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Abstract—The capabilities of sensor networking devices are BRCP [6]). All these proposed protocols perform either pure

increasing at a rapid pace. It is therefore not impractical ©
assume that future sensing operations will involve real tire
(inelastig traffic, such as audio and video surveillance, which
have strict bandwidth constraints. This in turn implies that future
sensor networks will have to cater for a mix of elastic (having
no bandwidth constraint requirements) and inelastic traffic.
Current state of the art rate control protocols for wireless sensor
networks, are however designed with focus on elastic trafficin
this work, by adapting a recently developed theory of utility-
proportional rate control for wired networks to a wireless setting,
we present a mathematical framework that gives us elegant qgue
backpressure-based algorithms. This allows us to design éfirst-
ever rate control protocol that can efficiently handle a mix d
elastic and inelastic traffic in a wireless sensor network. fie
simplicity of our queue backpressure-based algorithm, andhe
resulting low complexity of its protocol overhead, aids us n
demonstrating the implementation of this novel protocol ina
real world sensor network stack, the TinyOS-2.x communicabn
stack for IEEE 802.15.4 radios. We evaluate the real-world
performance of this protocol through comprehensive experments

on 20 and 40-node subnetworks of USC’'s 94-node Tutornet

wireless sensor network testbed.

congestion control functionality, or perform congestiomtol
while trying to achieve some form of utility optimization.
Despite the variance in the design techniques used, and the
capabilities of these protocols, a common theme underlying
all these protocols is that they are targeted towards magagi
traffic, with elasticbandwidth requirements. That is, this traffic
will present a non-zero utility, as long as it has a non-zero
bandwidth allocated to it. Typically, thgoodnessf such a
traffic can be measured by defining the utility achieved by the
traffic as a logarithmic function of its rate. A typical utylifor
such traffic isU;(rs) = log(rs + 1), whereUs is the utility

of the source generating the traffic, ang is the goodput
observed from this source. The utility obtained for an éast
source, at different allocated rates for such a log-basiéity ut
can be seen in Figure 1(a).

A key reason for current proposals on rate control protocol
design, with focus on elastic traffic, is the nascent natdre o
sensor network deployments (Habitat monitoring, Struadtur
health monitoring). However, we believe that there are alevho

Index Terms —Wireless Sensor Networks, Congestion controfange of applications that are being targeted towards senso

Backpressure-based stacks, Stochastic optimization.

I. INTRODUCTION

For low-powers wireless sensor networks (WSNSs), e

degradation of per-source sustainable rate is quite drasti

increase in network size. In our experiments on the U

Tutornet wireless sensor network testbed [1],

networks, such as audio and video surveillance, real-time
traffic monitoring, real-time seismic activity monitorinthat

will force sensor networks to support real-time traffic with
rict bandwidth constraints. We term such trafficraeastic

The utility for aninelastictraffic can be typically given by a

<gigmoid function. The utility behavior of inelastic traffizith
it has bekie is shown in Figure 1(b). Given the heterogeneous nature

observed that with a 40 byte packet, a 4-node network C%sensing devices that nodes in these networks (iMote2f [7]

give per-source rate as low as 16 pkts/sec. A 20-node netwdiR
under similar conditions results in a reduction of per-seur
rate to ~ 2 pkts/sec, and in a 40-node network this rat
reduces to~ 0.5 pkts/sec. Thus, even if low data rate sources

are operational in these networks (which is typical for 0 )
a sufficiently large numbgfoblematic to use state of the art rate control protocas th

WSN), given the scarce capacity,

of such sources can easily cause congestion collapse iatieey

[8], Tmote sky [9]) can carry, we envision that future
sensor networks will be required to carry a mixedésticand
inelastictraffic.

Given that future sensor networks need to have the ability
handle both elastic and inelastic traffic, it is therefore

are designed to support purely elastic traffic. The problem

operating unaware of the sustainable rates in the netwari. TOf Nandling a mix of elastic and inelastic traffic is a known

observation reflects the importance of rate control prdsice
these networks.

problem in the Internet context. For wired networks, Wag
al. [10] have shown that if a mix of elastic and inelastic traffic

Given the importance of rate control protocols, there hal®"UN Over a network deploying rate control protocols that a

been numerous proposals for congestion control in wirelgd€Signed to optimize the sum utility of elastic traffic, ids to
sensor networks (ARC [2], CODA [3], IFRC [4], RCRT [5],_ser|0us unfairness in terms of and utility performance Far t

Jiong Jin and Avinash Sridharan are equal contributors is1whork.

inelastic traffic. Though this observation has been madhken t
context of wired networks, it is safe to assume that such an un



fairness will exist in wireless networks as well. The uniais,
resulting from use of rate control protocols designed fastt
traffic, is primarily due to the underlying design philosgph
which is referred to as “Optimal Flow Control "(OFC). Under
OFC, the objective has been to design rate control protocols
that will try to maximize the sum utility of the sources. If
the utilities are concave Log functions of sources, maximgjz
sum of utilities will result in a proportional fair rate aiation,
making the design principles of OFC particularly attragtiv
when dealing with elastic traffic. However, for inelastiaffic
since a proportionally fair rate allocation does not gutean Bandwidth
that the inelastic sources will get a rate greater than their (a) Elastic
minimum required rate, a proportionally fair rate allooati
might result in some inelastic sources getting zero utititys
despite the fact that they have non-zero rates.

