USC Computer Engineering Technical Report CENG-2009-10

Backpressure Routing Made Practical

Scott Moeller, Avinash Sridharan, Bhaskar Krishnamachari, Omprakash Gnawali
Department of Electrical Engineering
University of Southern California, Los Angeles, 90089
{smoeller,asridhar,bkrishna,gnawali } @usc.edu

The current design methodology for data collection pro-
tocols in wireless sensor networks relies on the proactive
construction and maintenance of quasi-static shortest path trees
for routing. We consider an alternative highly-agile approach
called backpressure routing, in which forwarding decisions are
made on a per-packet basis using backpressure link weights
that incorporate local queue state and link quality information.
In theory, according to recent literature on cross-layer stochas-
tic network optimization, such a dynamic routing approach can
provide near-optimal utilization of the available bandwidth.
However, it has not been implemented on practical systems to
date due to concerns about packet looping, the effect of link
losses, and large delays. Addressing these concerns, we present
the Backpressure Collection Protocol (BCP), the first ever
implementation of dynamic backpressure routing in wireless
sensor networks. Through experiments on a 40-node wireless
sensor network testbed, we demonstrate that incorporating
transmission count minimization in the backpressure weight
eliminates packet looping and provides excellent throughput
performance. We show that BCP provides more than 50%
improvements in throughput compared to a state of the art
tree-based collection protocol. We also show that the average
end-to-end packet delays in BCP can be drastically reduced
(75% under high load, 98% under low load) by using LIFO
queues.

I. INTRODUCTION

As wireless sensor networks mature from concepts and
simple demonstrations to real-world deployments, there has
been a push to identify and develop key networking building
blocks in a more organized and coherent fashion. One such
fundamental building block that has been identified at the
network layer is Collection, which allows for data from
multiple sources to be delivered to a common sink. State-
of-the-art implemented protocols for collection are based on
quasi-static minimum cost trees with suitably defined link
metrics [9]. Due to the limited radio link rates, high density
of deployment, and multi-hop operation, bandwidth is a scarce
resource in wireless sensor networks, and recent studies such
as [4] have suggested that it is essential to improve collection
throughput as much as possible.

We explore in this work an exciting alternative approach
— dynamic backpressure routing — that allows for load-
balanced re-routing around hot-spots on a per-packet basis

to substantially enhance the throughput efficiency of collec-
tion. This technique is based on elegant theoretical results
pertaining to differential queue backpressure scheduling and
cross-layer stochastic optimization ([10], [14]). The crux of
this approach lies in calculating link weights that take into
account the difference of queue size across a link, as well
as link quality information, and then prioritizing forwarding
over high-weight links. In theory, backpressure mechanisms
promise throughput-optimal performance and elegant cross-
layer solutions for integrating medium access, routing, and
rate control.

Despite the theoretical promise of backpressure techniques,
to date it has not been implemented in practice at the routing
layer!' due to several challenges. First, if the link weights are
not carefully defined, backpressure routing can suffer from
either excessively high hop-counts (packet looping) or, at
the other extreme, over-emphasize low hop counts, resulting
in wasted transmissions over lossy links. Second, due to
relatively high queue sizes that must be maintained to provide
a gradient for data flow even at low loads, backpressure routing
can suffer from inordinately large delays. Finally, while most
of the theoretical work on backpressure scheduling provide
for centralized TDMA solutions, in practice a distributed
asynchronous routing solution is needed.

In this work, we take the first steps towards addressing these
problems in order to allow backpressure routing to realize their
promise in practical environments.

We present in this paper the Backpressure Collection Pro-
tocol (BCP), a low-overhead dynamic backpressure routing
protocol at the network layer implemented on TinyOS 2.x,
a widely used wireless sensor network operating system and
protocol stack. We evaluate it through real experiments on
a 40-mote testbed, where we compare BCP’s performance
with the Collection Tree Protocol (CTP)[9], a state of the
art routing protocol distributed with TinyOS 2.x. We find
that BCP outperforms CTP in terms of maximal achievable
network goodput by more than 50%. BCP incorporates a novel
link-specific-threshold to minimize the expected number of
transmissions (ETX) per delivered packet, essential for energy-
efficient and robust performance over real-world networks with
lossy links. We show that by using LIFO queueing instead of

IThere have been several implementations of backpressure ideas at the
MAC and transport layers, as we shall discuss when presenting related work
in section V.

