
1

USC CENG Technical Report CENG-2009-9

Bargaining to Improve Channel Sharing between
Selfish Cognitive Radios

Hua Liu†, Allen B. MacKenzie§, Bhaskar Krishnamachari†
†University of Southern California, Los Angeles, CA, USA

{hual, bkrishna}@usc.edu
§Virginia Polytechnic Institute and State University, Blacksburg, VA, USA

mackenab@vt.edu

Abstract—We consider a problem where two selfish cognitive
radio users try to share two channels on which they each
have potentially different valuations. We first formulate the
problem as a non-cooperative simultaneous game, and identify
its equilibria. For cases where the resulting Nash equilibria
are not efficient, we then propose a novel coordinated channel
access mechanism that can be implemented with low overhead
in a decentralized fashion. This mechanism, based on the Nash
bargaining solution, guarantees full utilization of the spectrum
resources while improving the utility of each user compared to the
non-cooperative setting. We quantify the resulting gains. Finally,
we prove that risk-averse users that are willing to accept offered
information at face value have no incentive to lie to each other
about their valuations for the non-cooperative game. However,
we find that truthfulness is not guaranteed in the bargaining
process, suggesting as an open problem the design of an incentive
compatible mechanism for bargaining.

I. INTRODUCTION

We consider here a simple communication scenario in which
two cognitive radios try to share spectrum resources on two
channels. We assume that the two users have fixed valuations
for the utility they would derive from each channel. Depending
on the context, these valuations may reflect, for instance, the
average rate or the probability of packet success (in a general
cognitive radio network) or the probability that the channel
is free of the presence of a primary user (in the particular
case of an opportunistic spectrum access problem). The users
wish to decide on the probability with which they should
access each of the two channels. We assume that if two users
access a channel simultaneously then each of them will get
half of the utility they would get respectively if they were to
access the channel alone. This assumption reflects a belief that
the channel will ultimately be time-shared by the radios, for
instance via CSMA.

In this scenario, it is reasonable to assume that each user
cares about his/her own gain from obtaining channel resources.
This selfish behavior of users intuitively motivates us introduce
game theoretic tools to analyze the possible outcomes.

Our main contributions in this work are three-fold:
• First, we formulate the problem as a non-cooperative

simultaneous game. Depending on the constitution of the
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payoff matrix (determined by the utilities that the two
users ascribe to each channel), we decompose the game
into several different cases, and derive the Nash equilibria
of the game in each case. In some cases we show that
there is a unique pure Nash equilibrium. In other cases
there are multiple equilibria but there exists a unique
mixed Nash equilibrium that is focal in a distributed
protocol setting.

• Second, for some of the cases, where the Nash equi-
librium does not provide Pareto efficiency, we propose
a Nash Bargaining Solution. In this solution, which
intrinsically provides a notion of fairness, there is a
distributed coordination signal (that can be implemented
in practice using a pseudo-random number generator) that
allows the two users to each utilize both channels without
overlapping, to obtain Pareto-optimal performance. We
numerically characterize the utility improvement obtained
via bargaining.

• Finally, we consider whether rational users may have
an incentive to lie on their channel valuations in either
the original non-cooperative game or in the bargaining
enhancement. For risk-averse users that take offered in-
formation at face value, we show that there is no incentive
to lie in the non-cooperative game scenario. However,
truthfulness is not guaranteed in the bargaining process.
We leave as an open problem the design of mechanisms
to enforce truthfulness in the bargaining solution.

The rest of this paper is organized as follows. In section II,
we discuss some related work. In section III, we formulate
the two-user two-channel scenario as a non-cooperative game
and identify several cases. In section IV, we analyze the
Nash equilibria for each case. In section V, we introduce the
Nash Bargaining Solution and show the utility improvements
obtained through bargaining. Finally, in section VI, we con-
sider the problem of truthfulness for both the non-cooperative
game and for bargaining. We present concluding comments in
section VII.

II. RELATED WORK

Game theoretic tools are valuable for wireless networks in
which selfish behavior of nodes belonging to different agents
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C1 C2
P1 a b
P2 c d

TABLE I
UTILITIES WITHOUT CONFLICT

may be observed. This tool-set has therefore been extensively
applied in the wireless context [1], [2], [3].

In cognitive radio networks, bandwidth is limited and is
allocated opportunistically. Many studies have been done on
sharing spectrum with cognitive radios [4], [5], [6], [7], [8],
[9], [10]. We here highlight a few that are most closely related.
Fu and van der Schaar [10] treat the spectrum sharing problem
in cognitive radio networks as a sequential auction. Cao and
Zheng [5] propose a distributed channel bargaining process
for a multi-hop setting; however, in their formulation users
are unselfish in that they are willing to be poor in order
to achieve fairness. Suris et al. [9] propose a cooperative
game theory model to analyze a scenario where nodes in a
multi-hop wireless network need to agree on a fair allocation
of spectrum and investigate the fairness-efficiency tradeoff
at the Nash bargaining solution. Kloeck et. al. [8] consider
a Rubinstein-Stahl-style back-and-forth bargaining game for
spectrum allocation, which too is different from the Nash
bargaining solution we study in this paper.

