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Abstract

Orthogonal Frequency Division Multiplexing (OFDM)
has become the de facto standard for fourth generation
wireless networks[5]. In such a network, the frequency
band is divided into numerous orthogonal sub-carriers. In
each time-slot, disjoint sets of sub-carriers can be assigned
to users based on some target objective. The users in turn
transmit data by spreading the information across the as-
signed sub-carriers. The main contribution of this work
is a formal analysis of the complexity of this class of re-
source allocation problems for various objectives and sce-
narios. Specifically we formally prove that the sub-carrier
resource allocation problem is NP-hard for both power min-
imization as well as rate maximization in both uplink and
downlink scenarios. More importantly, we also provide
in-approximability results for these scenarios, outlining a
hard limit on what deterministic allocation algorithms can
achieve for this class of problems. While these results are
mostly of a negative nature, we also propose a class of
heuristics, called k-interchange, which are shown to yield
close to optimal performance via simulations.

1. Introduction

Orthogonal Frequency Division Multiple Access
(OFDMA) is a time-frequency hybrid system wherein the
frequency band is divided into a large number of small
bands called sub-carriers that use specific frequencies
so as to be completely orthogonal to each other. In
every time-slot, each user is assigned a disjoint set of
sub-carriers across which the user may spread information
for transmission purposes. Because of its capability of
exploiting multi-path fading and spatial/temporal diversity
to improve performance, it becomes physical layer trans-
mission scheme of choice adopted by fourth generation
wireless networks, e.g. cellular networks [5], broadband

LANs[6], in order to provide high-speed mobile wireless
data services.

Although the OFDMA framework provides a mecha-
nism for a user to spread information across the set of as-
signed sub-carriers, it still leaves the question of how to as-
sign sub-carriers to users. This immediately presents itself
as a resource allocation problem in combinatorics: in each
time-slot, give m users and n sub-carriers, how to assign
disjoint sets of sub-carriers to each user so as to optimize
some system metric. The allocation problem has received
active interest in the research community and has been stud-
ied from basically two perspectives (based on the objective
function): schemes that seek to minimize the amount of
transmit power [8][17] or those that seek to achieve max-
imum throughput [10][14]. However, a common theme
(elaborated in Section 2) across these works is that they all
propose heuristics that are evaluated only through simula-
tions. This leaves open the question of how well these algo-
rithms perform in general, and at a more fundamental level,
how well can any deterministic algorithm perform for this
class of problems.

We address this gap in existing literature by formally ad-
dressing the complexity of the sub-carrier allocation prob-
lem under several scenarios, namely uplink and downlink
OFDMA, for both power minimization and rate maximiza-
tion. The problem is shown to be NP-hard in all versions.
While this is of academic interest, more importantly we also
present approximability bounds for these problems, that is,
we bound the best performance achievable by any algo-
rithm. In addition, we propose a k-interchange heuristic
which allows a natural trade-off between time complexity
and performance and utilize it to demonstrate both: its near-
optimal performance in simulations as well as worst case
scenarios.

Our contributions can be summarized as follows :

1. We formally show that the general problem of sub-
carrier allocation with the objective of power min-
imization is NP-hard and cannot be approximated



within a fixed factor by any deterministic algorithm.

2. We also show that the rate-maximization version is
NP-hard and cannot be approximated to a factor bet-
ter than m

m+1 .

3. We propose a local search based, polynomial time
algorithm, k−interchange. In most scenarios,
k−interchange demonstrates close to optimal perfor-
mance. On the other hand, we also use the k-
interchange heuristic to demonstrate scenarios corre-
sponding to when worst case performance can occur.

This paper is organized as follows: In Section 2 we out-
line past related work and differentiate our contribution.
Section 3 presents the system model and formal problem
formulation. In Section 4, we prove the hardness and in-
approximability of our problem. Section 5, presents numer-
ical comparison of our proposed algorithms and the optimal
solutions and the worst case scenario. Future directions are
addressed in Section 6.

