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Abstract—The capabilities of sensor networking devices are
increasing at a rapid pace. It is therefore not impractical to
assume that future sensing operations will involve real time
(inelastic) traffic, such as audio and video surveillance, which
have strict bandwidth constraints. This in turn implies that future
sensor networks will have to cater for a mix of elastic (having
no bandwidth constraint requirements) and inelastic traffic.
Current state of the art rate control protocols for wireless sensor
networks, are however designed with focus on elastic traffic. In
this work, by adapting a recently developed theory of utility-
proportional rate control for wired networks to a wireless setting,
we present a mathematical framework that gives us elegant queue
backpressure-based algorithms. This allows us to design the first-
ever rate control protocol that can efficiently handle a mix of
elastic and inelastic traffic in a wireless sensor network. The
simplicity of our queue backpressure-based algorithm, andthe
resulting low complexity of its protocol overhead, aids us in
demonstrating the implementation of this novel protocol in a
real world sensor network stack, the TinyOS-2.x communication
stack for IEEE 802.15.4 radios. We evaluate the real-world
performance of this protocol through comprehensive experiments
on 20 and 40-node subnetworks of USC’s 94-node Tutornet
wireless sensor network testbed.

Index Terms —Wireless Sensor Networks, Congestion control,
Backpressure-based stacks, Stochastic optimization.

I. I NTRODUCTION

For low-powers wireless sensor networks (WSNs), the
degradation of per-source sustainable rate is quite drastic with
increase in network size. In our experiments on the USC
Tutornet wireless sensor network testbed [1], it has been
observed that with a 40 byte packet, a 4-node network can
give per-source rate as low as 16 pkts/sec. A 20-node network
under similar conditions results in a reduction of per-source
rate to ∼ 2 pkts/sec, and in a 40-node network this rate
reduces to∼ 0.5 pkts/sec. Thus, even if low data rate sources
are operational in these networks (which is typical for a
WSN), given the scarce capacity, a sufficiently large number
of such sources can easily cause congestion collapse if theyare
operating unaware of the sustainable rates in the network. This
observation reflects the importance of rate control protocols for
these networks.

Given the importance of rate control protocols, there have
been numerous proposals for congestion control in wireless
sensor networks (ARC [2], CODA [3], IFRC [4], RCRT [5],
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BRCP [6]). All these proposed protocols perform either purely
congestion control functionality, or perform congestion control
while trying to achieve some form of utility optimization.
Despite the variance in the design techniques used, and the
capabilities of these protocols, a common theme underlying
all these protocols is that they are targeted towards managing
traffic, with elasticbandwidth requirements. That is, this traffic
will present a non-zero utility, as long as it has a non-zero
bandwidth allocated to it. Typically, thegoodnessof such a
traffic can be measured by defining the utility achieved by the
traffic as a logarithmic function of its rate. A typical utility for
such traffic isUs(rs) = log(rs + 1), whereUs is the utility
of the source generating the traffic, andrs is the goodput
observed from this source. The utility obtained for an elastic
source, at different allocated rates for such a log-based utility
can be seen in Figure 1(a).

A key reason for current proposals on rate control protocol
design, with focus on elastic traffic, is the nascent nature of
sensor network deployments (Habitat monitoring, Structural
health monitoring). However, we believe that there are a whole
range of applications that are being targeted towards sensor
networks, such as audio and video surveillance, real-time
traffic monitoring, real-time seismic activity monitoring, that
will force sensor networks to support real-time traffic with
strict bandwidth constraints. We term such traffic asinelastic.
The utility for an inelastic traffic can be typically given by a
sigmoid function. The utility behavior of inelastic trafficwith
rate is shown in Figure 1(b). Given the heterogeneous nature
of sensing devices that nodes in these networks (iMote2f [7],
Iris [8], Tmote sky [9]) can carry, we envision that future
sensor networks will be required to carry a mix ofelasticand
inelastic traffic.

Given that future sensor networks need to have the ability
to handle both elastic and inelastic traffic, it is therefore
problematic to use state of the art rate control protocols that
are designed to support purely elastic traffic. The problem
of handling a mix of elastic and inelastic traffic is a known
problem in the Internet context. For wired networks, Wanget
al. [10] have shown that if a mix of elastic and inelastic traffic
is run over a network deploying rate control protocols that are
designed to optimize the sum utility of elastic traffic, it leads to
serious unfairness in terms of and utility performance for the
inelastic traffic. Though this observation has been made in the
context of wired networks, it is safe to assume that such an un-
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fairness will exist in wireless networks as well. The unfairness,
resulting from use of rate control protocols designed for elastic
traffic, is primarily due to the underlying design philosophy,
which is referred to as “Optimal Flow Control ”(OFC). Under
OFC, the objective has been to design rate control protocols
that will try to maximize the sum utility of the sources. If
the utilities are concave Log functions of sources, maximizing
sum of utilities will result in a proportional fair rate allocation,
making the design principles of OFC particularly attractive
when dealing with elastic traffic. However, for inelastic traffic
since a proportionally fair rate allocation does not guarantee
that the inelastic sources will get a rate greater than their
minimum required rate, a proportionally fair rate allocation
might result in some inelastic sources getting zero utility; this
despite the fact that they have non-zero rates.

For sensor networks, the unfairness resulting from the use
of rate control protocols, designed for elastic traffic but used
for managing a mix of elastic and inelastic traffic, can have
serious detrimental consequences in terms of energy efficiency.
Since, though inelastic sources might get non-zero rates with
traditional rate-proportional-fair protocols, the packets trans-
mitted to the sink will be useless in adding value to the sensing
application. Since they have been transmitted at a rate lessthan
the desired minimum, these packet transmission will thus be
wasteful in terms of energy usage, and will drastically impact
network life time and application performance.