For sensor networks, the unfairness resulting from the use
of rate control protocols, designed for elastic traffic baed U
for managing a mix of elastic and inelastic traffic, can have
serious detrimental consequences in terms of energy eitigie
Since, though inelastic sources might get non-zero ratéds wi
traditional rate-proportional-fair protocols, the paiskérans-
mitted to the sink will be useless in adding value to the sensi

(a) Elastic

application. Since they have been transmitted at a ratéHass Bandwidth

the desired minimum, these packet transmission will thus be (b) Inelastic

wasteful in terms of energy usage, and will drastically istpa

network life time and application performance. Fig. 1. Behavior of utility forelastic and inelastic sources.

In the wired context, Wangt al. [10], propose a theoretical
framework for designing rate control protocols for hanglm
mix of elastic and inelastic traffic. They show that, if weides the utilities presented to the inelastic traffic, espegiathen
rate control protocols that try to achieve proportionatrfess there is a mix of elastic and inelastic traffic in the network.
in terms of utiIitieS, rather than proportional fairnesgénms The rest of the paper is Organized as follows. In Section I,
of rates, itimproves the utility performance of inelastitieces we discuss the prior art. In Section Il we present our
drastically, while impacting the utility performance ofastic analysis that allows us to extend the framework of wired
sources marginally, resulting in overall improvementisteyn networks, to a wireless sensor network running over a CSMA
performance. MAC. In Section IV, we present the system overview and a
The following are the key contributions of our work: Wesoftware architecture that captures the overall desigrhef t
show that by merging the theoretical framework presented Pylity-proportional-fair rate control stack over the Vi@S-2.x
Wang et al. [10] with a recent proposal on wireless CSMAcommunication stack. In Section V, we present an evaluation
MAC layer modeling [11], we can develop elegant queugf the utlity-proportional-fair rate control stack preses in
backpressure-based algorithms, that will allow us to desigection IV, over the USC Tutornet testbed [1]. Our perfor-
rate control protocols for wireless sensor networks whigh ¢ mance evaluation highlights the gains that this rate contro
optimize of non-concave (inelastic) utilities. To the beSbur stack presents over traditional designs, when tested in a
knowledge this work is a first, in terms of extending the queugstting having a mix of elastic and inelastic traffic. Figall

backpressure-based stochastic optimization approachai®r in Section VI, we present our conclusions and future work.
dling fairness of non-concave utility-based traffic in aeléss

setting. Furthermore, we do not restrict ourselves to thére

of theory, and use this framework to design and implement
a rate control protocol that will be able to support a mix of The formulation of the rate control stack design, as an
elastic and inelastic traffic. Our design and implementatib optimization problem was first motivated by the seminal veork
this novel rate control protocol is carried over the TinyOSsf Kelly et al.[12] and Lowet al.[13], in the context of wired
2.x communication stack. TinyOS-2.x is one of the mostetworks. Using duality theory, they have proposed distet
popular operating systems currently used in wireless senstgorithms to optimize the network in terms of utility, fair
networks. We test our implementation and design of this nevess and stability. Further, Chiareg al. [14] have formally
utility-proportional-fair rate control protocol over a 20 andpresented a mathematical theory of network architecture, a
40-node subnetwork of the USC Tutornet testbed [1], a $tomoted the cross-layer design to optimize system wide
node wireless sensor network, and show that the performamneswork utility. All these results have assumed that the-rat
of this novel rate control protocol, over traditional ratentrol  utility function is concave, and thus it is appropriate ofdy
protocols designed for elastic traffic, is much better im®pf elastic traffic. To address this concern, Waatgal. [10] have

Il. RELATED WORK



developed a new rate control framework of wired networksure congestion control without regard to utility optintina.
that is able to deal with both elastic and inelastic trafficts  Given the diversity of applications targeted towards senso
that the resulting utility is proportional fair. networks, it is unclear as to which utility optimization blest
Alternatively, for wireless networks, NeeBt al. [15]-[17] serve the requirement of an application. Given the exigt@fc
have developed a stochastic network optimization framkwdahe heterogeneous traffic, both elastic or inelastic rétiyu
that models a general network as a queueing system wifitinctions may be observed. In that regards, our backpressur
transmission rate subject to resource allocation dedsiguch protocol stack, which is able to handle any type of rate-
as scheduling and rate control, to achieve joint optimat partility function, presents a clear advantage against iexjstate
formance. The ability to tackle these problems in a stoéhastontrol mechanisms in the literature.
settings makes their solutions more relevant to a wireless
multi-hop scenario. In particular, the framework reliesvigy
on the existence of a backpressure scheduling policy that ca . ANALYSIS
be implemented at the MAC _Iayer. . I A, An Optimization framework for utility-fair flow control
The backpressure scheduling policy was initially proposed
by Tassiulaset al. [18], and assumes a TDMA synchronized Rate control (also known as flow control) is an important
operation with a centralized scheduler. It is proven to emhi technique of fair and efficient resource allocation in com-
the maximum throughput compared with all other schedulingunication networks. Following the pioneering proposal of
policies. Since the de facto MAC is CSMA in practicepptimal flow control [12], an extensive study of network flow
recently there are several attempts to design backpressatntrol problems has been carried out in the last decade [13]
based protocols for CSMA wireless networks. Warrigr [14], [26], [27]. Essentially, the approach is to formulétmw
al. [19] and Akyol et al. [20] propose schemes which try tocontrol as an optimization problem and then maximize the sum
achieve probabilistic prioritization of the node transsiosis utility under the capacity constraint:
by modulating the MAC contention window size based on a
nodes’ queue differential with its parent. In addition, Akt PLl: max 3 .csUs(rs) @)
al. [20] also design the flow controllers on top of the scheduler s.t. rs € A (2