2. Related Work

Although the continuous case of single-user/multi-
subcarrier has been optimally solved [4][2], and the dis-
crete version[7] of single-user/multi-subcarrier has also
been solved near-optimally, the case of multi-user/multi-
subcarrier power allocation is still an area of active investi-
gation. In addition, it has been shown that adaptive resource
allocation can significantly increase the capacity of OFDM
systems[16], comparing with fixed resource allocation strat-
egy [13][12][3]. Thus, how to allocate power or data rate
on each sub-carrier to satisfy all requests, while optimiz-
ing either power or throughput related objectives becomes a
popular research issue.

Wong et al.[17] propose a multi-user, multi sub-carrier,
bit and power allocation algorithm, which aims to minimize
the overall power consumption. Their iterative search al-
gorithm exploits Lagrangian Relaxation technique. How-
ever, this algorithm does not converge rapidly in general.
Rhee et al.[11] try to maximize the minimal user through-
put, such that a fixed total power budget is given. One of
their assumption: every sub-carrier is allocated with equal
power, limits the applicability of their solution. Kivanc et
al.[8] adopt a similar formulation as [17]. The authors pro-
pose a two-step solution: first determine the number of sub-
carriers allocated to each user, and then allocate sub-carriers
to users in a greedy manner. Thereafter, they refine their so-
lution quality by using local search technique. Alen et al.[1]
devise a distributed algorithm aims to maximize system ca-
pacity. They first divide available sub-carriers into a set of
partitions, and let users contend these partitions themselves.
To solve the issue of partition sharing, i.e. multiple users

access the same partition, their solution includes a conflict
resolving mechanism.

In sum, none of existing papers we are aware of has
a proof of hardness or performance bound about the sub-
carrier allocation problem.

3. System Model and Problem Formulation

We assume complete knowledge of channel states at both
transmitter and receiver ends, and they do not change during
the scheduling. A subcarrier can be used by at most 1 user at
any instance, and every user’s rate request must be satisfied.
We refer these two restrictions to “feasibility constraints”.

We assume that the system has m sub-carriers and a
static population of n users. The focus of this work is al-
location of sub-carriers in a single time-slot (a granularity
readily available in current 4G networks). Each user i re-
quests a rate ri in the time-slot. Sub-carrier allocation is
determined at the base-station as a function of the perceived
signal strength of each user on each sub-carrier as well as
the user requested rate. In the uplink environment, after the
allocation is conveyed to the user (we assume the implicit
presence of such a mechanism. For example, in WiMax,
this information is conveyed using a UL-MAP message),
each user performs rate loading across the assigned sub-
carriers to transmit information. On the other hand, the
rate loading becomes a task of the base-station in the down-
link environment. Rate loading is typically governed by the
available transmission rates (i.e., modulation schemes).

For convenience, we summarize the symbols used in this
paper as follows.

• S: The set of all sub-carriers. S = {si|i = 1, . . . ,m}.

• U : The set of all users. U = {ui|i = 1, . . . , n}

• ri: The constant data rate that the user i requests.

• rij : The data rate user i loads on subcarrier j.

• pi: The power budget of user i.

• Si: This represents the set of sub-carriers which are
allocated to user i.

• fij(rij): The power required to transmit at rate rij by
user i on sub-carrier j is given by fij(rij).

• di,j : di,j = 1 if sub-carrier j is allocated to user i.
Otherwise, it equals 0.

• Ti: In practice, a user is allowed to transmit only at cer-
tain discrete rates. We assume that the set of feasible
rates allowed on a sub-carrier i is given by Ti.



3.1 Uplink Sub-carrier Allocation

We assume the functions {fij(·)} are convex, increas-
ing, continuous, and fij(0) = 0,∀ui ∈ U, sj ∈ S. In
addition, every user i has a power limit pi that needs to
be respected. The objective of our interest is to minimize
the maximal individual user’s power consumption, and the
problem is referred to Continuous Uplink Sub-carrier Al-
location. Mathematically, we can formulate it as Equation
1:

minimize maxui∈U{
∑
sj∈S

fij(rijdi,j)}

subject to:
∑
sj∈S

rijdi,j = ri,∀ui ∈ U

di,j ∈ {0, 1}∀ui ∈ U, sj ∈ S∑
ui∈U

di,j ≤ 1,∀sj ∈ S

rij ≥ 0,∀ui ∈ U, sj ∈ S∑
sj∈S

di,j ≥ 1,∀ui ∈ U∑
sj∈S

fij(rijdi,j) ≤ pi,∀ui ∈ U (1)