In the wired context, Wanget al. [10], propose a theoretical
framework for designing rate control protocols for handling a
mix of elastic and inelastic traffic. They show that, if we design
rate control protocols that try to achieve proportional fairness
in terms of utilities, rather than proportional fairness interms
of rates, it improves the utility performance of inelastic sources
drastically, while impacting the utility performance of elastic
sources marginally, resulting in overall improvement in system
performance.

The following are the key contributions of our work: We
show that by merging the theoretical framework presented by
Wang et al. [10] with a recent proposal on wireless CSMA
MAC layer modeling [11], we can develop elegant queue
backpressure-based algorithms, that will allow us to design
rate control protocols for wireless sensor networks which can
optimize of non-concave (inelastic) utilities. To the bestof our
knowledge this work is a first, in terms of extending the queue
backpressure-based stochastic optimization approach forhan-
dling fairness of non-concave utility-based traffic in a wireless
setting. Furthermore, we do not restrict ourselves to the realm
of theory, and use this framework to design and implement
a rate control protocol that will be able to support a mix of
elastic and inelastic traffic. Our design and implementation of
this novel rate control protocol is carried over the TinyOS-
2.x communication stack. TinyOS-2.x is one of the most
popular operating systems currently used in wireless sensor
networks. We test our implementation and design of this new
utility-proportional-fair rate control protocol over a 20 and
40-node subnetwork of the USC Tutornet testbed [1], a 94
node wireless sensor network, and show that the performance
of this novel rate control protocol, over traditional rate control
protocols designed for elastic traffic, is much better in terms of
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Fig. 1. Behavior of utility forelastic and inelastic sources.

the utilities presented to the inelastic traffic, especially when
there is a mix of elastic and inelastic traffic in the network.

The rest of the paper is organized as follows. In Section II,
we discuss the prior art. In Section III we present our
analysis that allows us to extend the framework of wired
networks, to a wireless sensor network running over a CSMA
MAC. In Section IV, we present the system overview and a
software architecture that captures the overall design of the
utility-proportional-fair rate control stack over the TinyOS-2.x
communication stack. In Section V, we present an evaluation
of the utlity-proportional-fair rate control stack presented in
Section IV, over the USC Tutornet testbed [1]. Our perfor-
mance evaluation highlights the gains that this rate control
stack presents over traditional designs, when tested in a
setting having a mix of elastic and inelastic traffic. Finally,
in Section VI, we present our conclusions and future work.

II. RELATED WORK

The formulation of the rate control stack design, as an
optimization problem was first motivated by the seminal works
of Kelly et al. [12] and Lowet al. [13], in the context of wired
networks. Using duality theory, they have proposed distributed
algorithms to optimize the network in terms of utility, fair-
ness and stability. Further, Chianget al. [14] have formally
presented a mathematical theory of network architecture, and
promoted the cross-layer design to optimize system wide
network utility. All these results have assumed that the rate-
utility function is concave, and thus it is appropriate onlyfor
elastic traffic. To address this concern, Wanget al. [10] have
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developed a new rate control framework of wired networks
that is able to deal with both elastic and inelastic traffic, such
that the resulting utility is proportional fair.

Alternatively, for wireless networks, Neelyet al. [15]–[17]
have developed a stochastic network optimization framework
that models a general network as a queueing system with
transmission rate subject to resource allocation decisions, such
as scheduling and rate control, to achieve joint optimal per-
formance. The ability to tackle these problems in a stochastic
settings makes their solutions more relevant to a wireless
multi-hop scenario. In particular, the framework relies heavily
on the existence of a backpressure scheduling policy that can
be implemented at the MAC layer.

The backpressure scheduling policy was initially proposed
by Tassiulaset al. [18], and assumes a TDMA synchronized
operation with a centralized scheduler. It is proven to achieve
the maximum throughput compared with all other scheduling
policies. Since the de facto MAC is CSMA in practice,
recently there are several attempts to design backpressure-
based protocols for CSMA wireless networks. Warrieret
al. [19] and Akyol et al. [20] propose schemes which try to
achieve probabilistic prioritization of the node transmissions
by modulating the MAC contention window size based on a
nodes’ queue differential with its parent. In addition, Akyol et
al. [20] also design the flow controllers on top of the scheduler
based on the technique proposed by Stolyar [21]. The work
by Radunovicet al. [22] develops a multi-path routing and
rate control protocol, that can be integrated with TCP over
802.11, using backpressure techniques. They use a simple
backpressure scheduler that allows transmissions as long as
the queue differential is greater than a threshold.

However, none of these proposals are able to divine which
backpressure scheduler heuristic should be used to give the
best performance in a given setting. On the other hand, Jiang
et al. [11] shows that under idealized conditions the maximum
throughput can be obtained directly on a CSMA MAC by
locally prioritizing links with higher queue differentials. Nev-
ertheless, specifically for wireless sensor networks, our latest
result [6] reveals and verifies that the gains in implement-
ing queue prioritization over a CSMA MAC are negligible,
hence, simple pure backpressure scheduling policy can be
implemented for WSNs without modifying the underlying
MAC. The novelty of our work is that we show, that by
combining the framework presented by Wanget al. [10],
with the scheduling policy proposed by Jianget al. [11], we
can design flow controllers that exhibit proportional fairness
in terms of utility. Further, we show that by modifying the
scheduling policy proposed by Jianget al. [11], we can achieve
the same performance using per-destination queues instead
of per-flow queues. This makes the theoretical design of the
protocol, practically viable.

