PID control works very well in this context. In [38] feedback control is also

applied to reach an optimal real-time schedule of tasks, and to stabilize the processor throughput. The PID controller is con-

figured by trial and error, because the mathematical model of the plant to control is unknown. Our approach is to stabilize the

MIPS rate.

In GALS [20] and MCD [10, 29] a micro-architecture is partitioned in several, independent domains, and energy efficiency

is achieved by varying the frequency and voltage of each domain inside the processor separately. This approach tries to reach

a balance between the activities in every domain of the processor so that the processor can be most power/energy efficient

without losing much performance. In [22], the authors target performance throughput for energy efficient, load-balanced

architectures in the context of GALS CMPs. Although our approach is limited to the control of the clock and Vdd in the

entire processor, it could be extended to architectures partitioned in independent clocking domains, to further optimize the

performance/power/energy trade-offs.

The studies in [5] and [16] were starting points for our research. In [16] the high performance variability of OoO processors

is explored and one of the conclusions is that IPC is practically independent of processor frequency, a key observation which

motivated our interests in adaptive techniques to suppress the high performance variability of modern processors. In [5]

energy savings are realized when the processor targets a certain throughput with DVFS. We address the same problem in this

paper, but with a different approach to achieve throughput stabilization in the context of real-time systems.

The studies in [6] and [7] showed that the execution time of a real-time high-priority thread in a multi-threaded system can

be predictable when it is scheduled with smart resource management. In our research, execution time variability is caused by

performance fluctuations due to the complexity of OoO execution. In general, our framework at the hardware, instruction-

execution level can be deployed in combination with other software or thread scheduling techniques to improve the overall

outcome in various contexts.

Other papers have tackled the same problem as this paper, but with different approaches [17, 22, 27, 36]. In [27] the focus is

on improving the execution predictability of an OoO processor by throttling the processor so that it operates at a frequency

which avoids violating the deadline. Processor performance is speculated optimistically by slowing down the processor at

first and then assessing the slack to the deadline to set the next operating frequency in order to catch up with the remaining

work on time. This approach may cause deadline overruns and targets soft real-time tasks. In [17] compiler profiling is first

used to schedule tasks optimally. This work is closer to [27] as the framework is based on a measure of slack to the deadline.

In [36] PID control manages the DVFS hardware to suppress jitter and improve energy efficiency. This work was made in
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the context of a simple IO processor where variability is much less severe than in OoO processors. In OoO processors, we

can leverage ILP to compensate for frequency reductions with the goal of improving energy/performance trade-offs. 

4. Performance Variability in OoO processors

4.1  Baseline OoO Processor Model 

We start with an off-the-shelf OoO processor without DVFS as the baseline. We have modified SimpleScalar/Wattch [3, 4]

to model it. We chose a P6-like microarchitecture, which is compatible with SimpleScalar and also is a good candidate for

the embedded market. In the power model, Wattch is configured for a 90nm technology. Vdd values for different operating

frequencies are adopted from a technical report on Intel’s 90nm logic technology used for the Pentium 4 processor [25, 35].

The minimum Vdd is selected for each operating frequency in order to reach the best power efficiency possible. Table 1

gives the major architectural parameters used in the models for the baseline OoO processor. The ISA is SimpleScalar PISA.

4.2  Benchmarks

To explore the MIPS rate variability of the baseline OoO processor we have run a large number of execution samples repre-

senting all possible program phases in the target application domain. We have selected 17 programs in the MiBench bench-

mark suite. MiBench is a mix of programs for real-time embedded applications. The MiBench suite resembles the EEMBC

benchmark suite, which is widely accepted in the commercial embedded system community [13]. The selected 17 programs

are a mix of integer and floating-point intensive programs. In order to have execution samples with a rich mix of behaviors,

we sliced the dynamic execution of all 17 programs into chunks of 40 millions consecutive retired instructions. These execu-

tion samples form the set of tasks to execute within a time deadline in our evaluations. The task size was chosen based on a

study [37] showing that the processing of each MPEG-4 frame requires 30 to 42 millions instructions in SimpleScalar. In

TABLE 1.  Architectural Parameters for the Baseline OoO 
Processor Model Clocked at 1GHz

Parameters
Machine Buffers 40-entry ROB

6-entry IFQ
28-entry LSQ

Machine Width Maximum 3-wide fetch/decode/issue/commit
Branch Prediction 2-level, local histories, per-set counters

512-entry 128-set 4-way BTB
16-entry RAS
at least 5 cycles taken for misprediction

Functional Units
(operation latency)

2 INT ALU (1)
1 INT MULT (4)
1 FP ALU (2)
1 FP MULT (5) / DIV (32)

On-chip Memory 
(line size, latency)

non blocking 16KB 4way IL1 (32B, 2) 
non blocking 16KB 4way DL1 (32B, 2)
non blocking 512KB 8way UL2 (32B, 8)
4-entry fill buffer