If {fij(·)} are convex, increasing, fij(0) = 0,∀ui ∈
U, sj ∈ S, but discrete, i.e. only certain rate are allowed
on a sub-carrier, then this problem is referred to Discrete
Uplink Sub-carrier Allocation, and can be mathematically
stated by replacing rij ≥ 0 with rij ∈ Tj in Equation 1.

Another interesting uplink problem is trying to maximize
total transmission rate, subject to a set of fixed power bud-
get, and can be mathematically described as Equation 2:

maximize
∑
ui∈U

∑
sj∈S

rijdi,j

subject to:
∑
sj∈S

fij(rijdi,j) ≤ pi,∀ui ∈ U

di,j ∈ {0, 1},∀ui ∈ U, sj ∈ S∑
ui∈U

di,j ≤ 1,∀sj ∈ S∑
sj∈S

di,j ≥ 1,∀ui ∈ U (2)

Similarly, if the given rate-power equations are discrete,
then we add rij ∈ Tj ,∀ui ∈ U, sj ∈ S into Equation 2.

We refer the above two versions of rate maximizing
problems as Continuous Rate Maximizing Sub-carrier Al-
location and Discrete Rate Maximizing Sub-carrier Alloca-
tion, respectively.

3.2 Downlink Sub-carrier Allocation

When OFDM downlink sub-carrier allocation is consid-
ered, a key difference is that individual user power con-
straints are replaced with the power constraint for total sum
of transmit powers, i.e the entire base-station’s transmit
power (which is critical in practice to reduce inter-cell in-
terference). This problem is referred to Continuous Down-
link Sub-carrier Allocation, and this optimization problem
can be described by removing the last constraint, the power
budget constraint, in Equation 1, and replacing the objec-
tive with minimize

∑
ui∈U

∑
sj∈S fij(rijdij). In addition,

if {fij(·)} are discrete, then this problem is referred to Dis-
crete Downlink Sub-carrier Allocation, and we have to re-
place one more constraint rij ≥ 0 with rij ∈ Tj .

4. NP-hardness and In-approximability

4.1 NP-hardness Proof

The decision version of Continuous Downlink Sub-
carrier Allocation can be stated as:

Problem 1 Given a set of n user rate requests, convex con-
tinuous rate-power equations for n users andm sub-carriers
combination, and m > n, does there exist a set of sub-
carrier and user assignment with rate allocation on individ-
ual sub-carrier, such that the sum of all user’s power con-
sumption is at most P , every user’s request is satisfied, and
no sub-carrier is allocated to more than 1 user?

The NP-hardness of Continuous Downlink Sub-carrier
Allocation is shown below.

Theorem 1 Continuous Downlink Sub-carrier Allocation
is NP-hard.

proof: We first show that Subset Sum[9] ≤P Continu-
ous Downlink Sub-carrier Allocation. Consider an arbi-
trary instance of Subset Sum, with a set of natural numbers
W = {wi}, and a target V . We construct a corresponding
two user Continuous Uplink Sub-carrier Allocation instance
as follows. For every wi, we construct a sub-carrier i with
a rate-power equation, which is the same for both users, i.e.
f1i = f2i = fi. Specifically, fi has the following proper-
ties: the power for rate 0 is 0, the power of ratewi is no more
than P

|W | , the power of rate wi + 1
|W | is no less than P , and

the rate-power relation between rate 0 and infinity is contin-
uous and convex. This constructed rate-power equation can
be plotted as Figure 1. To satisfy the above constraints for a
constructed rate-power equation, we can use a function like
fi(r) = α(2βr−1) where α and β are unknown, or a piece-
wise linear function. In addition, finding feasible α and β,
or a piece wise linear function can be done in polynomial
time.



