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Abstract ─ Error tolerance formally captures the notion that – 
for a wide variety of applications including audio, video, graphics, 
and wireless communications –  a defective chip that produces 
erroneous values at its outputs may be acceptable, provided the 
errors are of certain types and their severities are within 
application-specified thresholds. All previous research on error 
tolerance has focused on identifying such defective but acceptable 
chips during post-fabrication testing to improve yield. In this 
paper, we explore a completely new approach to exploit error 
tolerance based on the following observation: If certain 
deviations from the nominal output values are acceptable, then 
we can exploit this flexibility during circuit design to reduce 
circuit area and delay as well as to increase yield. The specific 
metric of error tolerance we focus on is error rate, i.e., how often 
the circuit produces erroneous outputs. We propose a new logic 
synthesis approach for the new problem of identifying how to 
exploit a given error rate threshold to maximally reduce the area 
of the synthesized circuit. Experiment results show that for an 
error rate threshold within 1%, our approach provides 9.43% 
literal reductions on average for all the benchmarks that we 
target. 

Keywords ─ error tolerance, logic synthesis, approximate logic 
function, functional yield   

I. INTRODUCTION 
As the VLSI fabrication technology scaling is reaching nano-scale, 

dramatic improvements in most attributes of circuits, especially delay 
and yield, provided by scaling are beginning to decrease. One of the 
main reasons for this trend is the increase in non-idealities, such as 
defect rates and variations due to the manufacturing process [1]. To 
mitigate the effects of these non-idealities, researchers have proposed 
concepts of fault tolerance and defect tolerance. However, the 
disadvantage of these techniques is that they require additional 
hardware hence increase the complexity of the circuit, when 
compared to the original implementation. The concept of error 
tolerance was proposed to combat non-idealities without increasing 
circuit complexity [2].  

Traditional test techniques classify chips as either perfect, i.e., 
without any error-producing defects, or imperfect, i.e., those that have 
one or more error-producing defects or variability. In traditional 
testing, every imperfect chip is discarded. The core concept of error 
tolerance is that, for a wide range of applications including image, 
video, audio, graphics, games, and error-correcting codes for wireless 
communication, an imperfect chip can still be used, provided the 
types and severities of errors are within certain application-specified 
threshold. These imperfect but useable chips (i.e., chips that produce 
only acceptable errors) are classified as acceptable chips [3, 4]. 

Two quantitative metrics have been previously proposed to 

measure severity of errors [3]. Error significance (ES) for a set of 
outputs is defined as the maximum amount by which the numerical 
value at the outputs of an imperfect circuit version can deviate from 
the corresponding value for the perfect version. Error rate (ER) is the 
percentage of vectors for which values at a set of outputs deviate 
from the error free response, during normal operation. Composite 
metrics have also been defined using ER and ES. 

In [5, 6], faults in circuits used for multimedia applications are 
analyzed and it is shown that for a significant percentage of faults the 
output quality degradation is not significant. Also in [7] an algorithm 
has been developed to generate tests that detect unacceptable chips 
without rejecting acceptable chips, for applications that use ER as the 
metric to define acceptability.  

The main focus of all previous research on error tolerance was to 
identify chips during post-fabricated testing that are imperfect but 
still acceptable. However, [8] we showed that exploiting error 
tolerance during the design of the circuit can reduce circuit’s 
complexity, i.e., delay and area. Since reduction in circuit complexity 
can be translated into yield improvement and reduction in fabrication 
cost, this represents a new way of exploiting error tolerance.  

In this paper we propose a logic synthesis approach to design 
circuits that implement approximate versions of the given function. 
We consider ER as the metric for error tolerance. The applications for 
which the chip is to be used must be analyzed to determine the 
threshold on error rate. Chips that have error rates smaller than this 
threshold would then be deemed acceptable. The objective is to 
obtain designs that have minimum area (minimum number of literals) 
for a given error rate threshold. Assuming that every input vector is 
equally likely during normal operation, the application-specified error 
rate threshold determines the number of minterms in the care-set of 
the given function for which the output value can be complemented. 
With this observation, we can define the objective of our algorithm 
as: Identify minterm complements that produce an approximate 
circuit version that has the smallest number of literals for a given 
error rate threshold.  

Even though a composite metric of ES and ER is useful for many 
applications, analyzing the each output’s ES for multiple output 
functions is beyond the scope of this paper and a subject of our 
ongoing research. 