There have been several proposals addressing the rate
control problem in WSNs [2]–[5], [23]–[25]. Most of these
protocols have assumed a clean slate design and follow a
router centric, explicit congestion notification approach. A key
shortcoming of these protocols, compared to the backpressure-
based stacks, is that these protocols are monolithic in nature,
optimizing for a specific rate-utility function, or performing

pure congestion control without regard to utility optimization.
Given the diversity of applications targeted towards sensor
networks, it is unclear as to which utility optimization will best
serve the requirement of an application. Given the existence of
the heterogeneous traffic, both elastic or inelastic rate-utility
functions may be observed. In that regards, our backpressure
protocol stack, which is able to handle any type of rate-
utility function, presents a clear advantage against existing rate
control mechanisms in the literature.

III. A NALYSIS

A. An Optimization framework for utility-fair flow control

Rate control (also known as flow control) is an important
technique of fair and efficient resource allocation in com-
munication networks. Following the pioneering proposal of
optimal flow control [12], an extensive study of network flow
control problems has been carried out in the last decade [13],
[14], [26], [27]. Essentially, the approach is to formulateflow
control as an optimization problem and then maximize the sum
utility under the capacity constraint:

P1: max
∑

s∈S Us(rs) (1)

s.t. rs ∈ Λ (2)

where S = {1, 2, . . . , S} is the set of sources; for each
sources ∈ S, rs is the source rate,Us(rs) is the associated
utility as a measure of performance (or equivalently QoS), and
Λ denotes the capacity region.

As shown in [10], even though the optimal flow control
(OFC) approach has made great advances in dealing with
congestion control and resource allocation, serious limitations
still exist due to the objective of OFC of pursuing utility
maximization.

• OFC assumes the nature of traffic is elastic (modeled
by strictly concave utility functions), therefore it is not
applicable for inelastic traffic (modeled by non-concave
utility functions) like increasingly popular real-time ap-
plications.

• There exists a serious conflict between the utility max-
imization and utility fairness. For the sources with dif-
ferent QoS requirements, OFC seeks to maximize the
total utility, unfortunately this may cause extreme utility
unfairness among contending sources. In particular, the
source with strict bandwidth demand (inelastic) might
receive a bandwidth requirement less than its minimum
required, resulting in inelastic sources receiving “zero”
utility.

In order to support heterogeneous traffic (elastic and inelas-
tic), and guarantee utility fairness among competing flows1,
we will adopt the newly developed flow control strategy by
Wanget al. [10]. This new mechanism of flow control, which
we refer to asutility-fair flow control, is not only suitable for
elastic traffic but also capable of handling inelastic traffic.

1In the remainder of paper, we will use the term flow and source inter-
changeably.
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In this framework, for each sources with utility function
Us(rs), we define a “pseudo utility”Us(rs) as

Us(rs) =

∫ rs

ms

1

Us(y)
dy, ms ≤ rs ≤Ms. (3)

wherems ≥ 0 andMs <∞ are the minimum and maximum
transmission rates required by sources respectively. Now
replacing the utility function in the original optimization
problem P1 with “pseudo utility” Us(rs), it leads to the
optimization problemP2

P2: max
∑

s∈S Us(rs) (4)

s.t. rs ∈ Λ (5)

According to the optimization condition ofP2, at the
optimum equilibriumr∗, we have that, for any feasible rate
vectorr 6= r∗,

∑

s∈S

∂Us(r
∗
s)

∂rs

(rs − r∗s) =
∑

s∈S

rs − r∗s
Us(r∗s)

≤ 0 (6)

Recalling the definition of well-knownproportional fairness,
a particular bandwidth allocationr∗ is proportional fair if for
any feasibler 6= r∗,

∑

s∈S

rs − r∗s
r∗s

≤ 0. (7)

The solution ofP2 thus achievesutility proportional fairness.
We would like to emphasize that the strategy (P2) is philo-

sophically different from OFC (P1); OFC strives to achieve
proportional fairness in terms of rates, however, utility-fair
flow controller strives to achieve proportional fairness interms
of utilities. Thus, the utility-fair flow controller assumes that
the utilities, rather than rates, are a meaningful metrics of QoS
for the flows.

Moreover, it is clear from (3) that

U ′
s(rs) =

1

U(rs)
, ms ≤ rs ≤Ms (8)

andU ′
s(rs) > 0 is strictly decreasing, according to the strictly

increasing property ofUs(rs). Indeed “pseudo utility”Us(rs)
is a strictly increasing concave function in the intervalrs ∈
[ms, Ms] regardless the concavity of sources’s utility function
Us(rs). Therefore,P2 stays as a convex optimization problem
after mapping, and is able to deal with elastic and inelastic
traffic.

B. Achievable capacity region of CSMA MAC based wireless
networks

Since the optimization framework of utility-fair flow control
is primarily developed for wired networks, it cannot be directly
applied to wireless networks. The fundamental difference is
that the capacity regionΛ for wireless networks depends very
much on the underlying MAC layer. In order to solve the
problem P2 in a wireless setting, we need a model that
presents us well all the constraints for the problemP2 in
a wireless setting. One way of achieving this is to formulate
a scheduling policy that will achieve the optimal throughput

rate region of the wireless network. The scheduling policy will
then give us the constraints for the problemP2.

