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Abstract

We study how compressed sensing can be combined with
routing design for energy efficient data gathering in sen-
sor networks. We first obtain some bounds on the perfor-
mance of compressed sensing with simple routing schemes.
We then formulate a new problem relating routing paths
to data projections, and present a centralized, greedy al-
gorithm for obtaining low coherence projections while si-
multaneously reducing reconstruction error and communi-
cation cost. Simulation results show that the effectiveness
of standard compressed sensing techniques is limited when
routing costs are considered. A naive, randomized down-
sampling is shown to outperform the standard techniques
in terms of achievable SNR for a given energy budget.
While our algorithm has better performance than standard
compression sensing, it does not improve significantly over
downsampling in terms of the cost. Thus we believe that
further investigation is needed to determine if novel routing
strategies exist that i) provide a sufficient spatial coverage
to enable good coherence properties for compressed sens-
ing along those routes, and ii) have transport costs that do
not deviate significantly from those of efficient routing tech-
niques.

∗Intern at ANRG, USC, Summer 2007.
†The work described here is supported in part by NSF through grants

CNS-0347621, CNS-0627028, CCF-0430061, CNS-0325875, and by
NASA through an AIST grant. Any opinions, findings, and conclusions
or recommendations expressed in this material are those of the author(s)
and do not necessarily reflect the views of the NSF or NASA.

1 Introduction

Joint routing and compression has been studied for ef-
ficient data gathering of correlated sensor network data.
Most of the early works were theoretical in nature and
while providing important insights, ignored the practical
details of how compression is to be achieved [3] [6] [10].
More recently, it has been shown how practical compres-
sion schemes such as distributed wavelets can be adapted
to combine efficiently with routing [2] [7]. The key issue
is to understand the interactions between data structure and
routing structure.

Results in compressed sensing [4] [1] provide a radically
different view of the structure of data and suggest new ap-
proaches to earlier problems. The basic result is that given
that an n-dimensional signal is k-sparse in a certain basis,
only O(klogn) random projections are required for near-
perfect reconstruction. The projections can be obtained us-
ing a large class of matrices, including ± 1 Bernoulli or
Gaussian matrices. Subsequent work has extended the re-
sults to refinable approximation for compressible signals.
Wang et.al. [11] showed that the remarkable results of com-
pressed sensing could also be obtained using sparse random
projections. The key result they prove is that sparse random
projections of vectors preserve the inner product in expec-
tation. They showed that this has important implications
for using compressed sensing in a network scenario by re-
ducing the amount of data that needs to be transported to
obtain the required projections. However, routing issues in
a multi-hop scenario were not considered.

Our work is the first to study how compressed sensing
can be combined with routing design for energy efficient
data gathering in sensor networks. We present asymptotic
analysis of compressed sensing performance with simple
routing schemes and an example in which compressed sens-



ing is clearly not an effective solution. We then formulate
a new problem relating routing paths and data projections
and present a centralized, greedy algorithm for obtaining
projections with low coherence. The algorithm is moti-
vated by techniques proposed by Elad [5] to iteratively alter
the measurement matrix to reduce its coherence with the
basis matrix. In our formulation, each row of the projec-
tion matrix represents a path in the network and in view of
routing costs, many operations in Elad’s method are ruled
out. Our algorithm is designed for simultaneously reducing
reconstruction error and communication cost. We present
simulation results comparing the performance of this algo-
rithm and other schemes for routing and compression for
data with varying level of compressibility in two different
orthogonal basis functions.

Most importantly, our results show that the effective-
ness of compressed sensing is limited when routing costs
are considered, at least for the two basis functions consid-
ered. A naive, randomized downsampling (obtaining data
from a subset of nodes) is shown to outperform compressed
sensing based techniques in terms of achievable SNR at a
given energy budget. While our algorithm has better perfor-
mance than standard compression sensing, surprisingly, it
cannot improve significantly over downsampling. Compar-
ison with a wavelet based routing and compression scheme
shows that downsampling, coupled with orthogonal match-
ing pursuit for reconstruction, has better cost performance
at low and medium SNR values.

2. Compressed Sensing with Simple Routing
Schemes

2.1. Compressed Sensing Basics

Compressed Sensing(CS) builds on the on the surprising
revelation that a signal(x) with a length of n having a sparse
representation in one basis can be recovered from a small
number of projections onto a second basis that is incoherent
with the first.