First we investigate this problem using exhaustive search where 
we enumerate all possible approximate functions, each obtained by 
complementing a different minterm. This simple experiment showed 
that significant literal reduction is possible even when a single 
minterm of the original function is complemented. However, the 
main challenge with exhaustive search is that its time complexity 
increases exponentially with the number of circuit inputs, and the 
increase in time complexity with given error rate threshold. In this 
paper, we identify several new properties and integrate these into a 
new heuristic approach to synthesize approximate circuit versions for 
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higher error rate thresholds. 
This paper is organized as follows. In the next section, we show 

the results of our exhaustive search experiments. In Section III, we 
develop several new properties to reduce the number of candidate 
minterms that can be complemented to reduce the number of literals. 
In Section IV, we propose our heuristic approach to identify 
minterms that can be complemented to maximally reduce the number 
of literals. Finally in Section V, we present experimental results for 
benchmark circuits and report the yield improvements provided by 
our approach. 

II. EXHAUSTIVE SEARCH TO FIND OPTIMAL MINTERM 
COMPLEMENTS 

A. Example of reducing literals in a circuit by 
complementing minterms of the original function. 

Definition 1) Minterm complement threshold (Ct): The 
maximum number of minterms in the care-set (on-set and off-set) of 
the Boolean function that can be complemented under the given error 
rate threshold. 

For example, for an n input function, if the error rate threshold is r, 
then we are allowed to complement up to Ct = r·2n minterms in its 
care-set. 

Figure 1.  Literal reductions obtained by complementing a minterm. 

   The cover in Figure 1(a) is the minimum sum-of-product (SOP) 
cover. Suppose Ct = 1. Then we can complement any one minterm 
from the original function. To reduce the number of literals from 
original minimum cover, we choose minterm 1 2 3 4x x x x to complement 
from 0 to 1. The minimum cover for this simplified function is shown 
in Figure 1(b). The complemented minterm expands the prime 
implicant (PI) 2 3 4x x x to 2 4 ,x x expands 1 2 3 4x x x x to 1 3 4x x x and 

removes 1 2 4.x x x  This reduces the number of literals by 1, 1, and 3, 
respectively, with respect to the original PIs. Hence, the total literal 
reduction is six for this minterm complement, since removing a PI 
also reduces 1 literal in the “OR” part of SOP representation. A 
significant reduction in the number of literals can hence be expected 
by selecting 0 to 1 minterm complements that can expand many 
original PIs. With the same constraint of Ct = 1, Figure 1(c) shows an 
example where complementing a minterm from 1 to 0 reduces the 

number of literals. In this case PI 1 2 3 4x x x x can be removed, which 
reduces five literals from the original minimum cover.  

B. Exhaustive search to find a minterm complement for 
maximum literal reduction 

This sub-section presents the results of our exhaustive search to 
identify the minterm complements that reduce the greatest number of 
literals for a given Ct. Each possible combination of Ct or fewer 
minterm complements produces one approximate version of the 
function. Hence, assuming Ct minterms have been complemented to 
generate each approximate function, we have C(2n, Ct ) possible 
approximate functions, where n is the number of inputs of the 
function. (Note: C(p, q) denotes all combinations of q items selected 
from a given set of p items.) We synthesize each approximate 
function and count the number of literals in the synthesized circuit. 
For example, if Ct = 1 (i.e., error rate threshold is 1/2n), first we 
complement minterm (000…000) to obtain an approximate version of 
the function, synthesize it, and count the number of literals in the 
circuit. This experiment is repeated for all single complements from 
minterm (000…000) to (111…111). We use two-level logic synthesis 
tool ESPRESSO-MV [9].  
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Figure 2.  Number of literals in different circuit versions when Ct = 1: (a) 
Z9sym.pla, and (b) sym10.pla. 
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Figure 2 shows the histograms of number of literals in different 
circuit versions obtained in this manner for (a) Z9sym.pla (a 9-input, 
1-output function), and (b) sym10.pla (a 10-input, 1-output function), 
which are benchmark circuits from the two-level synthesis suite. The 
numbers of literals in the original minimum covers are 610 and 1470, 
respectively. We achieve 4.8% and 8.5% literal (area) reduction for 
Z9sym.pla and sym10.pla, respectively, when we complement a 
single minterm that reduces the number of literals by the maximum 
amount, compared to the minimum cover for the corresponding 
original function. 