Off-chip Memory 
latency

88

Technology / Vdd 90nm / 0.825V

TABLE 2. Programs Chosen from 
MiBench 

category program input
automotive basicmath ref: large

bitcount ref: large
qsort ref: large
susan: smoothing ref: large

network dijkstra ref: large
patricia ref: large

security blowfish: decode ref: large
blowfish: encode ref: large
rijndael: decode ref: large
rijndael: encode ref: large

telecomm adpcm: adpcm-to-pcm ref: large
adpcm: pcm-to-adpcm ref: large
crc32 ref: large
fft: forward ref: large
fft: inverse ref: large
gsm: toast ref: large
gsm: untoast ref: large
Dynamic MIPS Rate Stabilization in Out-of-Order Processors
 13 January 2009 6



total, we evaluate 388 tasks for a total of 1.5 billion retired instructions from the MiBench suite. Table 2 shows the selected

17 programs from the MiBench suite with their inputs set. The MiBench programs are compiled for the PISA ISA and run on

Wattch (SimpleScalar/PISA + Power). 

4.3  MIPS Rate Variability in the Baseline Processor

Figure 2 shows the dynamic MIPS rates measured from the first retired instruction to the last retired instruction of every task

on the baseline processor clocked at 1GHz. The dynamic MIPS rate is computed as the total number of retired instruction (in

Millions of instructions) divided by the time (in seconds) since the beginning of the task execution. The dynamic MIPS rate

varies widely both across tasks and as a function of time, from 600MIPS to 2.1GIPS. 

Figure 2 also shows the distribution of the average MIPS rates of all 388 tasks run on the baseline processor to the right. The

average MIPS rate of each task is computed as 40 divided by the execution time of the task (in seconds). The standard devi-
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ation of the MIPS rate (438 MIPS) indicates wide variations around a mean MIPS rate of 1.3 GIPS for the 1GHz baseline

processor. Variable memory access latencies, program dependencies, speculative execution and variable ILP all contribute to

this high variability. And Figure 3 shows the dynamic MIPS rates gathered for the tasks of each benchmark program on the

baseline processor. Among all the programs, basicmath, bitcount, qsort and fft have the highest variability across their tasks.

In this paper, we change the on-chip clock rate only. Because off-chip latencies remain unchanged, the L2 miss penalty (in

units of processor cycles) is reduced as we slow down the processor clock. Thus lower on-chip frequencies should improve

IPC. However, we have observed that L2 misses are rare in our benchmarks, and thus the potential performance advantage

from lower speed gap (in cycles) between memory and processor is small. In Section 8 we will explore the effect of cache

sizes on stabilization.  

In the following section, we describe our approach to stabilizing the performance of the baseline processor.

5. PID Feedback Controller to Stabilize Performance

Among various feedback control schemes, the PID (Proportional-, Integral-, and Differential-gain) feedback controller [12],

illustrated in Figure 4 is widely adopted. When the plant, which is the target system controlled by the controller, is mathe-

matically well defined the PID controller can be designed and tuned mathematically with the aid of control theory. However,

even when the mathematical model of the plant is unknown, a PID controller can still be designed to work well by fine-tun-

ing the controller parameters empirically. Unfortunately, the characteristic of an OoO processor is neither mathematically

well defined nor stable. The plant model changes continuously, depending on the program phase, memory system behavior,

execution speculation, and conflicts. In fact, in our framework, the input signal to the system (the reference) is fixed but the

plant characteristic keeps changing. This is contrary to the traditional control system design problem. 

5.1  PID Feedback Controller

A generic PID feedback control system works like a band-pass filter. One input to the control system is the reference signal.

The control system attempts to force the output of the plant (which is the system to be controlled) to track the reference sig-

nal. In a feedback control system, the error signal (the difference between output and reference) is relayed by the feedback

loop, and is continuously applied to a controller whose function is to bring the error down to zero. If the feedback control

system configuration is poor or even wrong, then the information fed back to the controller may drive the system into unsta-

ble states. Therefore, careful design of the controller is critical. 

Mathematically, the PID controller is defined by the following equation:

(EQ 1)

PlantController+ +

-

R:reference E:error Y:output

e: external noise

U: control 
amount

FIGURE 4. Generic Closed-loop Feedback Controlled System

U KPE KI E td∫ KD td
dE+ +=
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where KP, KI and KD are the Proportional gain, the Integral gain and the Differential gain, and U is the control input applied

to the plant. The PID controller sums up three terms proportional to the value, the integral and the derivative of the error and

passes the result to the plant as input. Feedback corrections are continuously applied until the error becomes 0 and thus ide-

ally the output tracks exactly the reference input, with some delay. Equations 2 show the discrete model for the PID control-

ler obtained by a bilinear transformation of Equation 1.

(EQ 2)

5.2  Tuning the PID gains

The values of the three PID gains directly affect the performance of the controller. If the controller reacts too fast to the error

it may amplify the error even if the error is very small so that the system tends to move erratically and does not settle down.