If a signal is sparse in a given basis named sparsity in-
ducing basis,

x = Ψa, |a|1 = k,

then we can reconstruct the original signal with O(klogn)
measurements by solving a convex optimization problem,

y = Φx = ΦΨx = Hx,

where H is known as the holographic basis. Reconstruc-
tion is possible using H along with the orthogonal match-
ing pursuit algorithm. Measurements are projections of the
data onto the measurement vectors,

yi =< φi, x >, φi is a ith row of Φ.

Interestingly, independent and identically distributed (i.i.d.)
Gaussian or Bernoulli/Rademacher (random ±1) vectors
provide a useful universal measurement basis that is inco-
herent with any given Ψ with high probability; the corre-
sponding measurements will capture the relevant informa-
tion of a sparse signal, regardless of its structure.

CS work can be extended to compressible signals. We
say that the data is compressible if the magnitude of its
transform coefficients decay like a power law. That is, the
ith largest transform coefficient satisfies

|θi| ≤ Ri−1/p∀i,

where

|θ1| ≥ |θ2| ≥ ... ≥ |θn|, R is a constant, and 0 ≤ p ≤ 1.

Note that p controls the compressibility of the transform
coefficients. Wang et al. [11] showed that the remarkable
results of compressed sensing could also be obtained using
sparse random projections(SRPs). The measurement matrix
for SRPs is defined as:

Φij =





+1 if p = 1
2s

−1 if p = 1
2s

0 otherwise ,

where s is a parameter that determines the sparseness of
the projections and as a result, the number of projections
required for good reconstruction. It was shown that with
s = n

logn and O(klogn) projections, reconstruction quality
is as good as with obtaining the largest k transform coeffi-
cients.

2.2. Asymptotic analysis with Simple Rout-
ing

Consider a network of n sensor nodes with diameter d
hops. The average distance of nodes from the sink is also
O

(
d) hops. If every node sends its raw sensor measurement

to the sink (independently) via the shortest path tree, then
the average bit-hop cost per reading for the network is

Costraw−SPT = O(nd).

Now consider compressed sensing with dense random
projections (DRP). For each projection, every node trans-
mits once and the bit-hop cost is minimized when routing is
along a spanning tree . Nodes route data to the sink along
this tree. Each node adds its own reading multiplied by ±1
to the value received from all its children in the tree and
sends this new value to its parent. The sink can add values
received from each of its children to obtain one complete
projection. Since each node in the tree transmits exactly



once, the cost per projection is n. Assuming that the pro-
jection matrix is known to sink and nodes (each node only
needs its column vector) in advance, the cost for obtaining
O

(
klogn

)
projections using DRPs is

CostCS−DRP = O
(
n.klogn

)
= O

(
knlogn

)
.

For obtaining sparse random projections, each node de-
cides to send with probability 1

s = logn
n and the measure-

ment is routed along the shortest path. The sink generates
the row of the measurement matrix by placing ± 1 at po-
sitions for nodes from which data was received and 0 for
all others. Since node choice is random, the average path
length remains O

(
d
)

and the cost using O
(
klogn

)
SRPs is

CostCS−SRP = O
(
d.logn.klogn

)

= O
(
k.d.log2n

)
. (1)

This is a bound on the cost that any new scheme based on
CS must better.

Observation: In a multi-hop scenario, shortest path rout-
ing is efficient for compressed sensing via sparse random
projections.

Reasoning: For a single projection, each node decides to
send its measurement to the sink with probability 1

s = logn
n .

Reducing the number of bits transported is possible only if
data coming form different nodes belongs to the same pro-
jection. Since the distribution of the O

(
logn

)
(in expecta-

tion) nodes that choose to send measurements is random,
the chances for coordination in the routing are minimal,
and decrease with increasing n. The cost of deviating from
the shortest path outweighs the possible gains from reduced
bits.

We note that, in general, the optimal routing tree for the
node positions in a projection can be expected to be a Min-
imum Steiner Tree (MST). The Greedy Incremental Tree
(GIT) is known to be a good approximation to the MST. By
comparing the energy cost for obtaining sparse random pro-
jections with the GIT and shortest path, it was verified that
the difference is not significant for the network sizes and
parameters considered in our simulations.