FIFO, the delays associated with backpressure routing can be
reduced dramatically, by more than 98% at low data rates and
by 75% at high data rates without affecting the achievable
goodput.

II. BACKPRESSURE EXPLAINED

Unlike traditional routing mechanisms for wired and wire-
less networks, backpressure routing does not perform any
explicit path computation from source to destination. Instead,
the routing and forwarding decision is made independently
for each packet by computing a backpressure weight on each
outgoing link that uses only localized queue and link state
information. A generic form for this backpressure weight w; ;
calculated by a node ¢ for a given neighbor j is the following:

w; 5 = (AQi,j - 9i,j) : Ri,j (D

Here, AQ;; = Q;—Q); is the queue differential, with ¢); and
Q; representing the number of packets in the queues of nodes 7
and j respectively?, R; ; is the link rate, and 6; ; a link-specific
threshold that can be used to optimize a given objective such as
minimizing hop-count or the number of transmissions incurred
to deliver each packet. For each packet, node ¢ computes the
backpressure weight w; ; for all its neighbors, and uses it as
the basis for making routing (who to try and send the packet
to) and forwarding (whether to send the packet) decisions as
follows. Routing decision: Node i identifies the link (,5*)
with the highest value of the backpressure weight as the next
hop for the packet. Forwarding decision: if w; j~ > 0, the
packet is forwarded (i.e. sent to the link layer for transmission
to the designated neighbor), else the packet is held back for
some time 7 before the metric is recomputed.

In describing this simple routing and forwarding mechanism
to colleagues unfamiliar with backpressure techniques, we
have found that a common initial reaction is surprise that this
simple forwarding strategy that has neither an explicit path
computation nor an explicit reference to the destination, should
work at all.

We illustrate the functioning of backpressure routing with
a simple example. Figure 1 shows a linear topology with
four nodes labelled 3, 2, 1, and S (for sink) respectively. For
simplicity, assume that 6; ; = 1, R; ; = 1. For the following
explanation, we can look at either the top or the bottom row
(we shall discuss later the difference between these cases.)
In steady state, there is a natural queue backpressure gradient
sloping downwards to the sink . Each node has just one packet
more than its neighbor to the right but is unable to forward
because it does not strictly exceed the threshold of 1. The
injection of new packets into nodes 1 and 2, shown in step
B, causes the thresholds to be exceeded. Node 1 then starts

2 As we are focusing on data collection settings in wireless sensor networks
where packets are all intended for a common sink, it suffices to maintain
a single queue at each node. For more complex multi-commodity settings,
backpressure routing may require the maintenance of multiple queues.

3Backpressure routing requires a gradient to exist before packets can begin
to be forwarded, resulting in a small startup time, and the possible sacrifice
of a small number of “trapped” packets. Both of these are negligible concerns
for even moderately long flows.

sending packets to the sink, while node 2 initially forwards
a packet backwards to node 3 (after step B), then halts (after
step C), then reverses to start sending packets to node 1 as
that node’s packets are drained out by the sink. Eventually six
packets (corresponding to the number of new arrivals) are sent
to the destination, and the system returns to the steady state
gradient.

The main benefit of using backpressure routing is its
throughput performance. While it cannot be seen from the
simple one-dimensional illustration above, backpressure rout-
ing makes very efficient use of the available bandwidth by
dynamically re-routing packets away from hot-spots. It was
originally shown by Tassiulas and Ephremides [14] that a cen-
trally scheduled version of backpressure routing is throughput
optimal. We show through experimental measurements in this
work that with our distributed scheme we are able to obtain
a dramatic 50% improvement in total throughput compared to
shortest path routing.

The performance of backpressure routing is also highly
sensitive to the choice of the backpressure weight. A weight
that looks only at queue differentials and imposes no positive
threshold can result in excessively long paths (looping). On
the other hand, as we shall show, a backpressure weight that
emphasizes hop count minimization results in wasted trans-
missions due to selection of high-loss links. In this work, we
use a novel backpressure weight that is theoretically derived
to minimize expected transmission counts and show that this
provides highly efficient performance.