If the control gains are too large the system may actually become unstable. On the other hand, if the controller reacts too

slowly, reaching the target output value by tracking the reference input may take a very long time and convergence may

never be achieved. Usually the controller is tuned for the step input. With a step input, the system with an ideal controller is

designed to output the same step function as faithfully as possible. By examining the system output under a step input, vari-

ous observed characteristics of the output such as overshoot, rising time, settling time and steady-state error help tuning the

controller properly. The three terms of the PID equation generally have different effects on the output. 

• Proportional term- By reacting immediately to the current error, this term causes the system to react faster in general. It 
decreases the rising time and steady-state error. But it also causes larger overshoots.

• Integral term- By reacting to the integration of the error from past to present, this term lags behind the system phase in 
general, thus increasing the settling time. It makes the system insensitive to sudden changes. This term is critical to elim-
inating the steady-state error. 

• Differential term- By reacting to the derivative of the error, this term leads the system phase in general. Thus it decreases 
the overshoot or the undershoot and makes the system settle faster. However it makes the system sensitive to small vari-
ations, even to noise.

When the plant characteristic cannot be specified mathematically, a trial-and-error approach called loop-tuning is used to

tune each gain. 

5.3  Throughput-to-Frequency Mapper

The description of the PID controller above assumes that all the control variables reside in the same domain. In our context

(the stabilization of processor throughput), the variable to control is the MIPS rate but the variable effecting the control is the

frequency (MHz). In order to convert MIPS error into frequency change, a throughput-to-frequency mapper is included in

the feedback loop. Figure 5 shows the system with the mapper added. Note that there is no external noise and the resynchro-

nization penalty is associated with plant when the frequency changes.

To compute the next frequency the mapper assumes that the processor has the same behavior in the next phase as in the cur-

rent phase and that the IPC does not change with the frequency. It computes the next on-chip operating frequency as:

Next_Freq = Current_Freq × Target_MIPS / Current_MIPS (EQ 3)

Un Un-1+ UnΔ=

UnΔ KP En-En-1( )= KIEn KP{ En-En-1( )- En-1-En-2( )}+ +
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In a DVFS scheme, the number of possible frequencies is limited. Thus the mapper must map the next operating frequency

to one of the operating frequencies provided by the DVFS scheme. Figure 6 shows the mapping of target (continuous) fre-

quencies to discrete frequencies in the DVFS scheme. Each discrete frequency in the DVFS scheme is assigned to a range of

target frequencies. The frequency assigned by the DVFS scheme is not necessarily at the center of its associated range of tar-

get frequencies. By slanting the DVFS frequency towards the higher end of its associated frequency range (as shown in Fig-

ure 6), a given target frequency tends to map to a higher DVFS frequency. Thus the system response is stronger when the

MIPS rate falls below its target, and it is weaker when the MIPS rate is above its target. 

6. Controller Design

In this section, we show how we arrived at the final controller design using a reduced set of 11 tasks called the training set.

The reason for the training set is that exploring the design space over all 388 tasks is not feasible. The first step is to explore

the effects of the controller parameters (gains) on the MIPS rate stabilization, given a DVFS framework. 

6.1  DVFS Framework

The four voltage and frequency value pairs in our DVFS framework are shown in Table 3. These frequency and voltage pairs

are drawn from Intel data [25, 35]. On each voltage/frequency transition the processor pauses for 20 microseconds due to

PLL resynchronization [10]. Voltage switching is much slower than frequency switching. In [10] DVFS transition speed was

measured to be 10mV/microsecond. Our DVFS configurations swing within a 200mV range, hence the 20microseconds

pause. Furthermore, we assume that the energy consumption due to each voltage/frequency transition is negligible based on

observations made in [30, 33]. Similar assumptions were made in many DVFS studies [5, 10, 11, 17, 20, 22, 24, 26, 27, 36,

38]. 

A task execution is divided into non-overlapping control windows. During each control window, the controller collects infor-

mation on the current throughput and determines the operating point for the next control window. In this study the control

Controller+

-

R:reference E:error Y:output
U: control 
amount Mapper

Throughput -2-Frequency

MIPS MIPS
MHz

MIPS MIPS
Next

Op-Point
(Freq, Vdd) Plant (CPU)

w/ Resync Penalty

FIGURE 5. Controller with Throughput-to-Frequency Mapper

Freq_Step3 Freq_Step4Freq_Step2Mapper

Freq Scale
Provided 
by HW

500 MHz 800 MHz 1 GHz

370 MHz 605 MHz 870 MHz

Next_Freq
Freq 
Speculated by 
Controller

Freq_Step1

300 MHz

FIGURE 6. Configuration of the Discrete Frequency Mapper
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window is set to 50K retired instructions. Whenever the control window ends, after 50K instructions have committed, the

error communicated to the controller is the difference between the reference throughput and the average instruction through-

put in the window. The controller then determines the next target throughput, and the throughput-to-frequency mapper maps

it to the next operating frequency and voltage. 