3. Routing Design for Efficient Compressed
Sensing

The bound obtained for SRPs with SPT routing is
O

(
kdlog2n

)
. For networks with hundreds or a few thou-

sands of nodes, values of k, logn and d might not be small
enough (relative to n) for compressed sensing to provide
significant gains compared to raw data transport, which has
cost O

(
dn

)
. Motivated by the work on sparse random pro-

jections, we consider route design for computing projec-
tions enroute to the sink and obtain good field reconstruc-
tion at a cost lower than that using SRPs.

Figure 1. Illustration of the relationship be-
tween the routing paths and projections

3.1. Design of measurement matrix

Each row of the measurement matrix represents a path.
The projection is computed hop by hop on the way to the
sink. This is illustrated in Figure [?]. If every route con-
tains only a small number of nodes, the projections will
be sparse. The more these routes deviate from the short-
est path, the higher the cost. However, because individual
nodes do not transport their data separately but combine it
with the received value for the partial projection, this leads
to energy savings. The key issue is whether a small number
of such routes are sufficient for good reconstruction.

The main challenge is that while projections are via
rows, incoherence is a property of the columns.

Coherenceµ = max
i 6=j

〈
Hi, Hj

〉
.

The incoherence between Φ and Ψ is determined by the
columns of Φ. The columns of H can be written as:

Hi = ΦΨi,Hj = ΦΨj .

The inner product

〈
Hi,Hj

〉
= ΨT

i ΦT ΦΨj .

For small coherence value, we require ΦT Φ ≈ I .
Clearly this is a condition on the columns, requiring them
to be approximately orthogonal. If this condition is satisfied
and since Ψ is a orthogonal basis matrix,

〈
Hi,Hj

〉
= ΨT

i ΦT ΦΨj ≈ ΨT
i Ψj = δ(i− j)

Currently, we do not have a good solution to the problem
of systematically achieving low coherence via structure of
the basis Ψ. We now investigate a heuristic method for de-
signing routes to obtain quasi random projections and low
coherence.



3.2. Low Coherence Projections for Effi-
cient Routing (LCPR)

We present a centralized algorithm for route design, for
which idea is to iteratively build paths (which correspond
to projections), making a greedy choice for the next node
which minimizes the ”intermediate coherence” of the par-
tial measurement matrix (Φpartial) with a given Ψ. If it is
known that while the readings change over time, the field
remains sparse/compressible in a particular basis, then this
computation of the routes needs to be performed only once.
There is a one time cost for propagating the routing infor-
mation.

For each projection, start with a randomly chosen
node(Nodeinit) in the network. Iteratively make a greedy
choice for the next node on the path, by identifying an-
other node within communication range(Rc) of the current
node that will minimize the coherence with the updated
Φpartial. In addition to minimizing coherence (µ), we use
some heuristic constraints for evaluating candidates to re-
duce energy consumption.

• node must be closer to sink than the current node

• ”crossing over” the sink is not allowed

For each projection, this terminates when there are no
neighbors that can reduce the coherence. On path termina-
tion, the projection obtained at the last node is routed to the
sink along the shortest path. Pseudo-code for the algorithm
is in the Appendix.

Our algorithm is motivated by techniques proposed by
Elad [5] to iteratively alter the measurement matrix to re-
duce its coherence with the basis matrix.

We now present an example which indicates that the
structure of the sparsity (or compressibility) inducing ba-
sis might be a factor that determines whether or not com-
pressed sensing provides improved performance. Consider
the scenario with spatial sparsity - at any time, at most k out
of n sensors have non-zero data to send. This might hap-
pen in a network with sensors that set off alarms when their
measurements exceed a threshold. In this case, the sparsity
inducing basis Ψ = I , the identity matrix.

Proposition 3.1 Compressed sensing is ineffective for data
gathering in case of spatial sparsity.

Reasoning: If we use sparse random projections,
CostCS−SRP = O

(
kdlog2n

)
. However, if only nodes that

set off alarms route their measurements via shortest path to
the sink, the cost is O

(
kd

)
.