Recently, Jianget al. [11] proposes an adaptive scheduling
algorithm that can theoretically achieve the maximum through-
put over a CSMA MAC. The work shows that if the rate of the
back-off window (an exponential random variable) is chosen
according to a queue differential between a node and its parent,
the system can achieve 100% throughput. We can therefore
use the framework proposed by Jianget al. [11], to define the
constraints of the problemP2. In the next section, we will
combine the above frameworks proposed by Wanget al. [10],
and Jianget al. [11], to develop a queue backpressure-based
utility-fair flow control protocol that will be implementedat
the transport and the MAC layer respectively. We formulate
the problem by taking a cross-layer approach, and propose
a joint flow control and CSMA scheduling algorithm. Notice
that the formulation and analysis is based on general multi-hop
wireless networks, where sensor networks is a special case.

A key problem with the scheduling policy proposed by
Jianget al. [11] is that it assumes the per-flow queue model,
i.e., each link maintains a separate queue for each flow travers-
ing through that link. This will obviously result in overhead,
and make the implementation difficult, especially when a large
number of flows are active in the network. Therefore, when
merging the frameworks proposed by Wanget al. [10] and
Jianget al. [11], we show that the scheduling policy proposed
by Jianget al. [11] can be changed fromper-flow queueto
per-destination queue, without any loss in performance. This
modification particularly helps in simplifying the implemen-
tation of the protocol.

C. Joint flow control and scheduling algorithm

Consider a multi-hop wireless network withL links, and let
L denote the set of links andN denote the set of nodes. For
each linkl ∈ L, it can also be represented by a node pair(i, j),
meaning transmission from nodei to nodej. Assume there
are a setS of flows and a setD of intended destinations. Each
flow s is associated with a source nodefs and a destination
nodeds, and is able to adjust the input rate. Letrs be the rate,
andUs(rs) be the defined “pseudo utility” function of flows.

Each nodei maintains per-destination queues for flows
that traverse it, i.e., different queues are maintained forflows
destined to different destinations. Denoteγd

ij the service rate
of queue towardsd ∈ D on link (i, j). Then, the service
rate of each particular queue on nodei should be no less
than the incoming rate, i.e.,

∑

j:(i,j)∈L γd
ij ≥

∑

j:(j,i)∈L γd
ji +

∑

s:fs=i,ds=d rs.
Furthermore, in [11], it shows that the maximum-weight

scheduling policy can be effectively modeled as maximizing
the entropy of a Markov chain

max
u

−
∑

k

uk log uk

s.t.
∑

k

uk · x
k
(i,j) ≥ λij , ∀(i, j) ∈ L (9)

whereuk is a variable satisfyinguk ≥ 0,
∑

k uk = 1. xk
(i,j)

indicates the transmission status of link(i, j) under a particular
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schedulerxk ∈ {0, 1}L. λij is normalized i.i.d arrival traffic
rate at each link(i, j).

Now, we can formulate the following optimization problem:

max
u,γ,r

−
∑

k

uk log uk + V
∑

s∈S

Us(rs) (10)

s.t. γd
ij ≥ 0, ∀(i, j) ∈ L, ∀d ∈ D
∑

j:(i,j)∈L

γd
ij ≥

∑

j:(j,i)∈L

γd
ji +

∑

s:fs=i
ds=d

rs, ∀d ∈ D, ∀i 6= d

∑

k

uk · x
k
(i,j) =

∑

d∈D

γd
ij , ∀(i, j) ∈ L

uk ≥ 0,
∑

k

uk = 1.

The tuning parameterV is used in (10) to determine the
extent to which “pseudo utility” optimization is emphasized.
As shown in [17], it presents a tradeoff between the optimality
and system queue backlog. The 3rd constraint of (10) says
that the total service rate of link(i, j) is divided among the
destination queues. By associating dual variablesqd

i ≥ 0 to
the 2nd constraint, a partial Lagrangian (subject toγd

ij ≥
0,
∑

k uk · xk
(i,j) =

∑

d∈D γd
ij anduk ≥ 0,

∑

k uk = 1) is

L(u, γ, r; q)

= −
∑

k

uk log(uk) + V
∑

s∈S

Us(rs)

+
∑

d∈D,i6=d

qd
i









∑

j:(i,j)∈L

γd
ij −

∑

j:(j,i)∈L

γd
ji −

∑

s:fs=i
ds=d

rs









= −
∑

k

uk log(uk) + V
∑

s∈S

Us(rs)

−
∑

s∈S

qds

fs
rs +

∑

(i,j)∈L,d∈D

γd
ij(q

d
i − qd

j ) (11)

First fixing the vectors u and q, we solve forγd
ij in the

sub-problem

max
γ

∑

(i,j)∈L,d∈D

γd
ij(q

d
i − qd

j )

s.t. γd
ij ≥ 0, ∀(i, j) ∈ L, ∀d ∈ D
∑

d∈D

γd
ij =

∑

k

uk · x
k
(i,j), ∀(i, j) ∈ L. (12)

It is quite straightforward to find the solution: for each
link (i, j), let d∗(i, j) = argmaxd(q

d
i − qd

j ), and letγd
ij =

∑

k uk · xk
(i,j) if d = d∗(i, j) andγd

ij = 0, otherwise. In other
words, each link schedules the transmission of the destination
queue whose backpressureqd

i − qd
j is maximum.

Substitute the solution of (12) into (11), we get

L(u, r; q)=



−
∑

k

uk log(uk) +
∑

(i,j)∈L

zij

(

∑

k

uk · x
k
(i,j)

)





+

[

V
∑

s∈S

Us(rs)−
∑

s∈S

qds

fs
rs

]

wherezij := maxd(q
d
i − qd

j ) is the maximum backpressure of
link (i, j). Hence, a distributive algorithm to solve (10) is as
follows
Algorithm : Joint flow control and scheduling

Initially, assume that all queues are empty, and setqd
i =

0, ∀i, d.

