
Approximate logic synthesis for error tolerant applications
Doochul Shin and Sandeep K. Gupta

Electrical Engineering Department, University of Southern California, Los Angeles, CA 90089
{doochuls, sandeep}@usc.edu

Abstract ─ Error tolerance formally captures the notion that –
for a wide variety of applications including audio, video, graphics,
and wireless communications – a defective chip that produces
erroneous values at its outputs may be acceptable, provided the
errors are of certain types and their severities are within
application-specified thresholds. All previous research on error
tolerance has focused on identifying such defective but acceptable
chips during post-fabrication testing to improve yield. In this
paper, we explore a completely new approach to exploit error
tolerance based on the following observation: If certain
deviations from the nominal output values are acceptable, then
we can exploit this flexibility during circuit design to reduce
circuit area and delay as well as to increase yield. The specific
metric of error tolerance we focus on is error rate, i.e., how often
the circuit produces erroneous outputs. We propose a new logic
synthesis approach for the new problem of identifying how to
exploit a given error rate threshold to maximally reduce the area
of the synthesized circuit. Experiment results show that for an
error rate threshold within 1%, our approach provides 9.43%
literal reductions on average for all the benchmarks that we
target.

Keywords ─ error tolerance, logic synthesis, approximate logic
function, functional yield

I. INTRODUCTION
As the VLSI fabrication technology scaling is reaching nano-scale,

dramatic improvements in most attributes of circuits, especially delay
and yield, provided by scaling are beginning to decrease. One of the
main reasons for this trend is the increase in non-idealities, such as
defect rates and variations due to the manufacturing process [1]. To
mitigate the effects of these non-idealities, researchers have proposed
concepts of fault tolerance and defect tolerance. However, the
disadvantage of these techniques is that they require additional
hardware hence increase the complexity of the circuit, when
compared to the original implementation. The concept of error
tolerance was proposed to combat non-idealities without increasing
circuit complexity [2].

Traditional test techniques classify chips as either perfect, i.e.,
without any error-producing defects, or imperfect, i.e., those that have
one or more error-producing defects or variability. In traditional
testing, every imperfect chip is discarded. The core concept of error
tolerance is that, for a wide range of applications including image,
video, audio, graphics, games, and error-correcting codes for wireless
communication, an imperfect chip can still be used, provided the
types and severities of errors are within certain application-specified
threshold. These imperfect but useable chips (i.e., chips that produce
only acceptable errors) are classified as acceptable chips [3, 4].

Two quantitative metrics have been previously proposed to

measure severity of errors [3]. Error significance (ES) for a set of
outputs is defined as the maximum amount by which the numerical
value at the outputs of an imperfect circuit version can deviate from
the corresponding value for the perfect version. Error rate (ER) is the
percentage of vectors for which values at a set of outputs deviate
from the error free response, during normal operation. Composite
metrics have also been defined using ER and ES.

In [5, 6], faults in circuits used for multimedia applications are
analyzed and it is shown that for a significant percentage of faults the
output quality degradation is not significant. Also in [7] an algorithm
has been developed to generate tests that detect unacceptable chips
without rejecting acceptable chips, for applications that use ER as the
metric to define acceptability.

The main focus of all previous research on error tolerance was to
identify chips during post-fabricated testing that are imperfect but
still acceptable. However, [8] we showed that exploiting error
tolerance during the design of the circuit can reduce circuit’s
complexity, i.e., delay and area. Since reduction in circuit complexity
can be translated into yield improvement and reduction in fabrication
cost, this represents a new way of exploiting error tolerance.

In this paper we propose a logic synthesis approach to design
circuits that implement approximate versions of the given function.
We consider ER as the metric for error tolerance. The applications for
which the chip is to be used must be analyzed to determine the
threshold on error rate. Chips that have error rates smaller than this
threshold would then be deemed acceptable. The objective is to
obtain designs that have minimum area (minimum number of literals)
for a given error rate threshold. Assuming that every input vector is
equally likely during normal operation, the application-specified error
rate threshold determines the number of minterms in the care-set of
the given function for which the output value can be complemented.
With this observation, we can define the objective of our algorithm
as: Identify minterm complements that produce an approximate
circuit version that has the smallest number of literals for a given
error rate threshold.

Even though a composite metric of ES and ER is useful for many
applications, analyzing the each output’s ES for multiple output
functions is beyond the scope of this paper and a subject of our
ongoing research.