based on th? technique proposed by Stplyar [21]._The W%eres = {1,2,...,S} is the set of sources; for each
by Radunovicet al. [22] develops a multi-path routing andsources € S, r, is the source rate], (r,) is the associated

rate control protocol, that can be integrated with TCP ove ility as a measure of performance (or equivalently Qo) a
802.11, using backpressure techniques. They use a simR Qenotes the capacity region '

backpressurg sche_dul_er that allows transmissions as lsng ¢ shown in [10], even though the optimal flow control
the queue differential is greater than a threshold.

However, none of these proposals are able to divine whi&gFC) approach has made great advances in dealing with

backpressure scheduler heuristic should be used to give ?ﬁ)ngestion control and resource allocation, serious i
P g€ Sl exist due to the objective of OFC of pursuing utility

best performance in a given setting. On the other hand, ‘]ianq wimization
et al.[11] shows that under idealized conditions the maximum '

throughput can be obtained directly on a CSMA MAC by « OFC assumes the nature of traffic is elastic (modeled
locally prioritizing links with higher queue differentil Nev- by strictly concave utility functions), therefore it is not
ertheless, specifically for wireless sensor networks, atest applicable for inelastic traffic (modeled by non-concave
result [6] reveals and verifies that the gains in implement- utility functions) like increasingly popular real-time ap
ing queue prioritization over a CSMA MAC are negligible, plications.

hence, simple pure backpressure scheduling policy can be There exists a serious conflict between the utility max-
implemented for WSNs without modifying the underlying  imization and utility fairness. For the sources with dif-

MAC. The novelty of our work is that we show, that by  ferent QoS requirements, OFC seeks to maximize the

Combining the framework presented by Waey al. [10], total Ut”ity, unfortunately this may cause extreme Lyl'lt
with the scheduling policy proposed by Jiaagal. [11], we unfairness among contending sources. In particular, the
can design flow controllers that exhibit proportional faise source with strict bandwidth demanéhglastig might

in terms of utility. Further, we show that by modifying the receive a bandwidth requirement less than its minimum
scheduling policy proposed by Jiasgal.[11], we can achieve required, resulting in inelastic sources receiving “zero”

the same performance using per-destination queues instead utility.

of per-flow queues. This makes the theoretical design of thejn order to support heterogeneous traffic (elastic and sela

protocol, practically viable. tic), and guarantee utility fairness among competing flows
There have been several proposals addressing the Fgéewill adopt the newly developed flow control strategy by

control problem in WSNs [2]-[5], [23]-{25]. Most of thesewanget al.[10]. This new mechanism of flow control, which

protocols have assumed a clean slate design and followya refer to aautility-fair flow control, is not only suitable for

router centric, explicit congestion notification approagtkey elastic traffic but also capable of handling inelastic teaffi
shortcoming of these protocols, compared to the backpressu

bas_eq §tacks, is that Fhese protp-cols are monolithic irlwrtm,atu Lin the remainder of paper, we will use the term flow and sounter
optimizing for a specific rate-utility function, or perfomng changeably.



In this framework, for each source with utility function rate region of the wireless network. The scheduling polidy w

Us(rs), we define a “pseudo utilityld,(rs) as then give us the constraints for the probl&.
req Recently, Jianget al. [11] proposes an adaptive scheduling
Us(rs) = / U—dy, ms <15 < Ms. (3) algorithm that can theoretically achieve the maximum tigieu
m. Us(¥) put over a CSMA MAC. The work shows that if the rate of the

wherem, > 0 and M, < oo are the minimum and maximum back-off window (an exponential random variable) is chosen
transmission rates required by sourgerespectively. Now according to a queue differential between a node and itspare
replacing the utility function in the original optimizatio the system can achieve 100% throughput. We can therefore
problem P1 with “pseudo utility” U(rs), it leads to the use the framework proposed by Jiagigal. [11], to define the
optimization problenP2 constraints of the probler®2. In the next section, we will
. combine the above frameworks proposed by Wangl. [10],
P2: max 3 csUs(rs) (4) and Jianget al. [11], to develop a queue backpressure-based
s.. re €A (5) utility-fair flow control protocol that will be implementedt
the transport and the MAC layer respectively. We formulate
dhe problem by taking a cross-layer approach, and propose
a joint flow control and CSMA scheduling algorithm. Notice
. that the formulation and analysis is based on general rafti-
Z U (1) (rg —r5) =3 12— " <o (6) Wireless networks, where sensor networks is a special case.
Ors * oS Us(ry) — A key problem with the scheduling policy proposed by
Jianget al. [11] is that it assumes the per-flow queue model,
i.e., each link maintains a separate queue for each flowrsave
ing through that link. This will obviously result in overha
and make the implementation difficult, especially when gdar
Z rs — Ty <0 @) number of flows are active in the network. Therefore, when
rko T merging the frameworks proposed by Waegal. [10] and
seS . . .
, . . . ) Jianget al.[11], we show that the scheduling policy proposed
The solution ofP2 thus achievesitility proportional fairness by Jianget al. [11] can be changed fromer-flow queugto