There is a major shortcoming of backpressure routing when
performed in conjunction with traditional FIFO queuing —
extremely large delays. In the top row of figure 1, which
illustrates forwarding with first-in-first-out (FIFO) queues, we
see how some of the incoming packets marked in black settle
down to help form the backpressure gradient; these packets can
experience inordinately high delays until they are dislodged
by new arrivals. And (somewhat counter-intuitively, perhaps,
if one does not see this illustration) these delays are highest
when the traffic load in the network is low. As we shall show
through our experimental evaluations, average packet delays
for backpressure routing with FIFO queues can be as much
as three orders of magnitude worse than with shortest path
routing at low rates.

A key contribution of our work is to show for the first time
that this problem can be substantially alleviated by using the
last-in-first-out (LIFO) discipline instead. As illustrated in the
second row of Figure 1, with a LIFO discipline, while the
packets that form the backpressure gradient remain “trapped”,
the new packet arrivals into the network are all rapidly deliv-
ered to the sink. Thus, by sacrificing a small number of packets
at the very beginning to create the backpressure, the delay
performance can be greatly improved. We will empirically
show that LIFO queues provide up to two orders of magnitude
improvement in delay performance of backpressure routing for
low rate settings compared to FIFO.

A B @ c D E F G H I J

o (1 J o]) o] J @) @) @)

L O o] I) o] I) o] J o] J oe O 0]@) O O

EOO 00e o] I) o] I J o] le) oe o] 1) oe 00e 0]@)
000 000 00e ooe cee 0]]6) o]]6) cee 0ee 0ee
3218 3218 3218y 3215¢ 3215¢g 3215¢ 3215 32185 3218 321 sg
A B @ o] D E F G H I J

o o0 (1 J o0 [4 4 o

L O o] I) o] I) o] J oe oe O oe O O

:OO 00e 00e 00e 00e 0]@) 00e 0]@) 00e 0]@)
000 000 000 0]0]6) 0]0]6) 0]0]6) 0]0]6) 000 000 000
3218 3218 3215 3215¢ 3215g 3215¢ 3215 3215sg 3218 321 sg

Fig. 1: An intuitive example of backpressure routing on a four-node line network. Three packets (black circles) are injected at nodes 1 and

2 at time B, intended for the destination sink S.
III. BCP IMPLEMENTATION

We have developed the Backpressure Collection Protocol
(BCP), the first ever real-system implementation of a dynamic
backpressure routing mechanism. BCP is implemented on
TinyOS 2.x, and has been tested on the IEEE 802.15.4-based
Tmote Sky platform. BCP’s code footprint is about 23 KB
including our test application.

One design decision that needs to be made in a real system
implementation is how to choose the link-specific threshold
0;,; used to make the forwarding decision. We consider the fol-
lowing two thresholds: eijP =V,and 0% =V -ETX, j,
where V' is an empirically determined parameter that provides
a tradeoff between Hop/ETX minimization and delay. These
thresholds are not mere heuristics but are mathematically
derived using the Stochastic Lyapunov-Drift Optimization
framework developed by Neely [10]. Using ijop minimizes
the total expected number of hops per packet, while GEJ-TX
minimizes the total expected number of transmissions per
packet *.

Our emphasis in this work is on the novel transmission-
count minimizing backpressure weight that uses QEJTX . We
will therefore refer to our implementation of backpressure
routing with this weight as BCP. We implemented the hop
count minimizing backpressure weight that uses 67°" pri-
marily to provide a reference comparison. Since this weight is
similar to what has been previously proposed in the literature
as Volcano routing [8] (although that work did not include a
link rate product term), we refer to this variant as Volcano. We
will show in Section IV that while Volcano provides low hop
counts, this comes at the expense of high transmission counts
and packet losses due to its use of high-loss links (similar to
what was observed in [6]). The use of ETX minimization in
the context of backpressure routing is a novel contribution of

4We omit the formal details of the mathematical derivation due to space
constraints, but essentially, what can be shown is that if link weights w;_; are
calculated as per equation (1) with 6; ; set to HZETX (respectively, GZHJ.OP),
and these weights are used as the basis for a Tf)MA scheduling where at
each time step non-interfering links that provide maximum-weight matching
are chosen, then the resulting dynamic backpressure routing algorithm is a
stochastic solver for the following wireless network optimization problem:
minimize the expected number of transmissions per packet (respectively,
expected number of hops per packet) subject to delivering any offered traffic
load that lies within the network’s capacity region while maintaining bounded
queues. For more details on stochastic optimization of wireless networks, we
refer the reader to [10].

this work, and as we shall show, is essential for low losses
over real-world wireless networks with lossy links.