First we investigate this problem using exhaustive search where
we enumerate all possible approximate functions, each obtained by
complementing a different minterm. This simple experiment showed
that significant literal reduction is possible even when a single
minterm of the original function is complemented. However, the
main challenge with exhaustive search is that its time complexity
increases exponentially with the number of circuit inputs, and the
increase in time complexity with given error rate threshold. In this
paper, we identify several new properties and integrate these into a
new heuristic approach to synthesize approximate circuit versions for

 1

higher error rate thresholds.
This paper is organized as follows. In the next section, we show

the results of our exhaustive search experiments. In Section III, we
develop several new properties to reduce the number of candidate
minterms that can be complemented to reduce the number of literals.
In Section IV, we propose our heuristic approach to identify
minterms that can be complemented to maximally reduce the number
of literals. Finally in Section V, we present experimental results for
benchmark circuits and report the yield improvements provided by
our approach.

II. EXHAUSTIVE SEARCH TO FIND OPTIMAL MINTERM
COMPLEMENTS

A. Example of reducing literals in a circuit by
complementing minterms of the original function.

Definition 1) Minterm complement threshold (Ct): The
maximum number of minterms in the care-set (on-set and off-set) of
the Boolean function that can be complemented under the given error
rate threshold.

For example, for an n input function, if the error rate threshold is r,
then we are allowed to complement up to Ct = r·2n minterms in its
care-set.

Figure 1. Literal reductions obtained by complementing a minterm.

 The cover in Figure 1(a) is the minimum sum-of-product (SOP)
cover. Suppose Ct = 1. Then we can complement any one minterm
from the original function. To reduce the number of literals from
original minimum cover, we choose minterm 1 2 3 4x x x x to complement
from 0 to 1. The minimum cover for this simplified function is shown
in Figure 1(b). The complemented minterm expands the prime
implicant (PI) 2 3 4x x x to 2 4 ,x x expands 1 2 3 4x x x x to 1 3 4x x x and

removes 1 2 4.x x x This reduces the number of literals by 1, 1, and 3,
respectively, with respect to the original PIs. Hence, the total literal
reduction is six for this minterm complement, since removing a PI
also reduces 1 literal in the “OR” part of SOP representation. A
significant reduction in the number of literals can hence be expected
by selecting 0 to 1 minterm complements that can expand many
original PIs. With the same constraint of Ct = 1, Figure 1(c) shows an
example where complementing a minterm from 1 to 0 reduces the

number of literals. In this case PI 1 2 3 4x x x x can be removed, which
reduces five literals from the original minimum cover.

B. Exhaustive search to find a minterm complement for
maximum literal reduction

This sub-section presents the results of our exhaustive search to
identify the minterm complements that reduce the greatest number of
literals for a given Ct. Each possible combination of Ct or fewer
minterm complements produces one approximate version of the
function. Hence, assuming Ct minterms have been complemented to
generate each approximate function, we have C(2n, Ct) possible
approximate functions, where n is the number of inputs of the
function. (Note: C(p, q) denotes all combinations of q items selected
from a given set of p items.) We synthesize each approximate
function and count the number of literals in the synthesized circuit.
For example, if Ct = 1 (i.e., error rate threshold is 1/2n), first we
complement minterm (000…000) to obtain an approximate version of
the function, synthesize it, and count the number of literals in the
circuit. This experiment is repeated for all single complements from
minterm (000…000) to (111…111). We use two-level logic synthesis
tool ESPRESSO-MV [9].

Number of circuit versions

0

50

100

150

200

250

580 590 600 610 620

Number of literals

0 to 1

1 to 0

Number of circuit versions

0

200

400

600

800

1000

1340 1380 1420 1460

Number of literals

0 to1

1 to 0

Figure 2. Number of literals in different circuit versions when Ct = 1: (a)
Z9sym.pla, and (b) sym10.pla.

000 0 10

011 0 11

1c1 0 01

000 0 00

101101 00
x1x2

x3x4

Figure 2 shows the histograms of number of literals in different
circuit versions obtained in this manner for (a) Z9sym.pla (a 9-input,
1-output function), and (b) sym10.pla (a 10-input, 1-output function),
which are benchmark circuits from the two-level synthesis suite. The
numbers of literals in the original minimum covers are 610 and 1470,
respectively. We achieve 4.8% and 8.5% literal (area) reduction for
Z9sym.pla and sym10.pla, respectively, when we complement a
single minterm that reduces the number of literals by the maximum
amount, compared to the minimum cover for the corresponding
original function.