This example is an early indicator that the effectiveness
of compressed sensing might be limited when routing costs
are taken into account. In the next section, we systemati-
cally study routing costs for compressed sensing and other
schemes for compression.

4. Simulation Results

We analyze the performance of the various schemes us-
ing MATLAB simulations. The experiment details are de-
scribed first.

4.1. Experiment Details

4.1.1 Routing and compression schemes

We compare the following schemes:

1. the proposed algorithm (LCPR)

2. Sparse random projections via shortest path, with op-
portunistic projection computations/compression. As
argued in Section. 2, this is close to optimal in terms
of routing cost.

3. randomized downsampling (DS), routed via shortest
path. For SRPs obtained with large s values, the mea-
surement matrix is close to one that results in a simple,
randomized downsampling. Hence we also look at the
performance of downsampling.

4. projection augmented downsampling (ADS), routed
via shortest path. In this scheme, a random subset of
nodes is chosen and their data is routed to sink along
the shortest path. Nodes on the path contribute their
data to the projection with some probability.

5. 2D wavelet based scheme developed by Shen and Or-
tega [7], invertible transform, optimal assignment of
compression levels, shortest path routing, code pro-
vided by authors.

DRP is not considered since the cost of obtaining projec-
tions is prohibitive. For the CS based algorithms and down-
sampling, reconstruction is via Orthogonal Matching Pur-
suit algorithm [9] provided in the SparseLab package [8].

4.1.2 Metrics

The two metrics for performance are as follows:

1. The reconstruction quality is measured using the
Signal-to-Noise-Ratio.

2. To study compression gains, we also look at the ratio of
algorithm cost to the cost of gathering raw (quantized)
data using shortest path routing.

The energy cost per transmission is obtained as

1. bit-hop metric
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2. the product of the number of bits (be) and the edge
length (le). The cost for a given set of paths is

∑

p∈P

∑
e∈p

be.d
2
e.

The first node on a path transmits B bits and we as-
sume that for every new node on the path that con-
tributes a non-zero value, one extra bit is required.

4.1.3 Network topology

The nodes are assumed to be in a square grid deployment.
We consider two network size - 256 nodes(16x16) and 1024
nodes(32x32). Nodes can communicate with their 8 adja-
cent neighbors on the grid, except for those on the corners
which have smaller number of neighbors. The sink is lo-
cated at the center of the square. There is no packet loss.

4.1.4 Data Generation

The data is generated using two different basis functions,
2D Discrete Cosine Transform (DCT) and multi-resolution
2D Haar basis. The magnitude of sorted transform coeffi-
cients is given by

|θi| = i−
1
p .

The smaller the value of p, higher the decay rate and
hence the higher compressibility [11]. In our experiments
we generate data with three different levels of compressibil-
ity, p = 1

8 , 1
2 , 7

8 . Figure 2 shows samples of data generated
with the two bases and the coefficient decay profile for the
three values of p.

4.2. Results

The simulation results presented are averaged over 20
data sets with 10 simulation runs for every data set for each
scheme.

Figures 3 and 4 show the SNR performance as a function
of number of measurements. For downsampling, we refer
to number of nodes chosen for sending data as number of
measurements. For DCT basis, SNR performance of SRPs
is slightly better than the other schemes. In Figure 4 for
Haar basis, the SNR performance of SRPs is better than
for downsampling and the algorithm, which have similar
performance. The difference is seen to narrow going from
high to medium compressibility. These results are in tune
with what can be expected from the theory of compressed
sensing.

Figures 5, 6 show SNR vs. energy ratio (compared to
raw data transport via shortest path) for the schemes with
DCT and Haar basis respectively. In all cases, we see the
surprising result that downsampling outperforms CS based
techniques by achieving higher SNR at same cost. The per-
formance of our algorithm (LCPR) is very close to down-
sampling. When considered along with the above result for
SNR vs number of measurements, this means that the SNR
gains of standard compressed sensing techniques are heav-
ily dominated by the routing cost. The naive randomized
downsampling combined with a simple routing scheme -
shortest path, always has better overall performance.

The algorithm achieves lower coherence than downsam-
pling, but this does not seem to be translating to a difference
in performance. (Figures 7 (a) and (b). For DCT basis, the
coherence with our algorithm and downsampling are mostly
lower than with DRPs and SRPs. For Haar basis, the coher-
ence is close to 1 to start with but falls rapidly after a certain
number of measurements are available.