15 0
1 T 1 T T N N
Link Header
Reserved | THL h
BCP
Queue Backlo
— g - Header
Origin 8 Bytes
SeqNo ICoIIection ID
Payload

Fig. 2: The unicast data packet header in BCP. Note that all fields are
identical to CTP [9], with the exception that CTP’s ETX metric field
has been used by BCP to broadcast the local node’s packet backlog.
The Time Has Lived (THL) field tracks hop count, while origin and
seqno semi-uniquely define a packet. The Collection ID allows for
multiple flow types to the sink. No special beacon/control packets
are necessary for routing control in BCP.

Both the expected number of transmissions £'7'X; ; and rate
R; ; are estimated in an online fashion by each node 4 for each
of its neighbors based on local time stamps of its unicast data
transmission attempts and corresponding received acknowl-
edgements, using exponentially weighted moving averages
(BCP uses a simple stop-and-wait ARQ with a maximum
of 10 retransmission attempts on a link before weights are
recomputed). For our EWMA estimates, we use the same
o = 0.9 setting as determined best by CTP. This setting gives
good estimate of stability, at the cost of lesser responsiveness
to sudden link changes. Each data packet includes a header
field for the queue backlog (see figure 2). This information is
obtained by all neighbors using a snoop interface. Thus BCP
incurs no additional overhead in terms of separate broadcast
control packets for either link estimation or for exchanging
queue status. The parameter 7, which determines the time for
which a packet that is not forwarded is withheld before the
metric is recalculated, provides a tradeoff between through-
put/delay performance and processor loading.

Unlike path-based routing protocols, in BCP, some packet
looping is acceptable in response to temporary congestion/hot
spot formation (though this is minimized as a natural con-
sequence of reduced transmission counts). It is sufficient
therefore to suppress only the duplicate packets that occur due

to lost acknowledgements on a link. This is done by recording
the three-tuple of < source, sequence number, THL > from
the header of the last packet obtained from each incoming
neighbor and using it to drop any duplicates with the exact
same tuple.

IV. TESTBED RESULTS
A. Experimental Setup

We perform our evaluation experiments on the Tutornet [2]
40-node indoor wireless sensor network testbed consisting of
IEEE 802.15.4-based Tmote Sky devices. A transmit power of
-18 dBm was used for all experiments over 802.15.4 channel
26. Packet inter-arrival times were exponential, providing
poisson traffic, and all tests were run for 35 minutes. In all
tests, 39 motes were sourcing traffic. For brevity, we will state
only the per source packet rate below, with the understanding
that 1.0 packets per second indicates 39 sources are each active
at this rate. The backpressure optimization parameter V was
set to 2 as a result of early experimentation. We conservatively
set 7 = 100ms.

B. Goodput

We first explore the delivery capabilities of CTP, BCP and
Volcano. Figure 3 provides the goodput at the sink over various
source rates. At source rates in excess of one packet per second
we begin to see packet losses over CTP, indicating the need
for source congestion control. The BCP performance, however,
indicates no significant losses until source rates exceed 1.66
packets per second per source, a more than 50% improvement.

2 T T T
CTF +
BCF <
Volcano ¥ ¢
£ 1.5 g
o
-
% A
o * 4
2] 1 b i
o *
-
- L
F
o
K
g 8.9 r *¥ 7
=
B 1 1 1
a 8.5 1 1.5 2

offered Source Load {PP5}

Fig. 3: Goodput over source rate for CTP, BCP and Volcano.

The cause of losses can be seen by observing maximum
queue occupancy, shown in Figure 4 for 0.50 packets per
second (top) and 1.50 packets per second (bottom). We note
that motes near the sink in CTP are more prone to queue
overflow, and that this causes aggressive tail drops at source
rates in excess of 1.0 packets per second. Figure 4 also
clearly depicts the natural queue gradient that results from
backpressure routing: nodes near the sink have lower queue
sizes, and queues grow the further a node is from the sink.

Hax Queue Size

Hax Queue Size

Hode ID

Fig. 4: Maximum queue sizes for the 0.50 packet per second tests
(at top) and 1.50 packet per second tests (at bottom). We observe the
hot spots spreading in CTP, while BCP exhibits the expected queue
behavior that grows further from the sink.