One important observation from Figure 2 is that all approximate
versions of circuits that have the smallest numbers of literals are
obtained from approximate functions obtained by complementing a
minterm in the off-set (i.e., by a 0 to 1 complement). This is because
to reduce the number of literals by exploiting a 1 to 0 complement,
we have to remove an existing PI. With one 1 to 0 complement, we
can only remove at most one PI in the original minimum cover.
However, a 0 to 1 complement can expand many PIs in the original
minimum cover. Also, if an expanded PI covers all the minterms in
another PI, then the PI that has been covered becomes redundant and
hence can be removed from the minimum cover for approximate
function. Figure 1(b) shows the removal of a PI made redundant by a
0 to 1 complement. A similar reasoning also suggests that 0 to 1

(a)

(b)

000 0 10

011 0 11

c01 0 01

000 0 00

101101 00
x1x2

x3x4

(c) (c: complemented minterms)

0 0 0 0 10

0 1 1 0 11

1 0 1 0 01

0 0 0 0 00

10 11 01 00
x1x2

x3x4

(a) (b)

 2

complements often provide greater reductions in number of literals
for cases where we are allowed to complement multiple minterms of
the function.

In Figure 2, we can also observe that several circuit versions have
larger numbers of literals than the original minimum cover. There are
two reasons for this: (i) a 0 to 1 minterm complement adds a new PI
to the original minimum cover, and (ii) a 1 to 0 minterm complement
reduces the size of PIs that were used in the original minimum cover
and this necessitates the use of multiple PIs, each with more literals.

Such an exhaustive search can only be used for circuits with small
number of inputs and to select a small number of minterms to
complement, since complexity grows exponentially with the number
of inputs and increase in complexity with Ct. Hence, we perform
exhaustive search only when Ct = 1 or 2 for most of the benchmarks
to compare with the heuristic approach that we describe in Section IV.

III. DETERMINISTIC PRUNE OF MINTERM COMPLEMENT
CANDIDATES

In the previous section, we quantified literal reductions obtained
by exhaustively enumerating all possible approximations. From the
results, we notice that 0 to 1 complements are typically more
beneficial than 1 to 0 complements and suggested possible reasons
for this phenomenon. In the rest of this paper, we will focus only on 0
to 1 complements. In this section, we introduce some useful
properties to eliminate 0 to 1 complement candidates that cannot
reduce the number of literals.

Definition 2) Adjacent minterms: Consider two minterms mi and
mj. mi and mj are said to be adjacent if the hamming distance between
mi and mj is 1 in the sense that mi and mj differ only in one bit.

For example, in a four-input function, minterms 1 2 3 4x x x x and

1 2 3 4x x x x are adjacent to each other.

Definition 3) Minterm cluster (Mc): A minterm cluster is a set of

minterms complemented from the original function from 0 to 1 such
that for any two minterms, mi and mj ∈ Mc, there exists a sequence
of minterms (mi, mi1,, mi2,… ,miα, mj) where mi1,, mi2,… ,miα belong to
Mc, and every pair of consecutive minterms in the sequence are

djacent. a
For developing properties, let us denote the set of all on-set

minterms in the original function by a set Mo and the set of PIs newly
generated by complementing the set of minterms Mc as PI(Mc). Also,
denote the set of minterms in a prime implicant PIj as MPIj.

Property 1) Consider a 0 to 1 minterm complement mf. If MPIδ ∩
Mo = ,φ for all PI such that mf PIδ, then there exist other
approximate versions of the original function with fewer literals and
smaller sets of minterm complements that do not include the minterm
co plement mf.

∈

m
Proof) To cover mf in the new minimum cover, we need at least

one PIδ. Since MPIδ ∩ Mo = ,φ if we do not complement minterms
that are only covered by PIδ, including mf, we can remove PIδs from
the cover for the approximate function. This leads to a new circuit
version with fewer literals and fewer minterm complements, because
without PIδ, the number of literals reduces and we complement fewer
minterms from the original function.