We would like to emphasize that the strategdpXis philo-  per_destination queyavithout any loss in performance. This
sophically different from OFCR1); OFC strives to achieve mqgification particularly helps in simplifying the impleme
proportional fairness in terms of rates, however, utifay- i5tion of the protocol.

flow controller strives to achieve proportional fairnessarms
of utilities. Thus, the utility-fair flow controller assurmehat ) ) )
the utilities, rather than rates, are a meaningful meti@as C- Joint flow control and scheduling algorithm

According to the optimization condition oP2, at the
optimum equilibriumr*, we have that, for any feasible rat
vectorr # r*,

seS
Recalling the definition of well-knowiproportional fairness

a particular bandwidth allocatiori is proportional fair if for
any feasibler # r*,

for the flows. Consider a multi-hop wireless network withlinks, and let
Moreover, it is clear from (3) that L denote the set of links andl” denote the set of nodes. For
1 each linkl € £, it can also be represented by a node paiy),
Ui(rs) = T(r)’ ms <715 < Mg (8) meaning transmission from nodeto node;. Assume there

are a sefS of flows and a seD of intended destinations. Each
andu(rs) > 0 is strictly decreasing, according to the strictlfflow s is associated with a source node and a destination
increasing property of/;(r,). Indeed “pseudo utilityl/s(rs) noded,, and is able to adjust the input rate. lietbe the rate,

is a strictly increasing concave function in the intervale andi,(rs) be the defined “pseudo utility” function of flow.
[ms, M;] regardless the concavity of sourge utility function  Each nodei maintains per-destination queues for flows
Us(rs). ThereforeP2 stays as a convex optimization problemhat traverse it, i.e., different queues are maintainedléovs
after mapping, and is able to deal with elastic and inelasifestined to different destinations. Denot¢ the service rate
traffic. of queue towards! € D on link (i,5). Then, the service
rate of each particular queue on nofleshould be no less

than the incoming rate, i.€} . ; ~cp V4 > > ines VE+
B. Achievable capacity region of CSMA MAC based wireless 2jiiaree Vi Z Litiiee Vi

. Ts.
(fs=i,ds=d 'S
networks o:fa i

Furthermore, in [11], it shows that the maximum-weight

Since the optimization framework of utility-fair flow contr Scheduling policy can be effectively modeled as maximizing
is primarily developed for wired networks, it cannot be dthe  the entropy of a Markov chain

applied to wireless networks. The fundamental differersce i max _Zuk log

that the capacity region for wireless networks depends very u -

much on the underlying MAC layer. In order to solve the k .

problem P2 in a wireless setting, we need a model that st Z“’f (i) 2 Aijy V(,)) € L ©)

presents us well all the constraints for the probl&f in k

a wireless setting. One way of achieving this is to formulateherew;, is a variable satisfyingi, > 0,3, u, = 1. :cé“m-)
a scheduling policy that will achieve the optimal throughpundicates the transmission status of lifikj) under a particular



schedulerz® € {0,1}F. )\;; is normalized i.i.d arrival traffic
rate at each linkz, j).

Now, we can formulate the following optimization problem.

max - Z ug logug +V ZL{ Ts) (10)
w,y,r
sES
Z /Vij = Z ’in‘f' Z rs, ¥d € D,Vi # d
J:(i,4)eL j:(Gi)eLl st f —dz
Zuk'IZ]) Z’Ylj? EE
deD

uk>02uk—1

The tuning parameteV is used in (10) to determine the
extent to which “pseudo utility” optimization is emphagize
As shown in [17], it presents a tradeoff between the optityali

and system queue backlog. The 3rd constraint of (10) says

that the total service rate of link, j) is divided among the
destination queues. By associating dual variakies> 0 to
the 2nd constraint, a partial Lagrangian (subjectyfga >

0,> ) Uk ~a:l(“l._’j) = Zdep%‘dj andug > 0,> ", up = 1) is

L(u,v,759)
= —Zukloguk —|—VZL{ Ts)
seS
D D T T W Y
deD,i#d Ji(i,5)eL J:(G,0)eL sdfs::i
= —Zukloguk —|—VZL{ Ts)
seS
_quirs + Z ’Y’L]( : q]) (11)
seS (1,7)€L,deD

First fixing the vectors u and g, we solve fq;ﬁg- in the
sub-problem

m’?x Z ’Y’L]( 3 _qj)
(1,7)€L,deD
st.  E>0, V(i,j)€LVIdeED
STad =S up-ab, Vi) el (12)
deD k

It is quite straightforward to find the solution: for eac
link (i, ) let d*(i,j) = argmaxa(qf — ¢f), and lety, =
Do Uk :c o if d =d*(i, j) and~; = 0, otherwise. In other
words, eacﬁ link schedules the transmission of the degtimat
queue whose backpressuye— ¢ is maximum.

Substitute the solution of (12) into (11), we get

L(u,r;q)= Zm log () Z Zij (Z Uk II&J))
(i,§)€L k
+ VZL{S(TS) - Z q?j”s]
SES s€eS

wherez;; := maxg(qf — q;-i) is the maximum backpressure of
link (7, 7). Hence, a distributive algorithm to solve (10) is as
follows
Algorithm : Joint flow control and scheduling

Initially, assume that all queues are empty, and get=
0,Vi,d.