One important observation from Figure 2 is that all approximate 
versions of circuits that have the smallest numbers of literals are 
obtained from approximate functions obtained by complementing a 
minterm in the off-set (i.e., by a 0 to 1 complement). This is because 
to reduce the number of literals by exploiting a 1 to 0 complement, 
we have to remove an existing PI. With one 1 to 0 complement, we 
can only remove at most one PI in the original minimum cover. 
However, a 0 to 1 complement can expand many PIs in the original 
minimum cover. Also, if an expanded PI covers all the minterms in 
another PI, then the PI that has been covered becomes redundant and 
hence can be removed from the minimum cover for approximate 
function. Figure 1(b) shows the removal of a PI made redundant by a 
0 to 1 complement. A similar reasoning also suggests that 0 to 1 
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complements often provide greater reductions in number of literals 
for cases where we are allowed to complement multiple minterms of 
the function.  

In Figure 2, we can also observe that several circuit versions have 
larger numbers of literals than the original minimum cover. There are 
two reasons for this: (i) a 0 to 1 minterm complement adds a new PI 
to the original minimum cover, and (ii) a 1 to 0 minterm complement 
reduces the size of PIs that were used in the original minimum cover 
and this necessitates the use of multiple PIs, each with more literals. 

Such an exhaustive search can only be used for circuits with small 
number of inputs and to select a small number of minterms to 
complement, since complexity grows exponentially with the number 
of inputs and increase in complexity with Ct. Hence, we perform 
exhaustive search only when Ct = 1 or 2 for most of the benchmarks 
to compare with the heuristic approach that we describe in Section IV. 

III. DETERMINISTIC PRUNE OF MINTERM COMPLEMENT 
CANDIDATES 

In the previous section, we quantified literal reductions obtained 
by exhaustively enumerating all possible approximations. From the 
results, we notice that 0 to 1 complements are typically more 
beneficial than 1 to 0 complements and suggested possible reasons 
for this phenomenon. In the rest of this paper, we will focus only on 0 
to 1 complements. In this section, we introduce some useful 
properties to eliminate 0 to 1 complement candidates that cannot 
reduce the number of literals.   

Definition 2) Adjacent minterms: Consider two minterms mi and 
mj. mi and mj are said to be adjacent if the hamming distance between 
mi and mj is 1 in the sense that mi and mj differ only in one bit. 

For example, in a four-input function, minterms 1 2 3 4x x x x and 

1 2 3 4x x x x are adjacent to each other. 
 
Definition 3) Minterm cluster (Mc): A minterm cluster is a set of 

minterms complemented from the original function from 0 to 1 such 
that for any two minterms, mi and mj ∈  Mc, there exists a sequence 
of minterms (mi, mi1,, mi2,… ,miα, mj) where mi1,, mi2,… ,miα belong to 
Mc, and every pair of consecutive minterms in the sequence are 

djacent. a 
For developing properties, let us denote the set of all on-set 

minterms in the original function by a set Mo and the set of PIs newly 
generated by complementing the set of minterms Mc as PI(Mc). Also, 
denote the set of minterms in a prime implicant PIj as MPIj.  

Property 1) Consider a 0 to 1 minterm complement mf. If MPIδ ∩ 
Mo = ,φ for all PI such that mf PIδ, then there exist other 
approximate versions of the original function with fewer literals and 
smaller sets of minterm complements that do not include the minterm 
co plement mf. 

∈

m 
Proof) To cover mf in the new minimum cover, we need at least 

one PIδ. Since MPIδ ∩ Mo = ,φ  if we do not complement minterms 
that are only covered by PIδ, including mf, we can remove PIδs from 
the cover for the approximate function. This leads to a new circuit 
version with fewer literals and fewer minterm complements, because 
without PIδ, the number of literals reduces and we complement fewer 
minterms from the original function.  

Hence, under the given minterm complement threshold, there 
exists another approximate circuit version with fewer literals and 
fewer minterm complements where we do not complement mf.      □ 

Above property shows us that if there exists a minterm 
complement mf and for all the PIδs for which mf  ∈  PIδ don’t overlap 
with Mo, then we do not have to consider complementing mf from the 
original function. For example, in Figure 3(a), it is unnecessary to 
complement minterm 1 2 3 4x x x x with 1 2 3 4x x x x because when we 

complement both minterms, we need an additional PI 1 3 4x x x to cover 

minterm 1 2 3 4 .x x x x Even though the minimum cover for the 

approximate function obtained by complementing both minterms has 
fewer literals than the original minimum cover, there exists another 
approximate version of circuit, obtained by complementing only 

1 2 3 4 ,x x x x which has fewer literals and fewer minterm complements. 