The size of the control window is a design trade-off. When it is small (such as our window of 50K instructions) the controller

reacts faster. The potential performance cost is more resynchronization pauses. In this research, there are 800 control win-

dows in each task of 40M retired instructions. Figure 14 displays the average number of resynchronization in all the tasks of

each benchmark for the PID controller design we finally selected. Our final controller design causes an average of 120

resynchronizations per task, i.e. an average of 3 microseconds of resynchronization stall per control window. Each control

window in the baseline at maximum frequency with no stabilization takes an average of 33 microseconds. Thus the total re-

synchronization overhead is at most 10% of the execution time of the baseline running at maximum frequency. It is much

less when stabilization is deployed given the lower average frequency. 

The most important problem of PLL resynchronization is that the processor is stalled during the resynchronization and can-

not react to interrupts. This can cause a real-time interrupt loss if the interrupt arrives during the resynchronization period. In

real-time systems with hard deadlines, Intel’s aggressive XScale-style resynchronization can avoid this problem, since it

does not stall the circuit when the frequency and voltage change [8, 28, 29].

6.2  Effects of Control Parameters on Stabilization

If the controller responds faster and often changes the frequency, the processor throughput is more stable. However every

time the frequency and voltage change, the processor is stalled during PLL resynchronization. The combined performance

penalties of PLL resynchronizations lower the maximum stable MIPS rate attainable by the stabilized processor and thus

narrow its target MIPS range. Furthermore the faster the controller is, the higher the power because fast controllers switch to

higher frequencies more often than needed. 

On the other hand, if the controller is too slow, the system deviates from the target throughput and takes a long time to con-

verge, albeit at a lower power cost. Energy consumption is related to both power consumption and execution time. Execution

time is inversely proportional to throughput, whereas dynamic power decreases superlinearly with frequency. Thus we

expect that lowering the target throughput will result in lower EPI (energy consumption per committed instruction). 

The parameter settings we have explored for the controller are shown in Table 4. Different settings affect the performance of

the stabilization. As the mathematical model of the plant is unknown, it is safer to keep KD small in order to prevent unex-

pected divergence as the differential gain parameter detects and amplifies any fast phase jitter. 

 

TABLE 3. DVFS Frequency and Voltage Pairs

Frequency (MHz) Vdd (V)
1000 0.825
800 0.772
500 0.694
300 0.641

TABLE 4. Six Different Parameter Settings for 
Controller Gains

KP KI KD
Setting 1: Slowest 1 10 0.1
Setting 2 10 50 0.1
Setting 3 50 50 0.1
Setting 4 75 50 0.1
Setting 5 100 50 0.1
Setting 6: Fastest 100 100 0.1
Dynamic MIPS Rate Stabilization in Out-of-Order Processors
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Figure 6 shows the configuration of the discrete frequency mapper used in this study. The mapper is biased towards higher

frequencies to provide some performance margin especially when the characteristic of the plant changes abruptly.

We have modified SimpleScalar/Wattch to include the DVFS scheme, the throughput-to-frequency mapper and the PID con-

troller. The stabilized processor is exactly the same as the baseline OoO processor, except that it is equipped with DVFS and

PID control. We have simulated the six operating points shown in Table 4 for target MIPS rates of 200MIPS to 1400MIPS.

To reduce the complexity of the space search for the controller design, we first picked the most representative 11 tasks using

SimPoint [14] in the four programs - automotive_bitcount, automotive_qsort, telecomm_fft_forward and

telecomm_fft_inverse - with the highest performance variability among the MiBench programs of Table 2. This training set

of 11 samples has high throughput variability. Thus if the controller can stabilize this reduced set of tasks, we surmise that it

can also stabilize the whole set of 388 tasks.

Figure 7 shows the dynamic MIPS rate of the stabilized processor for the training set of 11 tasks and for the six controller

settings with target MIPS rates of 600, 800 and 1000MIPS. We observe that the throughput of the stabilized processor con-
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verges rapidly to its target MIPS rate, except for the slowest controller with parameter settings 1. It appears that the control-

lers work slightly better for a target throughput of 600MIPS, but they all meet the goal of stabilizing the MIPS rate for

targets of 800 or 1000MIPS. 

We further ran the stabilized processor with the different parameter settings and MIPS targets of 200, 400, 1200 and

1400MIPS. The results for the training set of tasks are shown in Figure 8. We observe that in all cases the throughput of sev-

eral tasks do not settle at the target MIPS rate, for various reasons. When targeting 200MIPS, the stabilized processor keeps

running at the minimum frequency of 300MHz all the time, and, because of ILP, the processor exceeds the 200MIPS target

for all tasks. When targeting 1200 or 1400 MIPS, some tasks with very low ILP cannot reach the target MIPS rate although

the processor continuously runs at its maximum frequency of 1GHz. In hindsight, this observation could have been predicted

from a careful interpretation of Figures 2 and 3. Clearly, the stabilized processor designs adopted in this paper cannot reli-

ably stabilize processor throughput at 200, 400, 1200 or 1400 MIPS.