« Transport layer (flow control): the rate of each flov¢

is determined by

argmazx, {V -Us(rs) —

()
as:

It maximizesL(u,r;q) overr.

MAC layer (scheduling): link (4, j) schedules the trans-
mission of destination queue with the maximum back-
pressurez;; = maxy(q — ¢f) when it gets the oppor-
tunity. Specifically, the back-off window size is set to
be an exponential random variable with mecg:]@m It
maximizesL (u,;q) overu [11]. The dual variable¢

is updated by

*
T's

g rs}

U71

S

+

d d
q; — |¢; -«

> v

J:(i,5)eL

Z 7?1'—

J:Giel

PORS

s:fs=1

ds=d

where [a]T = max{0,a}. We observe that? x Q¢.
Then@Q¢, the actual queue length of noddor destina-
tion d, can be used as the corresponding dual variable.

Remark 1:Though the Algorithm appears similar to those
in [17], [21], it is philosophically different in terms of &
objective and the chosen MAC model.

IV. IMPLEMENTING UTILITY-FAIR FLOW CONTROL IN
TINYOS-2X

As mentioned earlier, the objective of this work is not only
to build a framework that will allow us to present quantitati
designs of utility-fair flow controllers that can suppor¢iastic
traffic in a sensor network, but to realize these designs in
practice. In this section, inline with our goals, we presant
software architecture that allows us to implement the tytili
fair controller presented in Section lIll, in the TinyOS-2.x
network stack. We choose TinyOS-2.x as our target platform,
since it is one of the most popular operating systems used in

psensor networks.

As described in Section IlI-C, in order to implement
the utility-fair flow controller we need to implement a
backpressure-based scheduler at the MAC layer, and use the
gueueing information presented by this backpressuredbase
scheduler to implement the utility-fair flow controllers the
transport layer. Figure 2 presents a software archite¢hae
captures the design of such a backpressure-based ratelcontr
stack

For the purposes of this work we restrict our investigation
specifically to a fixed collection tree, implying that thesests
a single destination in the network to which all sources are
routing their data. We concentrate specifically on a cabhect



tree, since as shown in Section lll, it is trivial to extendsth function Us(rs) will be given by asigmoid function, while
design to multiple destination. In order to support muétiplfor the elastic source the utility functidii,(rs) will be given
destination all that needs to be added to this design is a pley- a logarithmic function [28]. We now present the design
destination queue. of the sigmoid-utility-fair flow controller and the log-lity-
When routing is fixed, the backpressure-based rate contfal flow controller, for regulating inelastic and elastraffic
stack is implemented at the MAC and the transport layersources.
The transport layer functionality is implemented as parthef 1) Sigmoid-utility-fair flow controller:The sigmoid-utility-
“Leaky Bucket” and “Flow Controller” blocks in Figure 2. Thefair flow controller is designed to be used with an inelastic
flow controller needs to determine the allowed instantaseosource. The utility function for real-time inelastic trafiis as
rate of admission as a function of the forwarding queue siZellows:
The “Flow Controller” block in Figure 2 interacts with the Us(ry) =0, if 7y < Bonin
forwarding engine to learn the instantaneous queue sizk, an _ 1 if B.. <r.<B
H H H 1+e—alrs—b)> min = s = max
sets an allowed admission rate in the leaky bucket. The leaky 1. if r.> Byas
bucket then generates tokens at the admission rate. When a ’ -
packet arrives from the application to the flow controlleisi Bmin and By,q, are the minimum and maximum bandwidth
injected into the forwarding engine only if a token is avhiéa  constraints on the sigmoit, = (BweezBuin) 4+ B, a
The backpressure-based MAC is implemented as part @trols the slope of the sigmoid.
the “Forwarding Engine” and “Communication stack” blocks From the Algorithm in Section I1I-C, the optimal rat¢ is
(Figure 2). The forwarding engine calculates the curreeugu diven by:
differential, using information about parent queue siearied v
through periodic broadcasts) and its own queue size. Based ry = argmaz (VUs(rs) — gors) = Uy (q—>
on the current queue differential, the forwarding engine de ) ) ) O
cides wether or not to transfer a packet to the MAC |ayé\lote that since here we consider the single destination case

(represented by the communication stack in Figure 2). If tf}B€ Superscriptl is omitted for simplicity. As pointed out,
scheduler wants to implement differential queue pricaiin, ¥ 1S @ constant that acts as a tuning parameter to effect a

the forwarding engine can use interfaces provided by tﬁré‘qef’ﬁ between the forwarding queue size and “pseudo
underlying MAC to modify the MAC back-off window sizes, Utility” Us(rs). Alarge value ofV” will imply large value ofg;,

before injecting the packet and large total/;(r). Whereas a small value &f will imply
B . ’ . 2 i i
We now describe the implementation of the transport arsal value*oqu, and small totalf; (rs).” The implementation
MAC layer in further detail. would setr; as follows:
rio=b-glog(f 1), 4>V
A. Transport layer = Bmaz, ¢s <V

The key component in implementing the transport layer is 5y | oq_tility-fair flow controller: The log-utility-fair flow