Figure 1. An example rate-power curve of a
constructed sub-carrier in Continuous Down-
link Sub-carrier Allocation. (Note: This figure
is only for illustration purpose.)

We claim that Subset Sum has a satisfying solution if and
only if Continuous Downlink Sub-carrier Allocation has an
assignment, which can satisfy two users with rate requests
V and (

∑m
i=1 wi − V ) and the total power consumption is

no more than P . Suppose Subset Sum has a solution such
that the sum of the subset S is exactly V . If we allocate
every corresponding sub-carrier in S to one user, and all
the remaining sub-carriers to the other user, and load every
sub-carrier with rate wi, then this assignment would be a
satisfying solution to Continuous Downlink Sub-carrier Al-
location. On the other hand, if Subset Sum is a NO instance,
then no subset can give us a sum exactly V . Because every
wi is a natural number, the difference of sum between any
subset and V must be no less than 1. In addition, the largest
number of sub-carrier a user can be allocated is |W | − 1.
Consequently, one of the two users has to load at least one
of the sub-carrier assigned to him/her with rate higher than
wi+ 1

|W | , which implies the maximal individual power con-
sumption higher than P , thus making the total power con-
sumption also higher than P .

In the proof of Theorem 1, if we replace the rate-power
equations with discrete ones, which can be obtained by
discretizing the continuous counterpart with polynomially
many pieces as plotted in Figure 2, then a line by line simi-
lar proof can give us the following conclusion.

Theorem 2 Discrete Downlink Sub-carrier Allocation is
NP-hard.

Next, we prove the NP-hardness of Continuous Uplink
Sub-carrier Allocation. Note that, due to the space con-
straint and the similarity between Problem 1, the decision
problem statement is omitted.

Theorem 3 Continuous Uplink Sub-carrier Allocation is
NP-hard.

Figure 2. An example rate-power curve of
a constructed sub-carrier in Discrete Uplink
Sub-carrier Allocation. (Note: This figure is
only for illustration purpose.)

proof: The proof of Subset Sum ≤P Continuous Uplink
Sub-carrier Allocation is line by line similar to Theorem 1
with two additional conditions: the power budget p1 = ∞
and p2 =∞.

We claim that Subset Sum has a satisfying solution if and
only if Continuous Uplink Sub-carrier Allocation has an as-
signment, which can satisfy two users with rate requests V
and (

∑m
i=1 wi−V ) and the maximal individual power con-

sumption is no more than P . If Subset Sum has a satisfying
solution, then the optimal solution for Continuous Uplink
Sub-carrier Allocation has value no more than P , thus mak-
ing it a YES instance. On the other hand, if Subset Sum is
a NO instance, then, for the same reasons as in the proof
of Theorem 1, we know the maximal individual power con-
sumption is higher than P , which implies a NO instance of
Continuous Uplink Sub-carrier Allocation.

Also, by using sub-carriers with rate-power relations as
plotted in Figure 2, a line by line similar proof as in Theo-
rem 3 can give us the following conclusion.

Theorem 4 Discrete Uplink Sub-carrier Allocation is NP-
hard.

The decision version of Continuous Rate Maximizing
Sub-carrier Allocation is stated as follows.

Problem 2 Given a set of n user power budgets, convex
continuous rate-power equations for n users and m sub-
carriers combination, and m > n, does there exist a set of
sub-carrier and user assignment with power allocation on
individual sub-carrier, such that the sum of all user’s rate
is at least R, every user’s power budget is honored, and no
sub-carrier is allocated to more than 1 user?

Theorem 5 Continuous Rate Maximizing Sub-carrier Al-
location is NP-hard.



proof: The proof of Subset Sum≤P Continuous Rate Max-
imizing Sub-carrier Allocation is line by line similar to The-
orem 1, except the rate-power equations: the power for rate
0 is 0, the power of rate R

|W | − 1 is no less than wi − 1
|W | ,

the power of rate R
|W | is no more than wi, the power of rate

R+1
|W | is no less than

∑m
i=1 wi−1, and the rate-power relation

between rate 0 and infinity is continuous and convex. This
constructed rate-power equation can be plotted as Figure 3.