Corollary 1) If MPIδ ∩ Mo = ,φ for all PIδ ∈ PI(Mc), then the 
number of literals in the minimum cover of approximate function 
obtained by complementing Mc is greater than the number of literals 
in the original minimum cover.  

Proof) For Mc ∪ Mo, the original minimum cover is still the 
minimum cover for Mo because MPIδ ∩ Mo = ,φ  for all PIδ ∈  PI(Mc). 
Since we need additional PIs to cover Mc in addition to the PIs that 
cover Mo, the literals for these additional PIs are added to the number 
of literals in the original minimum cover.            □ 
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Figure 3.  Examples of minterm complement candidates. 

Figure 3 (b) shows that complementing Mc = 

1 2 3 4{ ,x x x x 1 2 3 4 ,x x x x 1 2 3 4}x x x x  cannot reduce the number of 
literals from the original minimum cover and Mc requires additional 
PI to cover. Conversely, for a Mc to reduce number of literals from 
original minimum cover, there must exist PIδ ∈  PI(Mc) such that 
MP δ ∩ Mo ≠ I φ  (i.e., at least one PI in PI(Mc) must overlap with Mo). 

 
Corollary 2) Let d be the hamming distance between a 0 to 1 

minterm complement mf and a on-set minterm in Mo that is at the 
minimum distance from mf. For the new approximate function 
obtained by complementing mf to reduce the number of literals in the 
mi imum cover, d ≤ log2(Ct+1). n 

Proof)  Let mc be a closest on-set minterm in Mo to mf. Suppose we 
complement mf to reduce literals from the original minimum cover. 
For mf to reduce literals from the original minimum cover, ∃ PIδ such 
that mf∈  MPIδ and MPIδ ∩ Mo ≠ .φ  The prime implicant PIδ that 
contains mf, overlaps with Mo and contains the smallest number of 
minterm complements is the PI which consists of literals common to 
minterms mf and mc. All the minterms in this PI must have the literals 
common to mf and mc and the distance from each minterm in the PI 
(except for mf) to mc must be smaller than the distance from mf to mc. 
Since we assume that mc is the on-set minterm in Mo that is the 
closest to mf, all the other minterms except mc in the PI are not in Mo. 
This in turn means all these are off-set minterms for the original 

 3



function. Since to complement all minterms in the PI except mc 
requires 2d-1 complements, 2d-1 ≤ Ct. Hence, we see that d ≤ 
log2(Ct+1).                                                                   □  

Figure 4.  Candidate minterm flips when Ct = 1: (a) All the minterms in 
CM, (b) Minterms that can expand the original PIs. 

Figure 4(a) shows the possible minterm complements when Ct = 1. 
The shaded off-set minterms are the ones for which d ≤ log2(Ct +1) 
(note that d is a non-negative integer). Only the off-set minterms 
among these candidates can reduce the number of literals compared 
to the original minimum cover when Ct = 1. We can try different 
combinations of Ct or fewer complements out of these candidates and 
synthesize each approximate function to obtain the approximate 
version of circuit that has the minimum number of literals, for the 
given Ct. Assuming we complement all the possible Ct complements 
for the approximate function with above proprieties, we can only 
consider C(CM, Ct) cases to complement, where CM is the set of off-
set minterms such that, for each minterm, d ≤ log2(Ct +1). 

IV. APPROXIMATE LOGIC SYNTHESIS BY ASSISTING 
EXPANSIONS 

With the observations in Section II and properties derived in 
Section III, we identify the facts that 0 to 1 complements that are 
within a particular hamming distance of the minterms in the original 
function are possible candidate minterms to complement to reduce 
the number of literals from the original minimum cover. However, a 
search algorithm that considers C(CM, Ct) approximate functions still 
has exponential worst-case run-time complexity in the number of 
function inputs, n, and a significant complexity with Ct. 