It is remarkable that the behaviors of the controllers are uniform for a wide range of parameter values, across a wide range of

target MIPS rates and a wide range of tasks. This is encouraging, as it shows that the design of the controller is very robust

and the same design can be re-used in different environments without tedious empirical tuning. We will see more evidence of

this controller design robustness when we evaluate the sensitivity of the stabilization to cache sizes in Section 8.   

6.3  Effects of Control Parameters on Power and EPI

The major advantage of processor throughput stabilization (besides execution time predictability in real-time applications) is

the reduction in power and energy consumed per instruction (EPI).

Figures 9(a) and (b) show the average dissipated power and Figures 9(c) and (d) show the energy consumption per retired

instruction (EPI) as a function of the target MIPS rate and for every controller setting 1-6. All values are normalized to the

baseline system. We measure energy consumption up until a task is finished, i.e. when 40M instructions have committed.

Thus the energy spent by the processor in the idle state, waiting for the deadline to expire, is not included in the EPI. Power

and EPI are averaged over all 11 tasks in the training set. 

The dotted-line boxes include the design regions where the throughput does not reliably converge to the target MIPS rate

because the target throughput was set too low or too high as observed in Figure 8. The solid-line boxes include the regions

where the throughput is successfully and reliably stabilized to the target MIPS rate as observed in Figure 7.          

Faster controllers (closer to parameter setting 6) trigger changes of operating frequency and voltage more often, and need to

offset this performance penalty with higher frequencies. For this reason faster controllers tend to consume more power than

slower controllers. Faster controllers also consume more energy per instruction.

However, overall, controller parameter settings do not affect the power or energy of the stabilized processor significantly.

Rather, process technology and the DVFS scales are more relevant to power and energy. In Figure 9, we observe that the val-

ues taken by power and EPI across all parameter settings do not deviate by more than 6.7%, and 6.9%, respectively (much

less still 4% and 3.5% if we discard parameter setting 1 as unacceptable and focus on settings 2-6.) This conclusion again

shows the robustness of the controller design in the sense that there is little incentive to optimize the control parameters for

power or EPI within a wide range of parameter values and target MIPS rates.
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7. Stabilization Results for All Tasks

Based on the previous design and evaluations, it appears that parameter settings from setting 2 to setting 6 are equally

acceptable for the training set of 11 tasks. In this section, we show detailed simulation results when the operating point of the

controller is set to (KP, KI, KD) = (75, 50, 0.1), i.e., setting 4 in Table 4. We now evaluate this PID controller for ALL 388

tasks which form our workload. The target MIPS is 650MIPS. 

The effectiveness of this PID controller is demonstrated by comparing Figures 10 and 11 (processor with stabilization) with

Figures 2 and 3 (no stabilization). Figures 10 and 11 show the dynamic MIPS rates of the baseline OoO processor stabilized

to the 650MIPS target for all 388 tasks. The MIPS rates of most tasks settle down at the target throughput of 650 MIPS

within the first 5 millions committed instructions. Out of the 388 tasks, three chunks do not converge to 650MIPS and finish

early. These three chunks are part of automotive_bitcount, telecomm_fft_forward and telecomm_fft_inverse and have high

IPC. They exceed the 650MIPS target even if they run at the lowest frequency (300MHz). The deadline is still met in these

three cases. 

Figure 10 also displays the distribution of the average MIPS rate of all 388 tasks measured on the stabilized processor to the

right. It shows that practically all the stabilized MIPS rates are within MIPS of the target throughput of 650MIPS. The

execution statistics of the stabilized processor are also listed. Performance variability has been decreased dramatically (as

compared to Figure 2) because of the stabilization. Moreover power consumption is improved. The stabilized processor con-

sumes 46.6% of the power needed by the baseline processor. Since the average MIPS rate of the stabilized processor is

49.7% of the average MIPS rate of the baseline processor, the overall power savings is higher than the overall performance

loss. 

The number of cache misses per committed instruction and the IPC of the stabilized processor are almost identical in the

baseline and in the stabilized processors (not shown in this paper). As previously discussed, the number of cache misses is

FIGURE 9. Power and Energy per Instructions (training set)
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very low and the possible IPC gains due to smaller L2 miss penalties (in cycles) when the processor throttles down to lower

operating frequencies are less than 1%. As pointed out in [5], the IPC of an OoO processor is practically independent of its

operating frequency.   