Hence, under the given minterm complement threshold, there
exists another approximate circuit version with fewer literals and
fewer minterm complements where we do not complement mf. □

Above property shows us that if there exists a minterm
complement mf and for all the PIδs for which mf ∈ PIδ don’t overlap
with Mo, then we do not have to consider complementing mf from the
original function. For example, in Figure 3(a), it is unnecessary to
complement minterm 1 2 3 4x x x x with 1 2 3 4x x x x because when we

complement both minterms, we need an additional PI 1 3 4x x x to cover

minterm 1 2 3 4 .x x x x Even though the minimum cover for the

approximate function obtained by complementing both minterms has
fewer literals than the original minimum cover, there exists another
approximate version of circuit, obtained by complementing only

1 2 3 4 ,x x x x which has fewer literals and fewer minterm complements.

Corollary 1) If MPIδ ∩ Mo = ,φ for all PIδ ∈ PI(Mc), then the
number of literals in the minimum cover of approximate function
obtained by complementing Mc is greater than the number of literals
in the original minimum cover.

Proof) For Mc ∪ Mo, the original minimum cover is still the
minimum cover for Mo because MPIδ ∩ Mo = ,φ for all PIδ ∈ PI(Mc).
Since we need additional PIs to cover Mc in addition to the PIs that
cover Mo, the literals for these additional PIs are added to the number
of literals in the original minimum cover. □

000010

011011

0c1001

000000

10 110100
x1x2

x3x4 x3x4

0000 10

0110 11

000c 01

00cc 00

10110100
x1x2

(a) (b)

Figure 3. Examples of minterm complement candidates.

Figure 3 (b) shows that complementing Mc =

1 2 3 4{ ,x x x x 1 2 3 4 ,x x x x 1 2 3 4}x x x x cannot reduce the number of
literals from the original minimum cover and Mc requires additional
PI to cover. Conversely, for a Mc to reduce number of literals from
original minimum cover, there must exist PIδ ∈ PI(Mc) such that
MP δ ∩ Mo ≠ I φ (i.e., at least one PI in PI(Mc) must overlap with Mo).

Corollary 2) Let d be the hamming distance between a 0 to 1

minterm complement mf and a on-set minterm in Mo that is at the
minimum distance from mf. For the new approximate function
obtained by complementing mf to reduce the number of literals in the
mi imum cover, d ≤ log2(Ct+1). n

Proof) Let mc be a closest on-set minterm in Mo to mf. Suppose we
complement mf to reduce literals from the original minimum cover.
For mf to reduce literals from the original minimum cover, ∃ PIδ such
that mf∈ MPIδ and MPIδ ∩ Mo ≠ .φ The prime implicant PIδ that
contains mf, overlaps with Mo and contains the smallest number of
minterm complements is the PI which consists of literals common to
minterms mf and mc. All the minterms in this PI must have the literals
common to mf and mc and the distance from each minterm in the PI
(except for mf) to mc must be smaller than the distance from mf to mc.
Since we assume that mc is the on-set minterm in Mo that is the
closest to mf, all the other minterms except mc in the PI are not in Mo.
This in turn means all these are off-set minterms for the original

 3

function. Since to complement all minterms in the PI except mc
requires 2d-1 complements, 2d-1 ≤ Ct. Hence, we see that d ≤
log2(Ct+1). □

Figure 4. Candidate minterm flips when Ct = 1: (a) All the minterms in
CM, (b) Minterms that can expand the original PIs.

Figure 4(a) shows the possible minterm complements when Ct = 1.
The shaded off-set minterms are the ones for which d ≤ log2(Ct +1)
(note that d is a non-negative integer). Only the off-set minterms
among these candidates can reduce the number of literals compared
to the original minimum cover when Ct = 1. We can try different
combinations of Ct or fewer complements out of these candidates and
synthesize each approximate function to obtain the approximate
version of circuit that has the minimum number of literals, for the
given Ct. Assuming we complement all the possible Ct complements
for the approximate function with above proprieties, we can only
consider C(CM, Ct) cases to complement, where CM is the set of off-
set minterms such that, for each minterm, d ≤ log2(Ct +1).

IV. APPROXIMATE LOGIC SYNTHESIS BY ASSISTING
EXPANSIONS

With the observations in Section II and properties derived in
Section III, we identify the facts that 0 to 1 complements that are
within a particular hamming distance of the minterms in the original
function are possible candidate minterms to complement to reduce
the number of literals from the original minimum cover. However, a
search algorithm that considers C(CM, Ct) approximate functions still
has exponential worst-case run-time complexity in the number of
function inputs, n, and a significant complexity with Ct.