We claim that Subset Sum has a satisfying solution if
and only if Continuous Rate Maximizing Sub-carrier Allo-
cation has an assignment, which honors two users’ power
budgets V and (

∑m
i=1 wi − V ) and has total rate no less

than R. Suppose Subset Sum has a solution such that the
sum of the subset S is exactly V . Then, we can allocate
every corresponding sub-carrier in S to one user, and all the
remaining sub-carriers to the other user. Moreover, every
sub-carrier is loaded with rate exactly R

|W | . This assignment
can be a satisfying solution to Continuous Rate Maximizing
Sub-carrier Allocation. On the other hand, if Subset Sum is
a NO instance, then no subset can give us a sum exactly
V . Because every wi is a natural number, the difference of
sum between any subset and V must be no less than 1. In
addition, the largest number of sub-carrier a user can be al-
located is |W | − 1, and the highest power budget of these
two user is at most

∑m
i=1 wi − 1. Consequently, one of

the two users has to load power on one of the sub-carrier as-
signed to him/her with value no more than wi− 1

|W | . On the
other hand, the other user can load power on at most one of
the sub-carrier assigned to him/her with value no more than∑m
i=1 wi − 1. Therefore, the total rate must be less than R,

which implies a NO instance of Continuous Rate Maximiz-
ing Sub-carrier Allocation.

By replacing the continuous constructed rate-power
equations in the proof of Theorem 5 with discrete ones, a
line by line similar proof can give us the following conclu-
sion:

Theorem 6 Discrete Rate Maximizing Sub-carrier Alloca-
tion is NP-hard.

4.2 In-approximability Proof

In the previous section we rigorously demonstrated
a standard assumption that various versions of the sub-
carrier problem are fundamentally hard. We next compute
to what extend deterministic polynomial time algorithms
can approximate the optimal solution in such scenarios.
Gap-introducing technique[15] is adopted in the following
proofs.

Theorem 7 Achieving an approximation ratio α,∀α ≥ 1
for Continuous Downlink Sub-carrier Allocation is NP-
hard.

Figure 3. An example rate-power curve of a
constructed sub-carrier in Continuous Rate
Maximizing Sub-carrier Allocation.

proof: The proof of Subset Sum ≤P Continuous Downlink
Sub-carrier Allocation is line by line similar as Theorem 3,
except that the power for rate wi + 1

|W | is no less than αP .
The rate-power equations of constructed sub-carriers can be
plotted in Figure 4.

We claim that Subset Sum has a satisfying solution if
and only if an α−approximation algorithm of Continuous
Downlink Sub-carrier Allocation generates an solution with
total power consumption at most αP . Suppose Subset Sum
has a solution such that the sum of the subset S is exactly
V , then we know the optimal solution for the correspond-
ing Continuous Downlink Sub-carrier Allocation is no more
than P . Consequently, an α−approximation algorithm of
Continuous Downlink Sub-carrier Allocation will give a so-
lution that is at most αP .

On the other hand, if Subset Sum is a NO instance, then
no subset can give us a sum exactly V . Because every wi
is a natural number, the difference of sum between any sub-
set and V must be no less than 1. In addition, the largest
number of sub-carrier a user can be allocated is |W | − 1.
Consequently, one of the two users has to allocate at least
one of the sub-carrier assigned to him/her with rate higher
than wi + 1

|W | . Therefore the optimal maximal individual
power consumption is higher than αP , and so is the total
power consumption, which implies the solution provided by
the α−approximation algorithm must be higher than αP .

Similarly, by replacing the constructed rate-power equa-
tions in the proof of Theorem 7 with discrete ones similar
to Figure 4, we can have the following theorem:

Theorem 8 Achieving an approximation ratio α,∀α ≥ 1
for Discrete Downlink Sub-carrier Allocation is NP-hard.