Fhe flow controller block. The .ObJeCt'Ve of the flow pontrmlle controller is designed to be used with elastic traffic. Thityt
is to operate the source at a time average ratallowing the function for elastic traffic is as follows:

source to achieve a utility/s(r), such that the rate allocation
rs, V s, maximizesy U (rs) across the entire network. Note Us(rs) = log(rs + 1)
that the flow contrqller runs at each nodg,.and hence it ne(wg offset the rate by+1 to ensure the positiveness of the
to make local decisions, but the local decisions should bh SU ility. Adain. the optimal rate* is
as to optimize a global functiofmax )", Us(rs)). y- Again, P s

If we want to implement a utility-fair flow controller,
Section Ill shows that it maximizes the total “pseudo utilit

ry = argmazx (VUs(rs) — qsrs) = U;l (K>
Us(rs) = fmdrs- For an inelastic source, the Uti”tyHence,

ds

v
rr=ew —1

Application

B. MAC Layer
4‘—' Ideally, we should be implementing the scheduling policy
e Flow Controler by Algorithm in Section I1I-C, that can theoretically achée
the maximum throughput on a CSMA MAC. This requires
implementing a backoff window at the MAC layer, where
1 the value of the backoff window is chosen as an exponential
| Routing Engine |—ma'°""9 i | random variable with a mean inverse proportional to the queu
I I differential between the transmitting node and its panafitile

theoretically the scheme initially proposed by Jiaial. [11]

[ Communication Stack ]

] ) 2t should be noted that the flow controller designs presetiedt are
Fig. 2. Software architecture for a backpressure-baseik.sta similar to the proposals presented by Sridhagaral. [6].



is quite appealing, in practice it is hard to realize everygilole 12
mapping between the queue differential of a node with its / \
parent, and the resulting backoff window mechanism. This is 13
primarily due to the fact, that in theory the backoff window / T
size is a real number and can potentially go to zero; in practi 1 14
however, due to hardware and software limitations we have /4 / \
to limit the window size to a practically viable minimum 5 e e
and maximum limits. In [6] the authors show that due to /T T\
these practical limitations, in theory, a CSMA MAC whose . i 17 o
window size is mapped to the queue differential can perform / .\
18 19

A—> 00— 0 —>
W —> N —>

much worse than a much simpler backpressure scheme, where

the forwarding engine allows a packet to the enter the MAC

layer if it sees a positive queue differential with the paren (a) 20-node
The authors, in [6], call this naive version of a backpressur 29

scheduling policy, the positive differential queue MAC @D Vai \

MAC). Based on the empirical evidence presented by us in [6], 240 ¥

we therefore choose to implement the backpressure schgduli //'T\ /T‘\\ z
policy at the MAC using the PDQ MAC. ot bttt

£3 36 22 23 16
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St Tt

In order to test the performance of thaility-fair flow % (o ; n €

controllers presented in Section IV-A and implemented in 9/1\7
Tiny0S-2.x, we ran different types of traffic generatoragel AN
tic and inelastic) over the backpressure-based rate dontro : /5\ ¢ T

stack (Section 1IV). We compared its performance with a s
similar backpressure-based stack running preportional- (b) 40-node
fair flow controller instead of the utility-fair flow controllers.

The proportional-fair flow controller is the traditional o Fig. 3. Routing topologies on the USC Tutornet [1] testbed.
controller, based on the OFC design, where the flow controlle
tries to optimize for the sum utility) ~_ U (r,)) of the traffic
instead of trying to optimize for the sum “pseudo utility”

S Us(rs) = X, [ oy drrs ), which s the objective of the

flow controller, such as the proportional-fair flow conteoll
leads to extremely poor performance foelastictraffic, when
inelastic and elastic traffic are mixed; second it shows Hiegy
achieved, in terms of improvements in utility performanée o

inelastictraffic, when used in the same traffic settings. (8) 20-node (Power = 5) (b) 40-node (Power = 10)
Fig. 4. Connectivity for 20 and 40-node topologies on the UB®rnet
A. Experimental setup testbed. Links indicate PRR of at lea1%.

The comparative experiments were performed on the USC

Tutornet testbed [1], a 94 node wireless sensor netwoiky petween two nodes is shown in the connectivity graph
testbed. The testbed consists of Tmote sky [9] devices Wh'ﬁhthey have packet success probability greater tisafo.

can run the TinyOS-2.x operating system. The Tmote sky,o connectivity graphs gives us an idea of the density of
devices come fitted with an 802.15.4 compatible CC2420 [Zglaployment, and also justifies the choice of power levels for

radio. The TinyOS-2.x platform comes with a default CSMAnage topologies, since it shows that the graphs are cathect
MAC, called the CC2420 MAC, that can operate over thesg ihe chosen power levels.

radios. Of the 94 nodes present in the testbed, we used a

maximum of 40 nodes. The experiments were performed over ] _

two different routing topologies, a 20-node topology and 8- Proportional-fair flow controller

40-node topology shown in Figure 3(a) and 3(b). The proportional-fair flow controller is designed and im-
The CC2420 radio can operate3tdifferent power levels. plemented similar to the utility-fair flow controllers, wdhi