• Transport layer (flow control) : the rate of each flows
is determined by

r∗s = argmaxrs
{V · Us(rs)− qds

fs
rs}

= U−1
s

(

V

qds

fs

)

.

It maximizesL(u, r; q) over r.
• MAC layer (scheduling): link (i, j) schedules the trans-

mission of destination queue with the maximum back-
pressurezij = maxd(q

d
i − qd

j ) when it gets the oppor-
tunity. Specifically, the back-off window size is set to
be an exponential random variable with mean1

exp(zij)
. It

maximizesL(u, r; q) over u [11]. The dual variableqd
i

is updated by

qd
i ←









qd
i − α









∑

j:(i,j)∈L

γd
ij −

∑

j:(j,i)∈L

γd
ji −

∑

s:fs=i
ds=d

rs

















+

where [a]+ = max{0, a}. We observe thatqd
i ∝ Qd

i .
ThenQd

i , the actual queue length of nodei for destina-
tion d, can be used as the corresponding dual variable.

Remark 1:Though the Algorithm appears similar to those
in [17], [21], it is philosophically different in terms of the
objective and the chosen MAC model.

IV. I MPLEMENTING UTILITY-FAIR FLOW CONTROL IN

TINYOS-2.X

As mentioned earlier, the objective of this work is not only
to build a framework that will allow us to present quantitative
designs of utility-fair flow controllers that can support inelastic
traffic in a sensor network, but to realize these designs in
practice. In this section, inline with our goals, we presenta
software architecture that allows us to implement the utility-
fair controller presented in Section III, in the TinyOS-2.x
network stack. We choose TinyOS-2.x as our target platform,
since it is one of the most popular operating systems used in
sensor networks.

As described in Section III-C, in order to implement
the utility-fair flow controller we need to implement a
backpressure-based scheduler at the MAC layer, and use the
queueing information presented by this backpressure-based
scheduler to implement the utility-fair flow controllers atthe
transport layer. Figure 2 presents a software architecturethat
captures the design of such a backpressure-based rate control
stack

For the purposes of this work we restrict our investigation
specifically to a fixed collection tree, implying that there exists
a single destination in the network to which all sources are
routing their data. We concentrate specifically on a collection
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tree, since as shown in Section III, it is trivial to extend this
design to multiple destination. In order to support multiple
destination all that needs to be added to this design is a per-
destination queue.

When routing is fixed, the backpressure-based rate control
stack is implemented at the MAC and the transport layers.
The transport layer functionality is implemented as part ofthe
“Leaky Bucket” and “Flow Controller” blocks in Figure 2. The
flow controller needs to determine the allowed instantaneous
rate of admission as a function of the forwarding queue size.
The “Flow Controller” block in Figure 2 interacts with the
forwarding engine to learn the instantaneous queue size, and
sets an allowed admission rate in the leaky bucket. The leaky
bucket then generates tokens at the admission rate. When a
packet arrives from the application to the flow controller, it is
injected into the forwarding engine only if a token is available.

The backpressure-based MAC is implemented as part of
the “Forwarding Engine” and “Communication stack” blocks
(Figure 2). The forwarding engine calculates the current queue
differential, using information about parent queue size (learned
through periodic broadcasts) and its own queue size. Based
on the current queue differential, the forwarding engine de-
cides wether or not to transfer a packet to the MAC layer
(represented by the communication stack in Figure 2). If the
scheduler wants to implement differential queue prioritization,
the forwarding engine can use interfaces provided by the
underlying MAC to modify the MAC back-off window sizes,
before injecting the packet.

We now describe the implementation of the transport and
MAC layer in further detail.

A. Transport layer

The key component in implementing the transport layer is
the flow controller block. The objective of the flow controller
is to operate the source at a time average raters, allowing the
source to achieve a utilityUs(rs), such that the rate allocation
rs, ∀ s, maximizes

∑

s Us(rs) across the entire network. Note
that the flow controller runs at each node, and hence it needs
to make local decisions, but the local decisions should be such
as to optimize a global function(max

∑

∀s Us(rs)).
If we want to implement a utility-fair flow controller,

Section III shows that it maximizes the total “pseudo utility”
Us(rs) =

∫

1
Us(rs)drs. For an inelastic source, the utility

Application

Leaky Bucket Flow Controller

Routing Engine Forwarding Engine

Communication Stack

Fig. 2. Software architecture for a backpressure-based stack.

function Us(rs) will be given by asigmoid function, while
for the elastic source the utility functionUs(rs) will be given
by a logarithmic function [28]. We now present the design
of the sigmoid-utility-fair flow controller and the log-utility-
fair flow controller, for regulating inelastic and elastic traffic
sources.