Using a similar technique as we prove Theorem 1 and 3,
1 and 2, we can have the following conclusions:

Theorem 9 Achieving an approximation ratio α,∀α ≥ 1



Figure 4. An example rate-power curve of a
constructed sub-carrier in Continuous Uplink
Sub-carrier Allocation.

for Continuous Uplink Sub-carrier Allocation and Discrete
Uplink Sub-carrier Allocation are both NP-hard.

For the Continuous Rate Maximizing Sub-carrier Allo-
cation, we have a slightly different conclusion:

Theorem 10 Achieving an approximation ratio m
1+m for

Continuous Rate Maximizing Sub-carrier Allocation is NP-
hard.

proof: Consider the above reduction of Subset Sum to Con-
tinuous Rate Maximizing Sub-carrier Allocation with the
following changes. The power for rate wi − 1

W is no less
than αR

|W | − (1− α)R− 1, and can be plotted in Figure 5.
We claim that Subset Sum has a solution if and only if an

α−approximation algorithm of Continuous Rate Maximiz-
ing Sub-carrier Allocation gives a solution with total rate at
least αR. Suppose Subset Sum has a solution such that the
sum of the subset S is exactly V , then we know the optimal
solution for the corresponding Continuous Rate Maximiz-
ing Sub-carrier Allocation is no less than R. Consequently,
an α−approximation algorithm of Continuous Rate Maxi-
mizing Sub-carrier Allocation will give a solution that is no
less than αR.

If Subset Sum is a NO instance, then no subset can give
us a sum exactly V . Because every wi is a natural number,
the difference of sum between any subset and V must be no
less than 1. In addition, the largest number of sub-carrier
a user can be allocated is |W | − 1, and the highest power
budget a user can have is

∑
wi − 1. Consequently, one of

the two users has to allocate one of the sub-carrier assigned
to him/her with power at most wi− 1

|W | . On the other hand,
the other user can load at most one of the sub-carrier allo-
cated to him/her with power no higher then

∑
wi − 1, thus

the total rate these two users can have must be less than αR,
and so is the output of the α−approximation algorithm.

However, in order to make the reduction valid, we need
αR
|W |−(1−α)R−1 > 0, which implies α > |W |

1+|W | . Because

Figure 5. An example rate-power curve of a
constructed sub-carrier in Continuous Rate
Maximizing Sub-carrier Allocation.

m = |W |, thus completes our proof.
Again, using a line by line similar proof with discrete

version of Figure 5, we can have the following theorem:

Theorem 11 Achieving an approximation ratio m
1+m for

Discrete Rate Maximizing Sub-carrier Allocation is NP-
hard.

5. Simulation and Discussion

Although we have proved the in-approximability of var-
ious sub-carrier allocation problems, we also notice that
a local search based algorithm, which is referred to k-
interchange and is listed in 1, performs close to optimal in
all of our simulation instances.

5.1 k-interchange Algorithm

Algorithm 1 k-Interchange Algorithm for Uplink
1: Start with t = 0, and E = {(ui, sj)|i = 1, . . . ,m; j =

1, . . . , n}.
2: Randomly assign all sub-carriers to users under the fea-

sibility constraint.
3: We denote this assignment set as S0.
4: while ∃V ⊂ E under feasibility constraint, such that
|V | = m, |V − St| = |St − V | ≤ k, and the objective
can be improved by more than the threshold factor ε do

5: Let St = V
6: t = t+ 1
7: end while

The k-interchange algorithm works in the following
fashion. It starts with a random feasible solution, wherein a
solution comprises feasible sub-carrier allocation to users,
followed by a feasible rate loading on assigned sub-carriers



by the respective users. It then explores solutions in the
neighborhood of the current one, by randomly permuting
up to k sub-carriers across users and identifying an allo-
cation which can improve existing solution by an amount
more than some a priori chosen factor ε. If no such solu-
tion is found, the algorithm terminates, else it proceeds to
explore the k-neighborhood of the new solution.
k-interchange algorithm is consisted of two parts. In the

first part, k-interchange needs to assign all sub-carriers to
all users under the feasibility constraints stated in previous
section. In the second part, after every user being assigned
a set of sub-carriers, he/she needs to load power onto each
of these sub-carriers to satisfy his/her date rate demands.