Figure 12 shows the fraction of tasks whose dynamic MIPS rate falls within a margin of the target MIPS rate (i.e., 650MIPS)

as a function of the time expressed in number of retired instructions. After the first 5 millions retired instructions, the MIPS

rates of practically all the chunks are higher than 647.4MIPS, i.e. within a -0.4% margin of the target. No chunk ever goes

below 646.75MIPS, i.e., within the -0.5% margin of the target after the first 5 millions of retired instructions. Therefore, with

this controller setup, it is recommended to have at least a 0.3% marginal offset for the target MIPS rate in order to converge

to the target MIPS rate as quickly as possible. For example one should use a target MIPS of 652.6 instead of 650 to converge

to the target MIPS rate before the first 6 millions retired instructions.
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Figure 13 shows (from left to right) the MIPS rate, Power, EPI (energy per instruction) to task completion and EPI to task

deadline of the stabilized processor relative to the baseline processor. Each bar is the average over all tasks of each bench-

mark program. The baseline processor completes each task early in most cases, while the stabilized processor completes its

tasks right on time to meet the deadline. One major contribution to EPI in the baseline processor is the power consumed after

the completion of a task and until its deadline expires. During this idle time, static and dynamic power is consumed. In [9] it

is shown that the idle power consumption of the XScale PXA255 micro controller is about 29.6% of the average CPU con-

sumption. From Figure 13, we observe that, on the average, the average MIPS rate of the stabilized processor is 49.72% of

the baseline, while its average power and EPI to deadline are 46.64%, and 72.06% of the baseline respectively. Note that

waking up from the SLEEP state in order to suppress the idle power requires long transition time (160ms for StrongARM

0 5 10 15 20 25 30 35 40
0

10

20

30

40

50

60

70

80

90

100

# of Retired Instructions

%
 o

f O
ve

rru
n

 

 

-5% margin
-1% margin
-0.5% margin
-0.4% margin
-0.3% margin
-0.1% margin

FIGURE 12. Fraction of Tasks Falling Within a Margin of the Target as a Function of Time

0.00%

10.00%
20.00%
30.00%

40.00%

50.00%
60.00%

70.00%
80.00%

90.00%
100.00%

110.00%

ba
si
cm

at
h

bi
tc
ou
nt

qs
or
t

su
sa
n_

sm
oo
th
in
g

di
jk
st
ra

pa
tr
ic
ia

bl
ow

fis
h_
de
c

bl
ow

fis
h_

en
c

ri
jn
da
el
_d

ec

ri
jn
da
el
_e
nc

ad
pc
m
_a
2p

ad
pc
m
_p
2a

cr
c3
2

ff
t_
fw

d

ff
t_
in
v

gs
m
_t
oa
st

gs
m
_u
nt
oa

st

automotive network security telecomm average

MIPS Power EPI to Task Completion EPI  to Deadline

FIGURE 13. MIPS rate, Power and EPIs of Stabilized Processor Relative to Baseline Processor
Dynamic MIPS Rate Stabilization in Out-of-Order Processors 13 January 2009 16



SA-1100). Thus use of SLEEP state might not be viable to high performance real-time applications [2].

The throughput and power numbers are directly correlated, as expected. Without counting the power dissipated in the idle

state we see that very little energy is saved per instruction by stabilizing the processor. This is counter-intuitive, since

throughput is proportional to the frequency while (dynamic) power is inversely proportional to the cube of the frequency in

our schemes. The low average gains on EPI to task completion are due to two main factors: 1) when the target MIPS rate is

much lower than the baseline MIPS rate of the task, the power savings is not really cubic with the frequency scaling factor

because static power dominates and 2) the throughput penalty caused by resynchronizations not only wastes time but also

pushes up the frequency higher than otherwise to meet the deadline.

If the target MIPS rate is lower than the baseline MIPS rate, the energy efficiency of the stabilized processor is worse than

the efficiency of the baseline. Programs with high ILP such as automotive_susan_smoothing and telecomm_crc32 do not

fare well with respect to to EPI. Their baseline MIPS rates are high because of their high ILP, and the target of 650MIPS

imposed by the controller forces them to run at the lowest operating frequency for long periods of time. This happens

because the thermal (power) optimal point and the energy optimal point are different as discussed in [23, 39]. In contrast,

programs with low ILP such as automotive_basicmath and network_patricia take advantage of the stabilization to reduce

their energy consumption as the targeted MIPS rate of 650MIPS is close to their baseline MIPS rate.  

When stabilization causes frequent frequency changes, more time is wasted during resynchronizations and this effectively

degrades the MIPS rate while setting the average operating frequency higher than necessary. The average number of resyn-

chronization per task in each benchmark is shown in Figure 14. The average number of resynchronizations per task is low

considering the size of each task (because the frequency rarely changes after each control window of 50K instructions. How-

ever some benchmarks are affected more than others. For example, in benchmarks such as network_dijkstra and

security_blowfish, the EPI is worse than in the baseline in part because the stabilization triggers too many frequency

changes. 