1) Sigmoid-utility-fair flow controller:The sigmoid-utility-
fair flow controller is designed to be used with an inelastic
source. The utility function for real-time inelastic traffic is as
follows:

Us(rs) = 0, if rs ≤ Bmin

= 1
1+e−a(rs−b) , if Bmin ≤ rs ≤ Bmax

= 1, if rs ≥ Bmax

Bmin and Bmax are the minimum and maximum bandwidth
constraints on the sigmoid,b = (Bmax−Bmin

2 ) + Bmin , a

controls the slope of the sigmoid.
From the Algorithm in Section III-C, the optimal rater∗s is

given by:

r∗s = argmax (V Us(rs)− qsrs) = U−1
s

(

V

qs

)

Note that since here we consider the single destination case,
the superscriptd is omitted for simplicity. As pointed out,
V is a constant that acts as a tuning parameter to effect a
tradeoff between the forwarding queue sizeqs, and “pseudo
utility” Us(rs). A large value ofV will imply large value ofqs,
and large totalUs(rs). Whereas a small value ofV will imply
small value ofqs, and small totalUs(rs).2 The implementation
would setr∗s as follows:

r∗s = b− 1
a

log
(

qs

V
− 1
)

, qs > V

= Bmax, qs < V

2) Log-utility-fair flow controller: The log-utility-fair flow
controller is designed to be used with elastic traffic. The utility
function for elastic traffic is as follows:

Us(rs) = log(rs + 1)

We offset the rate by+1 to ensure the positiveness of the
utility. Again, the optimal rater∗s is

r∗s = argmax (V Us(rs)− qsrs) = U−1
s

(

V

qs

)

Hence,
r∗s = e

V
qs − 1

B. MAC Layer

Ideally, we should be implementing the scheduling policy
by Algorithm in Section III-C, that can theoretically achieve
the maximum throughput on a CSMA MAC. This requires
implementing a backoff window at the MAC layer, where
the value of the backoff window is chosen as an exponential
random variable with a mean inverse proportional to the queue
differential between the transmitting node and its parent.While
theoretically the scheme initially proposed by Jianget al. [11]

2It should be noted that the flow controller designs presentedhere are
similar to the proposals presented by Sridharanet al. [6].
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is quite appealing, in practice it is hard to realize every possible
mapping between the queue differential of a node with its
parent, and the resulting backoff window mechanism. This is
primarily due to the fact, that in theory the backoff window
size is a real number and can potentially go to zero; in practice,
however, due to hardware and software limitations we have
to limit the window size to a practically viable minimum
and maximum limits. In [6] the authors show that due to
these practical limitations, in theory, a CSMA MAC whose
window size is mapped to the queue differential can perform
much worse than a much simpler backpressure scheme, where
the forwarding engine allows a packet to the enter the MAC
layer if it sees a positive queue differential with the parent.
The authors, in [6], call this naive version of a backpressure
scheduling policy, the positive differential queue MAC (PDQ
MAC). Based on the empirical evidence presented by us in [6],
we therefore choose to implement the backpressure scheduling
policy at the MAC using the PDQ MAC.

V. EVALUATION

In order to test the performance of theutility-fair flow
controllers presented in Section IV-A and implemented in
TinyOS-2.x, we ran different types of traffic generators (elas-
tic and inelastic) over the backpressure-based rate control
stack (Section IV). We compared its performance with a
similar backpressure-based stack running theproportional-
fair flow controller instead of the utility-fair flow controllers.
The proportional-fair flow controller is the traditional flow
controller, based on the OFC design, where the flow controller
tries to optimize for the sum utility(

∑

s Us(rs)) of the traffic
instead of trying to optimize for the sum “pseudo utility”
(

∑

s Us(rs) =
∑

s

∫

1
Ui(rs)drs

)

, which is the objective of the
utility-fair flow controller. The purpose of this comparative
evaluation is two fold: first it shows how using an OFC based
flow controller, such as the proportional-fair flow controller
leads to extremely poor performance forinelastictraffic, when
inelastic and elastic traffic are mixed; second it shows the gains
achieved, in terms of improvements in utility performance of
inelastic traffic, when used in the same traffic settings.

A. Experimental setup

The comparative experiments were performed on the USC
Tutornet testbed [1], a 94 node wireless sensor network
testbed. The testbed consists of Tmote sky [9] devices which
can run the TinyOS-2.x operating system. The Tmote sky
devices come fitted with an 802.15.4 compatible CC2420 [29]
radio. The TinyOS-2.x platform comes with a default CSMA
MAC, called the CC2420 MAC, that can operate over these
radios. Of the 94 nodes present in the testbed, we used a
maximum of 40 nodes. The experiments were performed over
two different routing topologies, a 20-node topology and a
40-node topology shown in Figure 3(a) and 3(b).

The CC2420 radio can operate at31 different power levels.
For these experiments, for the 20-node topology, we operated
the CC2420 radios at a power level of5, and at a power level
of 10 for the 40-node topologies. The connectivity graph, for
the 20-node and 40-node topologies, are given in Figure 4. A
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Fig. 3. Routing topologies on the USC Tutornet [1] testbed.
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Fig. 4. Connectivity for 20 and 40-node topologies on the USCtutornet
testbed. Links indicate PRR of at least80%.

link between two nodes is shown in the connectivity graph
if they have packet success probability greater than80%.
The connectivity graphs gives us an idea of the density of
deployment, and also justifies the choice of power levels for
these topologies, since it shows that the graphs are connected
at the chosen power levels.

B. Proportional-fair flow controller

The proportional-fair flow controller is designed and im-
plemented similar to the utility-fair flow controllers, which
have been described in Section IV-A. The only difference
between the implementation of the utility-fair flow controllers
and the proportional-fair flow controller is that in the caseof
the utility-fair flow controller we deal with “pseudo utility”
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Us(rs) =
∫

1
Us(rs)

drs, where as for the proportional flow
controller we just deal with the utilityUs(rs).