In this section, we propose a heuristic approach to select 0 to 1
minterm complements to find an approximate circuit version that has
the minimum number of literals for a given value of Ct. Among the
minterms in CM, the minterms that we focus on are the minterms
that can assist expanding PIs in the original minimum cover. The
main reason is because when we complement only minterms from 0
to 1 that can expand one or more PIs in the original minimum cover,
the given minimum cover of the corresponding approximate function
is guaranteed to have a smaller number literals than the minimum
cover for the original function. On the other hand, complementing
minterms in CM that cannot expand any PI in the original cover
requires new PIs to cover the complemented minterms which may
increase the total number of literals. In some cases, complementing
minterms that cannot expand any original PI can also reduce the total
number of literals by producing a different cover for the original
function if minterm complements are in CM (minterm complements
that can expand one or more original PIs are also in CM). In this case,
the total literal reduction is the difference between the increase in the
number of literals due to the new PIs that cover minterm
complements and the decrease in the number of literals due to the use

of a different cover for the original function. Figure 4 shows the
candidate minterm complements when we consider (a) all minterms
in CM for Ct = 1, and (b) the candidate minterms that can expand one
or more PI in the original cover, for the case where Ct = 1. Typically,
the latter set contains much fewer candidate minterms. Our heuristic
exploits the fact that in most cases, a combination of minterm
complements that can assist PI expansions can provide an
approximate circuit version with the minimum number of literals at
given Ct. However, there exist some original functions where
minterm complements that do not expand any PI in the given original
function minimize the number of literals for a given Ct. 000 0 10

011 0 11

001 0 01

000 0 00

101101 00
x1x2

x3x4

0 0 0 0 10

0 1 1 0 11

0 0 1 0 01

0 0 0 0 00

10 11 01 00
x1x2

x3x4

Based on above observations, we develop procedures to enumerate
all the possible expansions for the original PIs and for identifying
approximate circuit versions with the minimum number of literals for
 given Ct.

(b) (a)

a
Definition 3) Minterm set to expand original PIs (MSEOP): A

set containing all off-set minterms that prevent expanding one or
mo certain direction. re PIs in a

Since a PI can expand by eliminating different literals in the PI,
multiple MSEOPs can exist for a PI. For example, in Figure 4(b),

1 2 3 4{ },x x x x 1 2 3 4 1 2 3 4{ , },x x x x x x x x and 1 2 3 4 1 2 3 4{ ,x }x x x x x x x are a
few different MSEOPs that each expand (by removing one literal) the
PI 1 2 4x x x in the original cover. We first enumerate all MSEOPs that
can expand PIs in the original minimum cover to identify the MSEOP
that leads to an approximate circuit version for a given Ct. Let us
denote the cardinality of MSEOP by |MSEOP|. If |MSEOP| ≤ Ct, we
store the original PI, the expanded PI, and the number of literals
reduced by the expansion to a list, L(MSEOP). After searching all the
PIs that can expand in the given Ct, the list contains the information
about PIs that can be expanded by complementing MSEOPs. Figure 5
shows the procedure Generate-list.

//Generate-list ()

begin
foreach PI in the original minimum cover i,
 foreach possible expansion of PIi j,
 if |MSEOPij| ≤ Ct, then add info about PIij to expansion

list L(MSEOPij)
end

Figure 5. Procedure to generate list of MSEOP that can expand PI.

//Generate-union-list (MSEOPi)

begin
foreach L(MSEOP) j,

if | MSEOPi ∪ MSCOPj | ≤ Ct,
Merge L(MSEOPi) and L(MSEOPi) into L(MSEOPi
MSEOPj)

∪

Generate-union-list (MSEOPi ∪ MSEOPj)
end

Figure 6. Procedure for generating union list for union MSEOP.

Lists from Generate-list consider MSEOPs that can expand at least
one PI in the original minimum cover. We can consider
complementing union of multiple MSEOPs, such that |MSEOPi
MSEOPj∪ MSEOPk … | ≤ Ct.

∪

 4

Figure 6 shows the procedure for generating such an union list.
These generated lists contain information regarding the literal
reduction when complementing an MSEOP or union of multiple
MSEOPs. However, for accurately estimating the literal reduction, we
have to examine PIs after expansion. This is because, in many cases,
the expanded PIs can make other PIs redundant and counting the
literals of these redundant PIs can underestimate the total reduction in
the number of literals. Hence for accurate estimation of literal
reduction, we develop and use following properties.