The observations above imply that savings in EPI to task completion can be achieved while stabilizing the MIPS rate pro-

vided the target MIPS rate is “close” to the MIPS rate of the baseline. Of course the baseline MIPS rate must be at least the

target MIPS rate. If the baseline MIPS rate is highly variable and/or significantly higher than the target MIPS rate, then more

FIGURE 14. Number of Resynchronizations in the Stabilized Processor (Average per Task)
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energy per instruction (to task completion) may have to be spent to stabilize the processor.

When power/energy consumption is highly critical in a design, slower controllers may be the better solutions. For example

guaranteeing that the system works within the -0.3% margin all of the time requires much faster controllers, which nega-

tively impact the power/energy/performance trade-off as shown by the shape of the curves in Figure 12. A better way is to

increase the target MIPS rate by 0.3%. The slower response time of the controller can be easily compensated by raising the

target MIPS rate slightly, thus improving the energy/power efficiency at the same time.

Figure 15 shows the average fraction of time spent at each clock frequency in the stabilized processor. automotive_qsort and

telecome_crc32 which have high ILP remain at the lowest frequency for most of the time while network_patricia which has

the lowest ILP remains at the highest frequency for more than a half of the execution time. The average operating frequency

of the stabilized processor across all tasks is 485Mhz. 

8. Comparison with a Single Issue In-Order Processor

Single issue in-order processors are currently preferred for real-time/embedded applications, because they consume less

power and are more predictable for WCET models. However, the advent of media-based embedded systems calls for proces-

sors with higher computing power. In Figure 15, it was shown that the stabilized OoO processor running at an average

485MHz can meet the target 650 MIPS rate reliably within a few millions instructions and thus can meet hard deadlines

requiring that level of throughput for tasks of more than a few millions instructions. To achieve the same real-time perfor-

mance level, a StrongARM SA1110-like single issue in-order processor with the same cache hierarchy as our baseline pro-

cessor would have to run continuously at 1.4GHz. 

To reach this conclusion, we selected 4 benchmarks (automotive_basicmath, network_patricia, telecomm_adpcm_p2a and

telecomm_adpcm_a2p) from Table 2 with the lowest IPC. Figure 16 shows the MIPS rates of a non-stabilized IO processor

capable of maintaining a minimum throughput of 650MIPS on all tasks in the four benchmarks. With the same 90nm tech-

nology, the average power/EPI to task completion of the IO processor are 151.46%/110.49% of those of the stabilized pro-
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cessor, and 86.19%/102.64% of those of the baseline processor.

9. Sensitivity to Cache Sizes

Cache effects are a major cause of execution time variability in real-time systems. Usually caches are software controlled or

even disabled to simplify WCET analysis. Cache hierarchies affect IPC and MIPS rate and their effects can be stabilized

with the same framework developed in this paper. 

To evaluate the sensitivity of the controller design to cache sizes we evaluate two systems with reduced cache sizes. We run

simulations of our stabilized OoO processor with caches reduced by a factor two and four. We select 2 benchmarks

(basicmath_qsort and network_patricia) from Table 2 that show highest cache misses per instructions. The average IPC and

cache miss rates for all tasks in the two benchmarks are shown in Table 5. IL1, DL1 and L2 misses per kilo-instructions

increase 3, 5 and 6 times on the average  when the cache sizes are reduced by a factor four. Furthermore the IPC of the base-

line processor is reduuced to 62.154% of the original stabilized processor. Because of these lower IPCs, the target MIPS rate

must be adjusted, so that the slowest tasks can meet their deadlines. The target MIPS rates are set to 550 and 450 for the sys-

tems with cache sizes reduced by 50% and 75%. We keep the same parameters for the controllers.

TABLE 5. IPC and Cache Misses Per Kilo Instructions in 3 Different Hierarchical Caches

basicmath_qsort network_patricia average
IPC 16K-16K-512K 1.4647 0.7247 1.0947

8K-8K-256K 0.9802 0.6436 0.8119
2K-2K-64K 0.8697 0.4911 0.6804

IL1 MPkI 16K-16K-512K 0.8022 88.6539 44.7280
8K-8K-256K 60.0970 136.8662 98.4816
2K-2K-64K 79.5046 198.8028 139.1537

DL1 MPkI 16K-16K-512K 2.1870 0.5827 1.3848
8K-8K-256K 2.9269 5.9971 4.4620
2K-2K-64K 3.6642 9.9585 6.8113

L2 MPkI 16K-16K-512K 0.8710 0.1401 0.5056
8K-8K-256K 1.3983 0.1818 0.7900
2K-2K-64K 1.6632 4.4996 3.0814
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Figure 17 shows the dynamic MIPS rates of tasks gathered from those benchmarks and the distribution of the average MIPS

rates of all tasks.  With the same controller parameters, the variance of the average MIPS rates of the stabilized processor is

similar to the variance obtained for the stabilized processor with original caches sizes. The MIPS rate still converges quickly

to its target, within 5 million instructions of each task. This is further evidence that the design of the controller is robust and

valid across different cache sizes.