The flow controller than sets the instantaneous raters(t) to
the following :

r∗s = argmax (V Us(rs)− qsrs)

For the proportional flow controllerUs(rs) = log(rs + 1),
hence the instantaneous rate will be set to :

r∗s = V
qs
− 1, if V

qs
≥ 1

= V, if qs = 0
= 0, if V

qs
< 1

whereV is the same constant that presents a tradeoff between
the total utility achieved and the queue size in the system.
Incidentally, this is the exact design that has been proposed by
Sridharanet al. in [6] and [30], using the Lyapunov drift-based
stochastic optimization technique proposed by Neelyet al.
[15]–[17], as well as the design proposed by Akyolet al [20]
based on the stochastic optimization technique proposed by
Stolyar [21].

C. Traffic sources

A key to performing this empirical evaluation is to have
traffic generators that can emulate the elastic and inelastic
traffic in a real world wireless sensor network. Forelastic
traffic generator, we choose a CBR traffic that generates a
packet every10 ms. Emulating an inelastic source is more
complicated. To emulate the inelastic source, we implemented
a traffic generator that injects packets into the system as
follows: recall that the utility of an inelastic source is given
by a sigmoid function having a minimum and maximum
bandwidth constraints ofBmin andBmax. Our inelastic source
simply tries to emulate this utility function; if the allocated
rate to the source is less thanBmin the source does not
inject any packets into the system; if the allocated rate to
the source isBmin ≤ ri < Bmax, the source injects packet
into the system with a probabilityp = 1

1+e−a(rs−b) , where
b = (Bmax−Bmin

2 ) + Bmin, anda is set to2; if the allocated
rate to the source is greater thanBmax it injects packet into the
system probability1. The inelastic source generates packets at
a constant rate of 1 packet every10 ms, however whether it
decides to inject the packet into the system or not depends
on the above mentioned conditions. The packet sizes in our
network are∼ 40 bytes.

D. Parameter selection

As remarked in section III, the performance of the
backpressure-based stack depends on the parameterV . The
parameterV presents a tradeoff between the queue size in the
system and how much the optimality achieved. A largeV will
force the system to operate close to edge of the rate region;
allowing for close-to-optimal utility, albeit at the cost of large
queues. While a small value ofV will allow the system to
operate well within the rate region; allowing for small queue
sizes, albeit at the cost of optimality in terms of utility.

For the 20 and 40-node topologies, in order to determine
the optimal setting ofV that should be used with each of

the flow controllers, we plot the utility and queue behavior
for different values ofV . For this experiment all sources are
assumed to beelastic sources. Thus the system utility being
measured is

∑

s log(rs). Since all sources areelastic, we use
the log-utility fair flow controller (Section IV-A2) when testing
the utility-fair flow controllers. The results of this experiment
are presented in Figure 5. For each of the flow controllers, over
each of the topologies, it can be seen that the utility increases
logarithmically with V , while queue sizes increases linearly
with V . Also, for each of the graphs, after a certain value
of V the utility actually starts falling while the queue sizes
keep increasing. This behavior occurs due the finite queue
sizes that exist in all practical system. Due to the limitation of
queue sizes, packet drops start occurring after a certain value
of V resulting in loss of utility. Thus, for the system to operate
efficiently we will have to select aV that will allow for good
utility while allowing the system to operate within the finite
bounds of the queue sizes. From this figure it can be seen that
a value ofV = 30 for the 20-node topology, andV = 5 for
the 40-node topology will present good performance for the
utility-fair flow controller. Similarly for the proportional flow
controller we choose a value ofV = 100 for the 20-node
topology, andV = 50 for the 40-node topology

E. Performance of the Utility-fair flow controller

We perform a comparative evaluation between the two types
of flow controllers using the following two traffic scenarios:
In the first scenario all sources in the network areelastic. This
particular scenario helps us validate the implementation of the
utility-fair controller. In this scenario, the utility andgoodput
for the sources should be similar to the utility and goodput,
when using the proportional flow controller. For the second
scenario, we use traffic mix ofelastic and inelastic traffic.
This particular scenario showcases the advantage of the utility-
fair flow controller over the proportional fair flow controller.
The expectation in this scenario is that the utility-fair flow
controller will treat the inelastic traffic fairly, by giving it a
higher priority, and presenting the inelastic traffic with abetter
utility than in the case when the same traffic mix is run over
a proportional flow controller.

1) Elastic Traffic: The Figure 6 and Figure 7 present
the performance of the utility-fair flow controller and the
proportional-fair flow controller, when all sources in the net-
work are elastic. Since all sources are elastic, all nodes use
the log-utility flow controller to represent the utility-fair flow
controller. For both, the 20-node and 40-node topologies, it
can be seen that the goodput distribution using either flow
controller is very similar. The proportional flow controller
outperforms the log-utility flow controller, but by only a
small margin. For the 40-node topology the proportional flow
controller presents a sum log-utility of31.22, while the log-
utility flow controller presents a sum log-utility of27.36.
The gap between the performance of the two flow controllers
reduces even further for the 20-node topology. For the 20-node
topology the sum log-utility presented by the proportionalflow
controller is 20.74, while that presented by the log-utility
flow controller is 20.73. The reason for the sub-optimality
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(a) 20 node, Utility-fair con-
troller
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(c) 20 node, proportional con-
troller
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Fig. 5. Selecting the optimal value of the parameterV for the 20 and 40-node topologies, for the utility-fair and proportional fair flow controllers.
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Fig. 6. Goodput and utility comparison for the 20-node topology with elastic
traffic.

of the log-utility-fair controller is that, the log-utility-fair
controller has been optimized for presenting a proportionally
fair solution in terms of utility; while the proportional fair
controller is designed specifically to maximize the sum log-
utility, since this presents proportional fairness in terms of
rates. The objective of presenting these results is that though
the log-utility-fairness is suboptimal in terms of achieving
proportional fairness in terms of rates, it still is able to give a
rate distribution comparative to the proportional-fair controller.
Since, as will be shown in the next section, the utility-fairflow
controller gives a distinct advantage over proportional flow
controller when a mix of elastic and inelastic traffic exist;the
results presented in this section motivate the argument forthe
use of the utility-fair flow controller in all traffic scenarios,
given that in pure elastic traffic settings the cost in terms of
performance, when using the utility-fair controller, is marginal.
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Fig. 7. Goodput and utility comparison for the 40-node topology with elastic
traffic.