For these experiments, for the 20-node topology, we oparateave been described in Section IV-A. The only difference

the CC2420 radios at a power level®fand at a power level between the implementation of the utility-fair flow contesk

of 10 for the 40-node topologies. The connectivity graph, faind the proportional-fair flow controller is that in the cade

the 20-node and 40-node topologies, are given in Figure 4.the utility-fair flow controller we deal with “pseudo utiit



Us(rs) = fmdrs, where as for the proportional flowthe flow controllers, we plot the utility and queue behavior

controller we just deal with the utility/, (). for different values ofl/. For this experiment all sources are
The flow controller than sets the instantaneous rafg) to assumed to belastic sources. Thus the system utility being
the following : measured i$ _ log(r,). Since all sources arelastic we use

thelog-utility fair flow controller (Section IV-A2) when testing
the utility-fair flow controllers. The results of this exjraent
For the proportional flow controllet,(r,) = log(r, + 1), are presented in Figure 5. For each of the flow controllerst; ov
hence the instantaneous rate will be set to : each of the topologies, it can be seen that the utility imeea
logarithmically with V', while queue sizes increases linearly

ry = argmax (VUs(rs) — qsTs)

rro =YX 1 if Y >1 . ,

s 4 7 4s = with V. Also, for each of the graphs, after a certain value
=V i s = 0 of V the utility actually starts falling while the queue sizes
=0, if i keep increasing. This behavior occurs due the finite queue

whereV is the same constant that presents a tradeoff betweszes that exist in all practical system. Due to the limatatof

the total utility achieved and the queue size in the systefiieue sizes, packet drops start occurring after a certire va
Incidentally, this is the exact design that has been prapbge of V' resulting in loss of utility. Thus, for the system to operate
Sridhararet al.in [6] and [30], using the Lyapunov drift-basedefficiently we will have to select & that will allow for good
stochastic optimization technique proposed by Neaflyal. utility while allowing the system to operate within the fiit
[15]-[17], as well as the design proposed by Akgolal [20] bounds of the queue sizes. From this figure it can be seen that
based on the stochastic optimization technique proposed ayalue ofV’ = 30 for the 20-node topology, anl = 5 for

Stolyar [21]. the 40-node topology will present good performance for the
utility-fair flow controller. Similarly for the proportioal flow
C. Traffic sources controller we choose a value &f = 100 for the 20-node

A key to performing this empirical evaluation is to havetOpOIOgy' andy” = 50 for the 40-node topology

traffic generators that can emulate the elastic and inelasti
traffic in a real world wireless sensor network. Felastic E. Performance of the Utility-fair flow controller

Sgrticular scenario helps us validate the implementatfdhe
utility-fair controller. In this scenario, the utility angoodput
Mor the sources should be similar to the utility and goodput,
when using the proportional flow controller. For the second
scenario, we use traffic mix oflastic and inelastic traffic.
This particular scenario showcases the advantage of titg-uti
ngr flow controller over the proportional fair flow contrefl
The expectation in this scenario is that the utility-fairwflo

follows: recall that the utility of an inelastic source isvgn
by a sigmoid function having a minimum and maximu
bandwidth constraints d@8,,,;, andB,,,... Our inelastic source
simply tries to emulate this utility function; if the allokeal
rate to the source is less thab,,;, the source does not
inject any packets into the system; if the allocated rate
the source isB,,in < 1; < Bz, the source injects packet

. , o 1
into the system with a probability = I4e—alrs =0 where controller will treat the inelastic traffic fairly, by givinit a

_ (Bmaz—=Bmin . i - . .. . . . ; .
b= ( 2 ) + Bmin, anda is set to2; if the allocated jgher priority, and presenting the inelastic traffic withetter
rate to the source is greater th&p,,.. it injects packetinto the ity than in the case when the same traffic mix is run over
system probabilityl. The inelastic source generates packets étproportional flow controller.

a constant rate of 1 packet everg ms, however whether it 1) Elastic Traffic. The Figure 6 and Figure 7 present

decides to inject the packet into the system or not depenfls yertormance of the utility-fair flow controller and the
on the above mentioned conditions. The packet sizes in cﬂ1‘6p0rtional-fair flow controller, when all sources in thetn

network are~ 40 bytes. work are elastic. Since all sources are elastic, all nodes us
. the log-utility flow controller to represent the utility-fair flow
D. Parameter selection controller. For both, the 20-node and 40-node topologies, i
As remarked in section lll, the performance of thean be seen that the goodput distribution using either flow
backpressure-based stack depends on the paraiietéhe controller is very similar. The proportional flow contralle
parametel/ presents a tradeoff between the queue size in thatperforms the log-utility flow controller, but by only a
system and how much the optimality achieved. A lavgeiill  small margin. For the 40-node topology the proportional flow
force the system to operate close to edge of the rate regionntroller presents a sum log-utility &fl.22, while the log-
allowing for close-to-optimal utility, albeit at the cost large utility flow controller presents a sum log-utility o27.36.
gueues. While a small value df will allow the system to The gap between the performance of the two flow controllers
operate well within the rate region; allowing for small geeureduces even further for the 20-node topology. For the 2feno
sizes, albeit at the cost of optimality in terms of utility. topology the sum log-utility presented by the proportidial
For the 20 and 40-node topologies, in order to determimentroller is 20.74, while that presented by the log-utility
the optimal setting ofi” that should be used with each offlow controller is 20.73. The reason for the sub-optimality
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Fig. 6. Goodput and utility comparison for the 20-node togglwith elastic Fig. 7. Goodput and utility comparison for the 40-node toggl with elastic
traffic. traffic.