Fig. 5: The BCP routing result at 0.5 packets per second, link line
weights indicate packet count transmitted in the 35 minute test.

This queue load balancing results in a spreading of traffic
across the network for BCP. This is indicated by Figure 5
which summarizes the routing activity of BCP over a period
of time. The tree structure of CTP on the other hand results in
hot spots such as node 8 in the top plot of Figure 4. Though in
experimentation we observed Volcano load balancing in a sim-
ilar manner, it does not achieve similar goodput performance.
We next set out to investigate the cause for this gap.

C. Delivery Efficiency

Figure 6 gives statistics for average hop count per packet
for CTP, BCP and Volcano over source rates ranging from
0.25 packets per second through 1.5 packets per second. Both
Volcano and BCP perform well with regard to hop count,
particularly at low data rates. This can be explained with
the simple observation that links are relatively reliable when
the system is not heavily loaded; minimizing ETX is then
approximately equivalent to minimizing hop count.

If Volcano is properly minimizing hop count, and the
underlying backpressure optimization is designed to maximize
throughput, why is the goodput to the sink suffering? Figure 7
plots statistics for average transmissions per packet under CTP,
BCP and Volcano. Here we see the key problem with Volcano.
In minimizing the hop count, often links are selected which

18 T T T T T
CTP —+—
™ BCP
g Yolcano —#—
"
)
= T B
@
g -
S
= 7 I ¥
- * E
©
=
Q
o
o
&
L L N
= 1
[
>
-
1 1 1 1 1

8.25 8,3 1 1,25

of fered Source Load {FFS5}

1.5

Fig. 6: The system average hop count per packet to the sink. The bars
indicate the minimum and maximum source’s average hop count per
packet. Both BCP and Volcano perform competitively.

T T T T T
CTP —+—
1688 + BCP —— |
= VYolcano —#—
o
[
=] *
)
-
E *
=] - L3 4
8 18 * |
x
=
[
&
@
L
]
>
-
1k i
L 1 1 1 L

8,25 8.5 1 1.25
offered Source Load {PP52

1.5

Fig. 7: The system average transmissions per packet to the sink. The
bars indicate the minimum and maximum source’s average transmis-
sions per packet to the sink. BCP optimizes for system transmissions
effectively, while Volcano selects links with poor quality.

have poor reliability, resulting in high transmission counts to
the sink. Unfortunately, this problem is compounded by false
acknowledgements, which occur in 802.15.4 networks acutely
at high transmission rates due to the standard’s use of low-
complexity acknowledgements. These together cause the loss
of approximately 20% of the packets across all source rates.
The prior paper on Volcano routing [8], lacking a realistic link
model, did not uncover these issues.

Also of interest in Figure 7 is the impressive performance of
BCP with respect to total system transmissions. This metric is
frequently selected by researchers in order to minimize energy
consumption in wireless sensor network deployments, and we
observe competitive performance versus CTP. Note that at
source rates above 1.0 packets per second, queue tail drops
in CTP disproportionately impact packets from the rear of
the network, giving CTP artificially low averages for hop and
transmission counts.

D. Delay Performance

Finally, we evaluate the improvement achieved by replacing
BCP FIFO queues with LIFO ones. Figure 8 gives the range of
per source average delay for per source rates ranging from 0.25
pps through 1.50 pps. At low data rates, we observe that BCP-
FIFO delay performance scales inversely with source rate. This
is because the data in the FIFO queues must be pushed through
the gradient of queues in order to reach the sink, propelled
by subsequent source admissions (recall this was the case in
Figure 1). Replacing the FIFO queues with LIFO queues yields
a delay reduction of more than 98% at light source rates (0.25
packets per second), and more than 75% reduced at heavy
source rates (1.5 packets per second). These reductions make
BCP competitive with CTP.

A traditional concern over LIFO queue usage is its impact
on the ordering of packets at the final destination. Though
not all sensor network applications are affected by packet re-
ordering, there are currently some proposals for running TCP
over IP within wireless sensor networks [1], the performance
of which would suffer greatly from packet re-ordering if
severe. We were therefore interested in comparing the re-
ordering impacts of LIFO and FIFO queue usage in BCP.
Figure 9 provides a typical 200 packet window of source
sequence number versus sink arrival number for BCP FIFO
and BCP LIFO under a high (1.5 packet per second) source
rate. As would be expected, we do observe that the greatest re-
ordering outliers exist under LIFO implementation. Somewhat
surprisingly, however, we see that the majority of delivered
packets experience lesser reordering under LIFO usage. The
explanation is actually quite simple: under FIFO usage the
delay variation from source to source has been seen to be
extreme in figure 8. Subsequently, as BCP elects to load
balance packets to different neighbors, significant re-ordering
can result. Under LIFO queue usage, the delay to the sink is
generally compressed (most packets traverse the hops rapidly)
and so the dynamic routing actually has a lesser impact.