5.2 Simulation Environments

In our simulation, we use 1-, 2-, and 3-interchange algo-
rithm, i.e. k = {1, 2, 3}, and compare their solutions with
optimal ones, which are computed by exhaustive search.
There are 2 to 5 users, and all of their rate requests are
10. Up to 10 sub-carriers downlinks are available, and the
number of sub-carriers is strictly larger than the number of
users in every instance. (Note that computation of the op-
timal solution is computationally very expensive and hence
we are forced to limit scenarios to small problems.) Ev-
ery sub-carrier has the same bandwidth, and we assume the
single-sided noise Power Spectral Density for every sub-
carrier and every user is 1. The signal propagation environ-
ment utilized a simplified path loss model combined with
log-normal shadowing [4]. The path loss statistics were
assumed to be independent across users with the path loss
factor chosen uniformly in the range [−10dB,−20dB] and
the exponent in the range [2, 3]. The log-normal shadowing
model is characterized by a random variable ψdB with nor-
mal distribution N(0dB, 3dB). M-QAM is adopted, and
the required power for supporting c bits/symbol at a given
BER is provided in Wong’s paper [17]. In this paper, we as-
sume the BER for every user is 10−4. In addition, the value
of ε used for k-interchange algorithm is 0.01.

5.3 Simulation Results

In Figure 6, 7, and 8, we plot the required bit SNR (in
dB) for the optimal and 2-interchange algorithm solutions
by varying user number, sub-carrier number and the vari-
ance of log-normal model. The parameters used in these
figures are described in the corresponding captions, and the
value plotted are averaged over 100 iterations under differ-
ent settings. Note that, although we only plot the results for
the settings specified in the captions, the results for all the
other parameter combinations are very similar to what we
present here.

Figure 6. Required average bit SNR (dB) of
optimal and 2-interchange solutions. Param-
eters: m = 10, n = {2, 3, 4, 5}.

Figure 7. Required average bit SNR (dB) of
optimal and 2-interchange solutions. Param-
eters: m = {4, 5, 6, 7, 8, 9, 10}, n = 3.

Figure 8. Required average bit SNR (dB) vs.
average computing time per iteration for var-
ious k-interchange and optimal solution. Pa-
rameters: m = 10, n = 3.



Figure 9. Histogram of (Difference of objec-
tive value between 1-interchange and op-
tima)/(Optimal objective). Parameters: m =
10, n = 3.

Figure 10. Histogram of (Difference of ob-
jective value between 2-interchange and op-
tima)/(Optimal objective). Parameters: m =
10, n = 3.

Figure 11. Histogram of (Difference of ob-
jective value between 3-interchange and op-
tima)/(Optimal objective). Parameters: m =
10, n = 3.

As plotted Figure 6, when user number increases, the av-
erage bit SNR increases. Because every sub-carrier must
be allocated exclusively, every sub-carrier needs to carry
higher rate in average when user number increases, thus
raising the required average bit SNR. In Figure 7, when
channel number increases, the average bit SNR decreases.
Since the rate that each sub-carrier needs to provide re-
duces as the sub-carrier number increases, it can be ex-
pected that the average bit SNR decreases. Among these
figures, there is one thing in common: the solutions gener-
ated by 2-interchange algorithm has close to optimal qual-
ity. Although the performance of 2-interchange is promis-
ing in our simulations, a natural question we would like to
ask is: how sensitive the performance degradation is when
the neighborhood definition becomes different, i.e. perfor-
mance variation vs. different values of k? In order to an-
swer this question, we plot the average per iteration com-
puting time of 1−, 2−, 3−-interchange and their average bit
SNR in Figure 8. For comparison purpose, we also plot the
optimal average bit SNR in the same figure.