In this section, we propose a heuristic approach to select 0 to 1 
minterm complements to find an approximate circuit version that has 
the minimum number of literals for a given value of Ct. Among the 
minterms in CM, the minterms that we focus on are the minterms 
that can assist expanding PIs in the original minimum cover. The 
main reason is because when we complement only minterms from 0 
to 1 that can expand one or more PIs in the original minimum cover, 
the given minimum cover of the corresponding approximate function 
is guaranteed to have a smaller number literals than the minimum 
cover for the original function. On the other hand, complementing 
minterms in CM that cannot expand any PI in the original cover 
requires new PIs to cover the complemented minterms which may 
increase the total number of literals. In some cases, complementing 
minterms that cannot expand any original PI can also reduce the total 
number of literals by producing a different cover for the original 
function if minterm complements are in CM (minterm complements 
that can expand one or more original PIs are also in CM). In this case, 
the total literal reduction is the difference between the increase in the 
number of literals due to the new PIs that cover minterm 
complements and the decrease in the number of literals due to the use 

of a different cover for the original function. Figure 4 shows the 
candidate minterm complements when we consider (a) all minterms 
in CM for Ct = 1, and (b) the candidate minterms that can expand one 
or more PI in the original cover, for the case where Ct = 1. Typically, 
the latter set contains much fewer candidate minterms. Our heuristic 
exploits the fact that in most cases, a combination of minterm 
complements that can assist PI expansions can provide an 
approximate circuit version with the minimum number of literals at 
given Ct. However, there exist some original functions where 
minterm complements that do not expand any PI in the given original 
function minimize the number of literals for a given Ct. 000 0 10 
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Based on above observations, we develop procedures to enumerate 
all the possible expansions for the original PIs and for identifying 
approximate circuit versions with the minimum number of literals for 
 given Ct. 

(b) (a) 

a 
Definition 3) Minterm set to expand original PIs (MSEOP): A 

set containing all off-set minterms that prevent expanding one or 
mo  certain direction.  re PIs in a 

Since a PI can expand by eliminating different literals in the PI, 
multiple MSEOPs can exist for a PI. For example, in Figure 4(b), 

1 2 3 4{ },x x x x 1 2 3 4 1 2 3 4{ , },x x x x x x x x  and 1 2 3 4 1 2 3 4{ ,x }x x x x x x x are a 
few different MSEOPs that each expand (by removing one literal) the 
PI 1 2 4x x x in the original cover. We first enumerate all MSEOPs that 
can expand PIs in the original minimum cover to identify the MSEOP 
that leads to an approximate circuit version for a given Ct. Let us 
denote the cardinality of MSEOP by |MSEOP|. If |MSEOP| ≤ Ct, we 
store the original PI, the expanded PI, and the number of literals 
reduced by the expansion to a list, L(MSEOP). After searching all the 
PIs that can expand in the given Ct, the list contains the information 
about PIs that can be expanded by complementing MSEOPs. Figure 5 
shows the procedure Generate-list. 

 
 
//Generate-list ( ) 

begin 
foreach PI in the original minimum cover  i, 
 foreach possible expansion of PIi  j, 
 if |MSEOPij| ≤ Ct, then add info about PIij to expansion 

list L(MSEOPij)  
end 

Figure 5.  Procedure to generate list of MSEOP that can expand PI. 

 
//Generate-union-list (MSEOPi) 

begin 
foreach L(MSEOP) j, 

if | MSEOPi ∪  MSCOPj | ≤ Ct, 
Merge L(MSEOPi) and L(MSEOPi) into L(MSEOPi  
MSEOPj) 

∪

Generate-union-list (MSEOPi ∪  MSEOPj) 
end 

Figure 6.  Procedure for generating union list for union MSEOP. 

Lists from Generate-list consider MSEOPs that can expand at least 
one PI in the original minimum cover. We can consider 
complementing union of multiple MSEOPs, such that |MSEOPi  
MSEOPj∪  MSEOPk … | ≤ Ct.  

∪
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Figure 6 shows the procedure for generating such an union list. 
These generated lists contain information regarding the literal 
reduction when complementing an MSEOP or union of multiple 
MSEOPs. However, for accurately estimating the literal reduction, we 
have to examine PIs after expansion. This is because, in many cases, 
the expanded PIs can make other PIs redundant and counting the 
literals of these redundant PIs can underestimate the total reduction in 
the number of literals. Hence for accurate estimation of literal 
reduction, we develop and use following properties. 