V. RELATED WORK

The intellectual roots of dynamic backpressure routing
for multi-hop wireless networks lie in the seminal work by
Tassiulas and Ephremides [14]. They showed that using the
product of queue differentials and link rates as link weights
for a centralized maximum-weight-matching algorithm allows
any traffic within the network’s capacity region to be scheduled
stably. Recent work by Neely [10] has provided a theoretical
framework for backpressure-based stochastic optimization that
we have used in this work to derive the link-specific thresholds
for Volcano and BCP-ETX. Unlike most prior theoretical work
focused on centralized TDMA-based backpressure scheduling,
BCP works over an asynchronous CSMA MAC to provide a
more practical distributed approach.

A closely related work to ours is volcano routing, a previous
proposal for backpressure routing [8]. Volcano routing is
designed and evaluated only in simulations assuming idealized
loss-less links and global synchronization, and neither its
goodput nor its delay performance are explored in [8]. As

.. loaape T T T T T
" CTP —+—
z BCP LIFOD ——
™ CP FIFOD —#—
=

v 18688 | E
-]

-

=l

-

v 1008 | | 4
=

)

o

-

[*]

-]

= iee | E
4]

=1}

m

[

(1]

>

= 1@ 1 | | 1 1

8,235 8.5 1 1.25
0ffered Source Load {FP5}

1.5

Fig. 8: The system average source to sink packet delay for CTP, BCP
FIFO and BCP LIFO. The bars indicate the minimum and maximum
source’s average source to sink packet delay. The usage of LIFO
queues in BCP results in a 75-98% reduction in average delay over
FIFO.

250 .3 L

208 r

158 -

Fkt S5eq Received

IB[:P-FIIFI] I+ i+ PCP-L;FD +

158 288 2358
Source seqHo

158 288 238

Source seqHo

Fig. 9: Packet reception order at the sink for source 40, plotted for
CTP, BCP FIFO and BCP LIFO. Interestingly, the bulk of packets

received at the sink have less reordering under LIFO usage, with a
few exceptional outliers which may be discarded.

we have shown, while it can provide low hop-counts, using
the Volcano-like link weight shows poor performance in a
real-world network in terms of transmission counts as well
as goodput.

In recent years backpressure scheduling and optimization
have been translated to practical protocols for wireless net-
works by a few other researchers, but only at the MAC and
Transport layers. In wGPD [3] and DiffQ [15], the queue
differentials are used to change contention behavior at the
MAC layer. In Horizon [12], load balancing decisions over
multiple disjoint routing paths (generated separately by a
link state routing protocol) take into account queue state
information to enhance TCP performance. Transport layer
backpressure-based rate utility optimization is demonstrated in
both wGPD [3] and in the work by Sridharan et al. [13]. None
of these prior works have implemented dynamic backpressure
routing at the network layer, which is the focus of BCP. More-
over, these prior works have not investigated the mitigation of
delay in backpressure based protocols, a key contribution of
this work.

While there have been previous theoretical/simulation-based
proposals for use of multi-path routing in wireless sensor
networks [7], nearly all implemented routing protocols for

collection in wireless sensor networks have been based on
minimum cost trees, including the state-of-the-art collection
tree protocol (CTP) [9], which we have used as a baseline in
our evaluation.

VI. FUTURE WORK

One of the most exciting aspects of our work with BCP
is the number of extensions available for future research
and development, both by our group and others. We believe
that BCP can be the basis of a comprehensive new high-
performance cross-layer networking stack for wireless sensor
networks. In light of this potential, we have implemented BCP
in the open source TinyOS environment.