2) Elastic and Inelastic Traffic The goal of developing the
of the log-utility-fair controller is that, the log-utijtfair utility-fair flow controllers was to present nodes in a wirss
controller has been optimized for presenting a proportignasensor network the ability to support a mix efastic and
fair solution in terms of utility; while the proportional ifa inelastic traffic. In this section we validate this goal. We
controller is designed specifically to maximize the sum lodest the performance of the utility-fair flow controller and
utility, since this presents proportional fairness in terwf the proportional-fair flow controller over the 20 and 40-eod
rates. The objective of presenting these results is thatgiho topologies, in terms of the goodputs and utility achievedhzy
the log-utility-fairness is suboptimal in terms of achiyi sources, under a mixed traffic setting. In order to emulage th
proportional fairness in terms of rates, it still is able teega mix of elastic and inelastic traffic, for the 20-node topglog
rate distribution comparative to the proportional-faintoller. sources 3, 4, 10, 17, 18, 19 and 20 are inelastic sources; all
Since, as will be shown in the next section, the utility-flow  other sources are elastic sources. For the 40-node topology
controller gives a distinct advantage over proportionavflosources 1-10, 12, 26, 27, 28, 39 and 40 are inelastic; alf othe
controller when a mix of elastic and inelastic traffic exifte sources are elastic sources. As mentioned earlier, in the ca
results presented in this section motivate the argumerthfr of the utility-fair flow controllers the source use a spedifipe
use of the utility-fair flow controller in all traffic scenas, of utility-fair flow controller, depending on the type of ffia
given that in pure elastic traffic settings the cost in terrhs they are generating. The elastic source usddpeutility flow
performance, when using the utility-fair controller, isngiaal. controller, and the inelastic sources useghgnoid-utilityflow
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Fig. 8. Goodput and utility comparison for the utility-failow controller, Fig. 9. Goodput and utility comparison for the utility-falllow controller,

and the proportional flow controller for the 20-node topgloBor inelastic and the proportional flow controller for the 40-node topgloBor inelastic

traffic Bi,in = 2 pkts/sec, andB,q2 = 4 pkts/sec. traffic Bi,in = 1 pkts/sec, andB,q2 = 4 pkts/sec.

Utility

&

controller. For the case of the proportional flow controlleﬁ.t'l'ty'falr flow controllers, the inelastic sources get aich

since there exist only a single type of flow controller, all igher g.oodput, since they are given h|g-h.er prlon_ty, arid th
sources use the same flow controller. automatically results in a much higher utility than in thesea

. . . . ... of the proportional fair flow controller. The results pretszh
There is a specific reason for choosing this d's”'b““% this section clearly validate our design and motivatidn o

of sources for these topologies. Since the proportional flqyinq ility-fair controllers for handling a mix of elastand
controller strives to achieve a tradeoff between efficieacy inelastic traffic

fairness, it presents sources that are closer to the sirk wit
a much higher rate than nodes that are farther away from
the sink. Thus, by choosing the given traffic mix we are
able to clearly highlight the disdvantage the proportidteat In this work, we have extended the concept of designing rate
controller presents to the inelastic traffic. This is refect control protocols that can achieve utility-proportionairhess
in the results for the 20 and 40-node topologies shown iR a wireless sensor network running over a CSMA MAC.
Figures 8 and 9. Experiments of this novel rate control stack, over the USC
For the 20-node topology, for the inelastic traffic tBg,;, Tutornet [1] testbed, show that this new rate control stack
of the sigmoid utility is set t@ pkts/sec, and3,,.. is set to presents inelastic sources with much better utilitiespthia
4 pkts/sec. For the 40-node topology, for the inelastic taffthe same sources were run with a rate-proportional fair rate
the B,,:, of the sigmoid utility is set tol pkts/sec, and control protocol, designed using the traditional optimainfl
B... IS set to4 pkts/sec. In the x-axis, the inelastic trafficcontrol model.
sources are marked with the suffix “-in”. Both the goodput Though the empirical results presented here are encourag-
and utility plots show that, when using the proportionaf faing, there are still some open problem before the protocols
flow controller some of the inelastic sources get a goodpst Igpresented can be widely adopted in existing communication
than B,,;». A direct result of this unfairness results in thosstacks. The key issue is with the paraméteron which the
inelastic sources getting zero utility. In a practical stlis performance of these protocols rely heavily. As mentioned
implies that any data sent by these sources simply resulesdtlier, and seen in our empirical resulispresents a tradeoff
in a wastage of energy since the data received at the shdtween the network queue size and utilities achieved. The
will be useless, given that they are getting zero utilityeThoptimal setting ofl” depends on the traffic pattern (number
performance of the inelastic sources is greatly improvedrwhof flows in the network), and the network topology. Thus,
using the utility-fair controllers. As can be seen when géhre  depending on the traffic pattern and network topology, the

VI. CONCLUSION AND FUTURE WORK
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setting of V' might need to be changed continuously in ordgeé] R. La and V. Anantharam, “Utility based rate control iretinternet for

to derive good performance from the stack. This has bee
highlighted in [6] as well. Our future work will therefore be[27]

targeted towards designing online algorithms that camesé
on the fly, the value of this parametet.
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