2) Elastic and Inelastic Traffic: The goal of developing the
utility-fair flow controllers was to present nodes in a wireless
sensor network the ability to support a mix ofelastic and
inelastic traffic. In this section we validate this goal. We
test the performance of the utility-fair flow controller and
the proportional-fair flow controller over the 20 and 40-node
topologies, in terms of the goodputs and utility achieved bythe
sources, under a mixed traffic setting. In order to emulate the
mix of elastic and inelastic traffic, for the 20-node topology
sources 3, 4, 10, 17, 18, 19 and 20 are inelastic sources; all
other sources are elastic sources. For the 40-node topology
sources 1-10, 12, 26, 27, 28, 39 and 40 are inelastic; all other
sources are elastic sources. As mentioned earlier, in the case
of the utility-fair flow controllers the source use a specifictype
of utility-fair flow controller, depending on the type of traffic
they are generating. The elastic source use thelog-utility flow
controller, and the inelastic sources use thesigmoid-utilityflow



10

 0

 0.75

 1.5

 2.25

 3

 3.75

 4.5

 5.25

 6

 6.75

 7.5

 8.25

 9

 9.75

1 2 3-in

4-in
5 6 7 8 10-in
11 12 13 14 15 16 17-in
18-in
19-in
20-in

G
oo

d
p

u
t 

(P
k

ts
/s

ec
)

Node ID

Utility-fair controller
Proportional controller

(a) Goodput

 0.01

 0.02

 0.04

 0.08

 0.16

 0.32

 0.64

 1.28

 2.56

 5.12

 10.24

 20.48

 40.96

1 2 3-in
4-in
5 6 7 8 10-in
11 12 13 14 15 16 17-in
18-in
19-in
20-in

U
ti

li
ty

Node ID

Utility-fair controller
Proportional controller

(b) Utility

Fig. 8. Goodput and utility comparison for the utility-fairflow controller,
and the proportional flow controller for the 20-node topology. For inelastic
traffic Bmin = 2 pkts/sec, andBmax = 4 pkts/sec.

controller. For the case of the proportional flow controller,
since there exist only a single type of flow controller, all
sources use the same flow controller.

There is a specific reason for choosing this distribution
of sources for these topologies. Since the proportional flow
controller strives to achieve a tradeoff between efficiencyand
fairness, it presents sources that are closer to the sink with
a much higher rate than nodes that are farther away from
the sink. Thus, by choosing the given traffic mix we are
able to clearly highlight the disdvantage the proportionalflow
controller presents to the inelastic traffic. This is reflected
in the results for the 20 and 40-node topologies shown in
Figures 8 and 9.

For the 20-node topology, for the inelastic traffic theBmin

of the sigmoid utility is set to2 pkts/sec, andBmax is set to
4 pkts/sec. For the 40-node topology, for the inelastic traffic
the Bmin of the sigmoid utility is set to1 pkts/sec, and
Bmax is set to4 pkts/sec. In the x-axis, the inelastic traffic
sources are marked with the suffix “-in”. Both the goodput
and utility plots show that, when using the proportional fair
flow controller some of the inelastic sources get a goodput less
than Bmin. A direct result of this unfairness results in those
inelastic sources getting zero utility. In a practical sense this
implies that any data sent by these sources simply resulted
in a wastage of energy since the data received at the sink
will be useless, given that they are getting zero utility. The
performance of the inelastic sources is greatly improved when
using the utility-fair controllers. As can be seen when using the
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Fig. 9. Goodput and utility comparison for the utility-fairflow controller,
and the proportional flow controller for the 40-node topology. For inelastic
traffic Bmin = 1 pkts/sec, andBmax = 4 pkts/sec.

utility-fair flow controllers, the inelastic sources get a much
higher goodput, since they are given higher priority, and this
automatically results in a much higher utility than in the case
of the proportional fair flow controller. The results presented
in this section clearly validate our design and motivation of
using utility-fair controllers for handling a mix of elastic and
inelastic traffic.

VI. CONCLUSION AND FUTURE WORK

In this work, we have extended the concept of designing rate
control protocols that can achieve utility-proportional fairness
in a wireless sensor network running over a CSMA MAC.
Experiments of this novel rate control stack, over the USC
Tutornet [1] testbed, show that this new rate control stack
presents inelastic sources with much better utilities, than if
the same sources were run with a rate-proportional fair rate
control protocol, designed using the traditional optimal flow
control model.

Though the empirical results presented here are encourag-
ing, there are still some open problem before the protocols
presented can be widely adopted in existing communication
stacks. The key issue is with the parameterV , on which the
performance of these protocols rely heavily. As mentioned
earlier, and seen in our empirical results,V presents a tradeoff
between the network queue size and utilities achieved. The
optimal setting ofV depends on the traffic pattern (number
of flows in the network), and the network topology. Thus,
depending on the traffic pattern and network topology, the
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setting ofV might need to be changed continuously in order
to derive good performance from the stack. This has been
highlighted in [6] as well. Our future work will therefore be
targeted towards designing online algorithms that can estimate
on the fly, the value of this parameterV .
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