The circles from left to right represent 1−, 2−,
3−interchange, and optimal solution, respectively. As can
be observed from Figure 8, the highest gain is between
1− and 2−interchange solution, and the average difference
is 0.48 dB. Although 3-interchange is still better than 2-
interchange in average, the difference is merely 0.01 dB,
and both their solutions are within 0.02 dB from the opti-
mal solutions in average. However, the computing time for
various k value are significantly different. While all 3 k-
interchange algorithms terminate within 5.1 seconds in av-
erage for one iteration, the optimal solution takes 65.7 sec-
onds. Even for the case of 5 users and 10 sub-carriers, all
k-interchange can finish within 28 seconds in average, but
the optimal solution takes around 6,250 seconds. To further
understand the solution quality for each k value, we plot
the histogram of power difference from optimal solutions in
Figure 9, 10, and 11.

As we can see from Figure 9, although over 90% of in-
stances using 1-interchange are within 10% difference from
the optima, this gap can go up to around 70% in the worst
case scenario. On the other hand, in Figure 10, the worst
case of using 2-interchange algorithm is still within 7% gap
from optima, and over 95% of instances, this gap is within
1%. In addition, as depicted in Figure 11, the gap between
3-interchange solutions and optima is no more than 0.03%.

In sum, although using a large neighborhood definition,
i.e. value of k increases, can give us better average so-
lution quality, but the marginal improvement diminishes
rapidly. On the contrary, the computing time for different
k increases in the order of sub-carrier number.



5.4 When k-interchange Fails

Although the solution quality of k-interchange looks
promising in our simulations, we would like to demonstrate
an example when the k-interchange algorithm may perform
arbitrarily bad.

Consider the following 3-users (user A, B, and C),
4-channels (channel I, II, III, and IV) situations for 2-
interchange algorithm. For convenience, we use γi,j to rep-
resent the channel gain for user i with respect to sub-carrier
j.

• γA,I = 10−3, γA,III = 1, and γA,II = γA,IV =∞.

• γB,II = 10−3, γB,I = 1, and γB,III = γB,IV =∞.

• γC,III = 10−3, γC,II = 1, and γC,I = γC,IV =∞.

• The rate requests of user A, B, and C are all 1.

• power = 1
γ × (2rate − 1)

One possible output of 2-interchange algorithm can be
{dA,I = 1, dB,II = 1, dC,III = 1, dC,IV = 1}. How-
ever, the optimal solution for this instance is {dA,III =
1, dB,I = 1, dC,II = 1, dC,IV = 1}. Because every eligi-
ble 2-interchange movement increases the total power con-
sumption to infinity, thus it is impossible to transform the
solution of 2-interchange to the optimal one.

However, if we are allowed to reallocate 3 sub-carriers
at once, i.e. using 3−interchange algorithm instead, then
we can greatly reduce the total power consumption (from
3000 to 3), as well as maximal individual power consump-
tion (from 1000 to 1). In addition, this gap can be arbitrarily
bad as we decrease the value of γA,I , γB,II , γC,III . There-
fore, 2-interchange does not have a bound. Similarly, we
can construct a worst case example for any k−interchange
algorithm, that makes the solution quality arbitrarily bad.

In sum, when channel gains have very high variability,
which prevents k-interchange from making small moves, it
is possible that the solution quality of the proposed algo-
rithm is bad.

6. Conclusion

In this paper, we study a multi-user/multi-subcarrier al-
location problem, which can be applied to OFDM systems.
We formally prove that the sub-carrier resource allocation
problem is NP-hard for both power minimization as well as
rate maximization in both uplink and downlink scenarios.
In addition, we also demonstrate a set of in-approximability
results which indicate that deterministic polynomial time al-
gorithms cannot hope to always provide good performance

for sub-carrier allocation, especially when power minimiza-
tion is concerned. This points to the direction of random-
ized algorithms as an alternative promising approach, which
we hope to address in future work.

Although the sub-carrier allocation problems with power
related objective have been proved in-approximable, the
proposed algorithm, k−interchange, performs close to op-
timal in all our simulations. In addition, we also identify
the worst case scenario, such that using k−interchange may
lead to arbitrarily bad solution quality.

As an extension, we plan to do extensive numerical com-
parison between our algorithm and other existing efforts by
simulations. It is also of interest to investigate the effect of
an adaptive threshold value, and strategies to reduce running
time of k−interchange algorithm.
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