Let us denote two different PIs (PI1 and PI2) and a MSEOP for PI1,
MSEOP1, and a MSEOP for PI2, MSEOP2. Also denote the number of
literals reduced by expanding PI1 using MSEOP1 by l1 and PI2 using
MSEOP2 by l2.

Property 2) If MSEOP1 = MSEOP2 and the PIs after expanding PI1
and PI2 are not identical, then the number of literals reduced by
co plementing MSEOP1 is (l1 + l2). m

Property 3) If MSEOP1 = MSEOP2 and the PIs after expanding PI1
and PI2 are identical, then the number of literals reduced by
co plementing MSEOP1 is: l1 + (all the literals in PI2) + 1. m

Property 4) If MSEOP1 ⊃ MSEOP2 and PI1 = PI2, then the number
of literals reduced by complementing MSEOP1 (⊃ MSEOP2) = l1.

Property (2) shows that if the MSEOP is the same for the different
PIs, we add the literal reduction for the two PIs, if no PI becomes
redundant after expansion. In Property (3), the number of reduced
literals in PIs that become redundant is added to the total literal
reduction estimation. Property (4) prevents overestimating the
number of literals when multiple MSEOPs exist for the same PI, and
one of the MSEOPs is a superset of the other. In such case, expanded
PI obtained by the superset MSEOP is only the PI that is counted for
computing literal reduction. Our list generating procedure and literal
estimating properties provide tight estimation of the lower bound on
literal reduction by complementing certain MSEOP and union of
MSEOPs.

V. EXPERIMENTAL RESULTS

A. Comparison of assisting expansion heuristic and
exhaustive search

To show the near-optimality and efficiency of our heuristic, we
performed exhaustive search for six benchmark circuits. The results
can be obtained only for Ct = 1 and 2 under our experimental
environment due to the high time complexity of the exhaustive search.
The experiments were performed on a 2.66 Ghz quad core Intel Xeon
processor with 2 GB of main memory. For the sum of runtime for 11
cases, assisting expansion is 87.43 times faster than exhaustive search.
Also the percentage difference in number of literals between the two
approaches is 2.27%, on average.

From Table 1, we see that multiple output benchmarks have
greater difference in the numbers of literals between the exhaustive
and heuristics than single output benchmarks. This is because for
multiple output functions, our heuristic partitions the function into
single output functions and generates input and output relationship
for each output separately. After partitioning the function, we select
minterm complements that can reduce the number of literals for each
single output function. The minterm complements that have the
greatest total estimated value of literal reductions for separate output
functions is selected. However, above heuristic for multiple output
functions does not take into account multiple output implicants, i.e.,
implicants that have output value of 1 for more than one output [13].

Table 1. The numbers of literals and runtimes.

(Legend: # of I/Ps, # of O/Ps, number of literals in the original function.)

of literals Runtime(sec)
Benchmark Ct Exhaustive Heuristic Exhaustive Heuristic

1 581 581 1.18 0.32 Z9sym
(9,1, 610) 2 554 564 81.94 1.20

1 1344 1345 6.99 6.39 sym10
(10, 1, 1470) 2 1290 1290 947.32 26.40

1 870 886 0.74 0.24 rd73
(7, 3, 903) 2 845 866 46.86 2.73

1 763 777 8.08 0.18 clip
(9, 5, 793) 2 745 759 2162.40 0.25

sao2
(10, 4, 496) 1 449 482 6.50 0.12

1 329 339 0.92 0.08 5xp1
(5, 7, 347) 2 300 314 60.35 0.10

B. Literal reductions for benchmark circuits
We used the heuristic described in Section IV to identify minterm

complements that maximally reduce the number of literals for various
values of Ct. We synthesized seven benchmark circuits from the two-
level synthesis suite that implement arithmetic functions since the
idea of error tolerance has been shown to be applicable to datapath
functions. To calculate the number of literals in each approximate
version of the circuit, minterms selected by our heuristics are
complemented in the original minimum cover to obtain an
approximate cover, and two-level synthesis is performed. For each
circuit, we perform above experiment for Ct = 1, 2, 4, 8. Since error
rate threshold is Ct / 2n for a given Ct, where n is number of inputs,
identical Ct values corresponds to different error rate thresholds for
different circuits. Typically, as the number of circuit inputs increases,
larger literal reduction is achieved for the same error rate threshold.
This occurs because the same error rate threshold allows
exponentially larger number of minterm complements for a circuit
with larger number of inputs. The results in Figure 7 show that, on an
average, for an error rate threshold of 0.2% we achieve 3.75% literal
reduction, and for an error rate threshold of 1% we achieve 9.43 %
literal reduction.