Let us denote two different PIs (PI1 and PI2) and a MSEOP for PI1, 
MSEOP1, and a MSEOP for PI2, MSEOP2. Also denote the number of 
literals reduced by expanding PI1 using MSEOP1 by l1 and PI2 using 
MSEOP2 by l2. 

Property 2) If MSEOP1 = MSEOP2 and the PIs after expanding PI1 
and PI2 are not identical, then the number of literals reduced by 
co plementing MSEOP1 is (l1 + l2). m 

Property 3) If MSEOP1 = MSEOP2 and the PIs after expanding PI1 
and PI2 are identical, then the number of literals reduced by 
co plementing MSEOP1 is: l1 + (all the literals in PI2) + 1. m 

Property 4) If MSEOP1 ⊃ MSEOP2 and PI1 = PI2, then the number 
of literals reduced by complementing MSEOP1 (⊃ MSEOP2) = l1.  

Property (2) shows that if the MSEOP is the same for the different 
PIs, we add the literal reduction for the two PIs, if no PI becomes 
redundant after expansion. In Property (3), the number of reduced 
literals in PIs that become redundant is added to the total literal 
reduction estimation. Property (4) prevents overestimating the 
number of literals when multiple MSEOPs exist for the same PI, and 
one of the MSEOPs is a superset of the other. In such case, expanded 
PI obtained by the superset MSEOP is only the PI that is counted for 
computing literal reduction. Our list generating procedure and literal 
estimating properties provide tight estimation of the lower bound on 
literal reduction by complementing certain MSEOP and union of 
MSEOPs.  

V. EXPERIMENTAL RESULTS 

A. Comparison of assisting expansion heuristic and 
exhaustive search 

To show the near-optimality and efficiency of our heuristic, we 
performed exhaustive search for six benchmark circuits. The results 
can be obtained only for Ct = 1 and 2 under our experimental 
environment due to the high time complexity of the exhaustive search. 
The experiments were performed on a 2.66 Ghz quad core Intel Xeon 
processor with 2 GB of main memory. For the sum of runtime for 11 
cases, assisting expansion is 87.43 times faster than exhaustive search. 
Also the percentage difference in number of literals between the two 
approaches is 2.27%, on average. 

From Table 1, we see that multiple output benchmarks have 
greater difference in the numbers of literals between the exhaustive 
and heuristics than single output benchmarks. This is because for 
multiple output functions, our heuristic partitions the function into 
single output functions and generates input and output relationship 
for each output separately. After partitioning the function, we select 
minterm complements that can reduce the number of literals for each 
single output function. The minterm complements that have the 
greatest total estimated value of literal reductions for separate output 
functions is selected. However, above heuristic for multiple output 
functions does not take into account multiple output implicants, i.e., 
implicants that have output value of 1 for more than one output [13].  

Table 1. The numbers of literals and runtimes. 

(Legend: # of I/Ps, # of O/Ps, number of literals in the original function.) 
 

# of literals Runtime(sec) 
Benchmark Ct Exhaustive Heuristic Exhaustive Heuristic

1 581 581 1.18 0.32  Z9sym  
(9,1, 610) 2 554 564 81.94 1.20  

1 1344 1345 6.99 6.39  sym10  
(10, 1, 1470) 2 1290 1290 947.32 26.40  

1 870 886 0.74 0.24  rd73  
(7, 3, 903) 2 845 866 46.86 2.73  

1 763 777 8.08 0.18  clip  
(9, 5, 793) 2 745 759 2162.40 0.25  

sao2  
(10, 4, 496) 1 449 482 6.50 0.12  

1 329 339 0.92 0.08  5xp1 
(5, 7, 347) 2 300 314 60.35 0.10  

B. Literal reductions for benchmark circuits 
We used the heuristic described in Section IV to identify minterm 

complements that maximally reduce the number of literals for various 
values of Ct. We synthesized seven benchmark circuits from the two-
level synthesis suite that implement arithmetic functions since the 
idea of error tolerance has been shown to be applicable to datapath 
functions. To calculate the number of literals in each approximate 
version of the circuit, minterms selected by our heuristics are 
complemented in the original minimum cover to obtain an 
approximate cover, and two-level synthesis is performed. For each 
circuit, we perform above experiment for Ct = 1, 2, 4, 8. Since error 
rate threshold is Ct / 2n for a given Ct, where n is number of inputs, 
identical Ct values corresponds to different error rate thresholds for 
different circuits. Typically, as the number of circuit inputs increases, 
larger literal reduction is achieved for the same error rate threshold. 
This occurs because the same error rate threshold allows 
exponentially larger number of minterm complements for a circuit 
with larger number of inputs. The results in Figure 7 show that, on an 
average, for an error rate threshold of 0.2% we achieve 3.75% literal 
reduction, and for an error rate threshold of 1% we achieve 9.43 % 
literal reduction.  
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Figure 7.  Literal reduction for different error rates. 