Figure 8 is an illustration of the paths chosen by the algo-
rithm for DCT basis with 16 projections. The red stars are
starting nodes in each projection, green squares are nodes
corresponding to non-zero entries in the projection vector.
Circles linked by the paths are relay nodes corresponding
to zeros in the projection vector. To reduce clutter, paths
with only starting node having non-zero contribution are not
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shown. With DCT basis, the algorithm chooses some pro-
jections with more than one node and follows paths slightly
different from the shortest path, but overall performance and
cost is very close to downsampling. With Haar basis, al-
most all projections chosen by the algorithm consistently
have only one node - consequently the measurement matrix
is almost a permutation matrix, as for the downsampling
case.

Figure 9 shows the relative performance of CS based and
2D wavelet based [7] algorithms. For the low SNR region,
our algorithm can provide a higher SNR at the same cost.
The 2D wavelet scheme involves an orthogonal transform
which preserves the quantization error. With an increasing
bit budget, it is possible to obtain all the coefficients more
and more accurately and hence, better and better SNR per-
formance. However, with compressed sensing the achiev-
able SNR for compressible data is limited (unless with rel-
atively large number of projections) as mentioned earlier.

5. Conclusion and Future Work

Standard CS techniques (e.g., DRP, SRP), where the pro-
jections have been designed without taking routing costs
into consideration, may not be competitive in terms of re-
constructed signal representation for given transport costs.
Instead, simple techniques such DS and ADS can provide
good performance. DS and ADS can be thought of as sim-
plified CS techniques where the transport costs are forced to
be minimal (because aggregation is performed only on ex-
isting efficient routes). Thus we believe that further inves-
tigation is needed to determine if novel routing strategies
exist that i) provide a sufficient spatial coverage to enable
good coherence properties for compressed sensing along
those routes, and ii) have transport costs that do not devi-
ate significantly from those of efficient routing techniques.
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7. Appendix

7.1. Pseudo-code for LCPR algorithm

Algorithm 1 LCPR
Require: Ψ, Rc, Nx2 vector Posnodes consisting of x and

y coordinates of N nodes, Possink of the sink.
Ensure: Φ, µ.
{Find a measurement matrix with low coherence in iter-
ative manner.}
Parent = FindSPT(Pos, Rc)
Determine a set Nodeinit containing IDs of randomly
selected M different nodes.
µ ← 1
for every Node in Nodeinit do

Clear Candidates
FindCandidates(node, RC , Candidates)
for every cand in Candidates do

a=FindNextNode(Candidates, Ψ, Φpartial)
end for

end for
if BP.benefit > 0 then

add BP.node to R and update R accordingly
end if
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SNR comparison with varying bit allocation (b) Energy ratio with varying M.

0 2 4 6 8 10 12 14

x 10
5

10

20

30

40

50

60

70

80

90

Energy ( = Bit * distance2 )

S
N

R
 (

dB
)

Optimum 2D
LCPR
SRP256
DS

Figure 9. CS vs. 2D wavelet transform with
different number of measurements

7.2. Bit allocation, Energy ratio, Large
number of nodes

Figure 10(a) shows the performance of the different CS
based algorithms with varying bit allocation for data quan-
tization, for a fixed number of projections (M = 160). With
increasing number of bits, the SNR obtained first increases
steadily up to 8 bits, but using more bits cannot improve
it much further. There are two sources of error - quantiza-
tion and loss of transform coefficients. Increasing number
of bits can reduce quantization error close to zero. How-
ever, with a relatively small number of projections, it is not
possible to get complete information of coefficients for the
compressible data considered, even with fine quantization.
Hence, there is a limit on the achievable SNR. Given the
trend in Figure 10(a), we use 8 bits for quantization in the
other experiments presented.

Figure 10(b) is a plot of the energy cost ratio, with re-

spect to raw (quantized) data collection using shortest path,
for the different schemes with varying number of projec-
tions. For instance, with 160 projections, our algorithm has
a cost ratio of 0.6, or 40% savings. As a result of routing
costs, SRPs can possibly be useful only for a limited num-
ber of projections (while cost ratio is less than 1).