0

10

20

30

0.000 0.005 0.010 0.015 0.020 0.025 0.030
 error rate

%
 re

du
ct

io
n

in
 lit

er
al

s

rd73(7/3/903)
clip(9/5/793)
sao2(10/4/496)
5xp1(7/10/347)
Z9sym(9/1/610)
sym10(10/1/1470)
t481(16/1/5233)

Figure 7. Literal reduction for different error rates.

(legend: #of inputs/#of outputs/number of literals in original function.)

C. Functional Yield improvement due to literal reduction
We use the negative binomial yield model [17] to estimate

functional yield improvement due to circuit area reduction that we
calculated from the heuristic. Since we don’t have any information

 5

regarding manufacturing process, first we assume the yield of the
original circuit is 0.7 and the clustering factor (α) is 4, for all the
benchmark circuits. These assumptions enable us to calculate the
value of defect density for the manufacturing process. Functional
yield is then calculated using above defect density and the reduced
area of approximately synthesized circuits. Since the circuit size is
smaller then original circuit, number of defect in the circuit is smaller
then original circuit that we can expect the functional yield
improvement of the circuit. Table 2 shows the result of the
experiment for different benchmarks. On average, we obtain 3.26%
yield improvement with 1% error rate threshold and 4.35% yield
improvement with 2% error rate threshold.

Table 2. Yield improvement assuming circuit area is proportional to
number of literals.

 Error rate = 0.01 Error rate = 0.02

Benchmarks Original
Approximate %

improved Approximate %
improved

Z9sym 0.7 0.726 3.77 0.754 7.72

sym10 0.7 0.738 5.42 0.738 5.42

clip 0.7 0.716 2.35 0.726 3.74

rd73 0.7 0.704 0.64 0.71 1.41

sao2 0.7 0.757 8.09 0.757 8.09

t481 0.7 0.705 0.77 0.705 0.77

5xp1 0.7 0.713 1.79 0.723 3.31

Yield improvement obtained by approximate synthesis grows with

the defect density. In addition to assuming original yield as 0.7 for
above experiment, we also recalculate yield improvements by
assuming the original yield values as being 0.9, 0.5, 0.3, and 0.1 and
measure the yield improvements with approximate logic synthesis.
The decrease in original yield represents the increase in defect density.
The results show that the % improvement in yield increase drastically
as original yield decreases. This means that for the high defect
density, we can expect huge % yield improvements using
approximate logic synthesis. Figure 8 shows the yield improvement
for different values of yield for the original design. Since the main
objective of error-tolerance technique is to combat yield decrease due
to increasing defect densities in future nano-scale fabrication
processes, these curves clearly show that as the problem of yield
decrease become more serious, our technique becomes more useful.

0

10

20

30

0.9 0.7 0.5 0.3 0.1
Yield for original design

%
 im

pr
ov

em
en

t i
n

yi
el

d

0

10

20

30

40

0.9 0.7 0.5 0.3 0.1
Yield for original design

%
 im

pr
ov

em
en

t i
n

yi
el

d

Figure 8. Yield improvement: (a) Z9sym and (b) sym10 for different
original yield values (error rate threshold = 0.01).

VI. CONCLUSIONS
In this paper, we present a new logic synthesis approach for error

tolerant applications. The major contributions of this paper are (i)
Proposing the idea of using error tolerance threshold during the
design phase and demonstrating that it can provide dramatic
improvements in chip cost and yield. On average, a 0.2% error rate
threshold can reduce the number of literals by more than 3.75% and a
1% error rate threshold can reduce the number of literal by 9.43%. (ii)
Derivation of properties that eliminate large number of 0 to 1
complements that cannot reduce the number of literals for a given
original minimum cover. (iii) Development of a heuristic approach
that is practically useable for larger circuits and high values of Ct and
demonstration of the fact that our heuristic is near-optimal for all
cases that we have tried. (iv) Calculation of the yield improvement
using our technique and the demonstration that yield improvement
becomes more significant as the original yield decreases.