10. Discussion

We have shown that stable and robust controllers can be designed to maintain a predictable MIPS rate for tasks of more than

a few million instructions. Whereas the reliability of the stabilization cannot be proven mathematically as the WCET analy-

sis possibly could, there are several reasons why our stabilization framework is preferrable to WCET analysis. 

WCET analysis has not been successful in the context of OoO micro-architecture and hardware-controlled caches because

mathematically modelling of the complexity of OoO processors with hierarchical caches is very difficult. Actually this com-

plexity is the reason why the mathematical model of the plant in our control system is intractable and we cannot come up

with a design based on control theory. Applying the stabilization framework is, however, very easy and can be done by ana-
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FIGURE 17. Dynamic MIPS (a),  (c) and Average MIPS Rate (b), (d) Distribution with Smaller Caches
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lyzing the target tasks, as demonstrated in this paper. Tuning the control parameters empirically can be time-consuming but

it is also one part of the normal development process, as real-time embedded systems are heavily optimized in general. By

selecting a small training set of tasks the complexity of the design space exploration is significantly simplified. The control-

ler design is very robust and does not require fine tuning.

WCET analysis is also expensive and any small changes in the target processor may cause a rework of the WCET model.

Furthermore, if the processor has adaptive features such as DVFS to solve thermal, power or energy issues, the correct

WCET model is even harder to derive. In future micro-processors, we expect that such adaptive mechanisms will become

pervasive. In our stabilization framework, such unpredictable execution rate variations are handled automatically, provided

the processor can meet the deadline of the slowest task. Target and processor must be selected carefully. To apply our hard-

ware-based stabilization framework the target tasks must be profiled, but this procedure can be easily automated.

We targeted 650MIPS in this paper because we wanted to demonstrate that a single controller design could be deployed for a

wide set of tasks. In practice, it is common that the system runs only one or a couple target programs repetitively. In that

case, the target MIPS rate can be higher. For example, if the system would only run telecomm_adpcm_p2a or

telecomm_adpcm_a2p (see Figure 3) then the stabilization framework could target 1280MIPS or 985MIPS respectively.

Note that the framework is flexible enough to let the thread (or process) scheduler arbitrarily change the target MIPS rate on

the fly. All in all, the successful application of the stabilization framework rests on careful profiling of the target applica-

tions.

11. Conclusion and Future Work

We have proposed to stabilize the throughput of out-of-order processors with hardware-controlled cache hierarchies to

improve performance predictability, power dissipation and energy efficiency. The framework to stabilize throughput is a

simple PID feedback controller with DVFS (dynamic voltage frequency scaling technology). A simple DVFS scheme with

only four steps is sufficient for a wide range of stabilization target throughputs. The simple PID-control based stabilization

framework we have proposed and demonstrated in this paper can be implemented by software in the OS layer or by hard-

ware with simple discrete time controllers widely used and available in the control market. 

We have shown that the processor throughput can be stabilized within a very narrow band near the target throughput in less

than a few million retired instructions. This enhances the performance predictability of the processor, and reduces heat dissi-

pation by lowering the power consumption. If the target MIPS rate is well-chosen, the EPI to task completion can be reduced

as well. If the program execution rate varies moderately in the baseline, then the stabilization degrades performance very lit-

tle while yielding power and energy savings on top of the improved performance predictability. Furthermore, with stabiliza-

tion, the overall average EPI is 72% of the baseline if we count the energy wasted in idle mode in the baseline while waiting

for the expiration of the deadline. 

We also showed that faster controllers can be detrimental to the performance/power/energy trade-off. Rather it is better to

raise the target MIPS rate by small margins and slow down the controller.

There are several research avenues to improve the results presented in this paper. Better hardware support such as adaptive

feedback controller, and finer-grain DVFS steps with Intel’s XScale frequency and voltage resynchronization technology
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would most probably improve the stabilization with minimal penalty. The target MIPS rate could be changed dynamically

whenever the application needs higher throughput, although, in this paper, we only explored systems with constant target

MIPS rates. PID parameters could be tuned adaptively on-the-fly as well, depending on how critical the settling time is. We

think that this framework can be adopted in GALS systems, MCD architectures or CMPs to manage individual components

or domains effectively.

By its nature, the downside of the stabilization is that the baseline processor is always faster, as it can freely take advantage

of all ILP opportunities with the highest clock rate possible. However, if ever the maximum performance of the baseline pro-

cessor is necessary, stabilization can be easily turned off. 

With our stabilization framework, it is possible to hide the details of modern microarchitectures for real-time application

developers. Developers need to select a processor which can maintain the required MIPS rate and determine its stabilization

parameters instead of relying on complex WCET analysis during the development process. We believe that the development

process is easier and faster with the stabilization framework. As we move to chip multiprocessors, high-performance real-

time applications will have to be parallelized and predicting the execution time of CMP applications is even more difficult

than for applications running on OoO processors. In the future we plan to develop a stabilization framework for CMPs.
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