Some immediate extensions that we plan to pursue pertain
to providing automated parameter adaptation (for protocol
parameters such as V and 7), and to more thoroughly eval-
uating the performance of BCP with respect to stochastic
dynamics in link conditions, external interference, and the
network topology. With a backpressure routing stack in place,
it is very easy to implement transport layer congestion control
on top that allows for the maximization of any concave
source-rate utility function. We plan to do this in the future,
similar to the backpressure-based transport layer optimizations
implemented in ([3], [13]). We also plan to investigate if there
are any further throughput gains to be obtained with MAC-
layer prioritization based on the back-pressure weights (as has
been explored in [15], [3]). Another desirable extension would
be to integrate BCP over a suitable multi-frequency MAC.

In future work, it is also of interest to explore how receiver
diversity mechanisms such as used in the ExOR protocol [5]
may be incorporated within the BCP framework to further
improve network throughput, delay and energy performance.
The recently proposed DIVBAR mechanism [11], which has
been analyzed theoretically, suggests that this is feasible. Also
exciting is the prospect of implementing network coding tech-
niques with BCP, taking advantage of the routing path diversity
provided by backpressure. This may make it possible to give
some guarantee of source to sink loss rates, allowing high
probability packet reconstruction at the sink while removing
link layer acknowledgement overheads in the 802.15.4 MAC.

REFERENCES

[1] IETF 6lowpan Working Group. http://www.ietf.org/dyn/wg/charter/6lowpan-

charter.html.

[2] Tutornet Testbed. http://enl.usc.edu/index.html.

[3] U. Akyol, M. Andrews, P. Gupta, J. Hobby, I. Sanjee, and A. Stolyar.
“Joint Scheduling and Congestion Control in Mobile Ad-hoc Networks”.
IEEE Infocom, 2008.

[4] M. Bathula, M. Ramezanali, I. Pradhan, N. Patel, J. Gotschall, and
N. Sridhar. “A Sensor Network System for Measuring Traffic in Short-
Term Construction Work Zones”. DCOSS, 2009.

[5] S. Biswas and R. Morris. ExOR: opportunistic multi-hop routing for
wireless networks. ACM SIGCOMM Computer Communication Review,
35(4):133-144, 2005.

[6] D.S.J. De Couto, D. Aguayo, J. Bicket, and R. Morris. A high-
throughput path metric for multi-hop wireless routing. In Mobicom,
2003.

[7]1 D. Ganesan, R. Govindan, S. Shenker, and D. Estrin. Highly-resilient,
energy-efficient multipath routing in wireless sensor networks. ACM
SIGMOBILE Mobile Computing and Communications Review, 5(4):11—
25, 2001.

[8]

[9]

[10]

(11]

(12]

(13]

[14]

[15]

Y. Ganjali and N. McKeown. Routing in a highly dynamic topology. In
Sensor and Ad Hoc Communications and Networks, 2005. IEEE SECON
2005. 2005 Second Annual IEEE Communications Society Conference
on, pages 164175, 2005.

O. Gnawali, R. Fonseca, K. Jamieson, D. Moss, and P. Levis. “Collection
Tree Protocol”. To appear, ACM Sensys, 2009.

M1J Neely. Energy optimal control for time varying wireless networks.
In Proceedings IEEE INFOCOM 2005. 24th Annual Joint Conference
of the IEEE Computer and Communications Societies, volume 1, 2005.
M.J. Neely and R. Urgaonkar. Optimal backpressure routing for wireless
networks with multi-receiver diversity. Ad Hoc Networks, 7(5):862-881,
2009.

B. Radunovic, C. Gkantsidis, D. Gunawardena, and P. Key. Horizon:
Balancing TCP over multiple paths in wireless mesh network. Mobi-
com’2008.

A. Sridharan, S. Moeller, and B. Krishnamachari. Making distributed
rate control using Lyapunov drifts a reality in wireless sensor networks.
In Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks
and Workshops, 2008. WiOPT 2008. 6th International Symposium on,
pages 452461, 2008.

L. Tassiulas and A. Ephremides. Stability properties of constrained
queueing systems and scheduling policies for maximum throughput in
multihop radio networks. [EEE Transactions on Automatic Control,
37(12):1936-1948, 1992.

A. Warrier, S. Ha, P. Wason, 1. Rhee, and J.H. Kim. Diffq: Differential
backlog congestion control for wireless multi-hop networks. In Sensor,
Mesh and Ad Hoc Communications and Networks, 2008. SECON’08. 5th
Annual IEEE Communications Society Conference on, pages 585-587,
2008.