This work focused on synthesis of approximate two-level circuits
starting with a given logic function. Since most of the well known
multi-level synthesis heuristics factorize the function using boolean
or algebraic division [11, 12], for some cases, a small number of
literals in the two-level SOP representation does not mean a small
number of literals in the factored form or small area after technology
mapping in multi-level synthesis. To find minterm complements that
can reduce area and delay of multi-level circuits is a subject of our
ongoing research. We are also developing methods to maximally
simplify a given implementation of a circuit for implementation at a
given value of Ct.

VII. REFERENCES
[1] International Technology Roadmap for Semiconductors (ITRS)

2003 [Online]. http://public.itrs.net/Files/2003ITRS/Home2003.htm
[2] M. A. Breuer and S. K. Gupta, “Intelligible testing,” In Proc Int’l

Workshop on Microprocessor Test and Verification, 1999.
[3] M. A. Breuer, “Intelligible test techniques to support error

tolerance,” In Proc. Asian Test Symposium, 2004, pp. 386- 393.
[4] M. A. Breuer, S. K. Gupta, and T. M. Mak, “Defect and error-

tolerance in the presence of massive numbers of defects,” IEEE
Design and Test Magazine, 21, pp. 216-227, May 2004.

[5] I. S. Chong and A. Ortega, “Hardware testing for error tolerant
multimedia compression based on linear transforms,” In Proc.
Defect and Fault Tolerance Conference, 2005, pp. 523- 531.

[6] H. Chung and A. Ortega, “Analysis and testing for error tolerant
motion estimation,” In Proc. Defect and Fault Tolerance conference,
2005, pp. 514- 522.

[7] S. Shahidi and S. K. Gupta, “ERTG: A test generator for error rate
testing,” In Proc. International Test Conference, 2007, pp. 1-10.

[8] D. Shin and S. K. Gupta, "A Re-design Technique for datapath
modules in error tolerant applications," In Proc. Asian Test
Symposium, 2008, pp. 431-437.

[9] R. Rudell, “Multiple-Valued Logic Minimization for PLA
Synthesis,” Technical Report, University of. California, Electronics
Research Laboratory, Berkeley, 1986.

[10] R. K. Brayton, A. Sangiovanni-Vincentelli, C. T. McMullen, and G.
D. Hachtel, Logic Minimization Algorithms for VLSI Synthesis.
Kluwer Academic Publishers, 1984.

[11] R. K. Brayton, R. Rudell, A. Sangiovanni-Vincentelli, and A. R.
Wang, “MIS: A multiple-level logic optimization system,” IEEE
Trans. Computer-Aided Design, vol. CAD-6, pp. 1062–1081, Nov.
1987.

(b) (a)

[12] A. Mishchenko, S. Chatterjee, and R. K. Brayton, "DAG-aware AIG
rewriting: A fresh look at combinational logic synthesis,” In Proc.
DAC, 2006, pp. 532-536.

 6

[13] G. D. Hachtel and F. Somenzi, Logic Synthesis and Verification
Algorithms, Kluwer Academic Publishers, 2000.

[14] S. Devadas, A. Ghosh, and K. Keutzer, Logic Synthesis, McGraw-
Hill, 1994.

[15] N. Jha and S. K. Gupta, Testing of Digital Systems, Cambridge
University Press, 2003.

[16] M. Abramovici, M. A. Breuer and A. D. Friedman, Digital Systems
Testing and Testable Design, John Wiley and Sons, 1995.

[17] I. Koren, Z. Koren, and C. H. Stepper, "A unified negative-binomial
distribution for yield analysis of defect-tolerant circuits," IEEE
Trans. Computers, vol.42, no.6, pp.724-734, Jun. 1993.

 7

	I. Introduction
	II. Exhaustive search to find optimal minterm complements
	A. Example of reducing literals in a circuit by complementing minterms of the original function.
	B. Exhaustive search to find a minterm complement for maximum literal reduction

	III. Deterministic prune of minterm complement candidates
	IV. Approximate logic synthesis by assisting expansions
	V. Experimental results
	A. Comparison of assisting expansion heuristic and exhaustive search
	B. Literal reductions for benchmark circuits
	C. Functional Yield improvement due to literal reduction

	VI. Conclusions
	VII. References