(legend: #of inputs/#of outputs/number of literals in original function.) 

C. Functional Yield improvement due to literal reduction 
We use the negative binomial yield model [17] to estimate 

functional yield improvement due to circuit area reduction that we 
calculated from the heuristic. Since we don’t have any information 
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regarding manufacturing process, first we assume the yield of the 
original circuit is 0.7 and the clustering factor (α) is 4, for all the 
benchmark circuits. These assumptions enable us to calculate the 
value of defect density for the manufacturing process. Functional 
yield is then calculated using above defect density and the reduced 
area of approximately synthesized circuits. Since the circuit size is 
smaller then original circuit, number of defect in the circuit is smaller 
then original circuit that we can expect the functional yield 
improvement of the circuit. Table 2 shows the result of the 
experiment for different benchmarks. On average, we obtain 3.26% 
yield improvement with 1% error rate threshold and 4.35% yield 
improvement with 2% error rate threshold. 

Table 2. Yield improvement assuming circuit area is proportional to 
number of literals. 

 Error rate = 0.01 Error rate = 0.02 

Benchmarks Original 
Approximate % 

improved Approximate % 
improved

Z9sym 0.7 0.726 3.77 0.754 7.72 

sym10 0.7 0.738 5.42 0.738 5.42 

clip 0.7 0.716 2.35 0.726 3.74 

rd73 0.7 0.704 0.64 0.71 1.41 

sao2 0.7 0.757 8.09 0.757 8.09 

t481 0.7 0.705 0.77 0.705 0.77 

5xp1 0.7 0.713 1.79 0.723 3.31 
 
Yield improvement obtained by approximate synthesis grows with 

the defect density. In addition to assuming original yield as 0.7 for 
above experiment, we also recalculate yield improvements by 
assuming the original yield values as being 0.9, 0.5, 0.3, and 0.1 and 
measure the yield improvements with approximate logic synthesis. 
The decrease in original yield represents the increase in defect density. 
The results show that the % improvement in yield increase drastically 
as original yield decreases. This means that for the high defect 
density, we can expect huge % yield improvements using 
approximate logic synthesis. Figure 8 shows the yield improvement 
for different values of yield for the original design. Since the main 
objective of error-tolerance technique is to combat yield decrease due 
to increasing defect densities in future nano-scale fabrication 
processes, these curves clearly show that as the problem of yield 
decrease become more serious, our technique becomes more useful. 
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Figure 8.  Yield improvement: (a) Z9sym and (b) sym10 for different 
original yield values (error rate threshold = 0.01). 

VI. CONCLUSIONS 
In this paper, we present a new logic synthesis approach for error 

tolerant applications. The major contributions of this paper are (i) 
Proposing the idea of using error tolerance threshold during the 
design phase and demonstrating that it can provide dramatic 
improvements in chip cost and yield. On average, a 0.2% error rate 
threshold can reduce the number of literals by more than 3.75% and a 
1% error rate threshold can reduce the number of literal by 9.43%. (ii) 
Derivation of properties that eliminate large number of 0 to 1 
complements that cannot reduce the number of literals for a given 
original minimum cover. (iii) Development of a heuristic approach 
that is practically useable for larger circuits and high values of Ct and 
demonstration of the fact that our heuristic is near-optimal for all 
cases that we have tried. (iv) Calculation of the yield improvement 
using our technique and the demonstration that yield improvement 
becomes more significant as the original yield decreases.  

This work focused on synthesis of approximate two-level circuits 
starting with a given logic function. Since most of the well known 
multi-level synthesis heuristics factorize the function using boolean 
or algebraic division [11, 12], for some cases, a small number of 
literals in the two-level SOP representation does not mean a small 
number of literals in the factored form or small area after technology 
mapping in multi-level synthesis. To find minterm complements that 
can reduce area and delay of multi-level circuits is a subject of our 
ongoing research. We are also developing methods to maximally 
simplify a given implementation of a circuit for implementation at a 
given value of Ct. 
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