Unlike most prior work, in which when collision happens
if different users attempt to occupy the same channel, we
investigate a channel “sharing” scenario in this work. Under
this assumption, we propose a novel bargaining mechanism
that can a) fully utilize the system resource and b) improve the
utility obtained for both users with light overhead. Moreover,
we model and examine the truthfulness of user reports in the
interaction games in this paper.

III. PROBLEM FORMULATION

In this paper, we consider a two-user (denoted P1 and P2)
two-channel (denoted C1 and C2) case. Each user’s strategy
is to choose which channel to use in a certain time interval. If
there is no interest conflict (i.e., user can occupy the channel
alone), the users’ strictly positive utilities are presented in
table I 1.

This table indicates that if user P1 picks channel C1 and
user P2 chooses channel C2, the two users will get payoff
a and d respectively. On the other hand, if user P1 and P2
choose channels C2 and C1 respectively, they will get payoff
b and d respectively.

However, if the two users pick the same channel, we assume
that they will share the channel in such a manner that each
of them receives half of their conflict-free individual benefit
for choosing the corresponding channel. Specifically, table II
presents the simple non-cooperative game showing the users’
payoffs in all cases.

Without loss of generality, we normalize each user’s payoff
in table II to get a new payoff table III where a′ = a

b and

1The utility table used here is an abstraction that can incorporate physical
and link layer metrics such as SINR, power, path loss and MAC efficiency.
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NORMALIZED PAYOFF TABLE

c′ = c
d . We claim that the Nash equilibrium point does not

change with this normalization.2

IV. NASH EQUILIBRIUM ANALYSIS

We discuss the Nash equilibrium outcome in this section
for the non-cooperative game defined previously. For clarity,
we discuss all cases while pointing out that some of them are
symmetric cases.

Before getting into the Nash equilibrium solutions, we first
investigate the dominant strategies for both users. It is obvious
that for user P1, when both a′

2 > 1 and a′ > 1
2 hold (that

is, when a′ > 2), choosing channel C1 strictly dominates
choosing channel C2. When a′ = 2, choosing channel C1
weakly dominates choosing channel C2. To be brief, we use
“dominant” to represent either “strictly dominant” or “weakly
dominant” in this paper. This fact implies that when a′ ≥
2, choosing channel C1 is a dominant strategy for user P1.
Similarly, when a′ ≤ 1

2 , choosing channel C2 is a dominant
strategy for P1. According to symmetry, we also have the
following two rules.

1) Choosing channel C1 is the dominant strategy for user
P2 when c′ ≥ 2.

2) Choosing channel C2 is the dominant strategy for user
P2 when c′ ≤ 1

2 .
Now we discuss the equilibrium for this problem by con-

sidering the following cases:
Case 1 a′ ≥ 2 and c′ ≥ 2

In this case, for both users, the dominant strategy
is to pick channel C1. At the Nash equilibrium, the
payoff for two users are a′

2 and c′

2 , respectively.
Case 2 a′ ≤ 1

2 and c′ ≤ 1
2

For both users, the dominant strategy is to choose
channel C2. Each of the users has payoff 1

2 at
the Nash equilibrium point. Case 2 is symmetric
case with case 1. Switching the channel labels (and
renormalizing the resulting payoff table) creates a
one-to-one mapping between cases 1 & 2.

Case 3 a′ ≥ 2 and c′ ≤ 2
User P1 has dominant strategy of choosing channel
C1. If user P2 chooses channel C1, he/she will get

2Affine transformations of payoffs do not change the Nash equilibrium
point or the Nash bargaining solution [11]. We will also show this partially
by example in section IV.
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c′

2 . If user P2 picks channel C2, he/she will get 1.
Since in this case, 1 ≥ c′

2 , user P2 will use channel
C2. The payoffs at the Nash equilibrium in this case
can be expressed as tuple (a′, 1).

Case 4 c′ ≥ 2 and a′ ≤ 2
This is the symmetric case with case 3 with the user
labels switched. Similar to case 3, the Nash equilib-
rium for this case is that user P1 picks channel C2
and user P2 chooses channel C1. The payoff at this
Nash equilibrium is (1, c′).

Case 5 1
2 < c′ < 2 and a′ ≤ 1

2
Applying same procedure as in previous case, the
two users P1 and P2 separate their choices on
channel C2 and C1, respectively. The corresponding
payoff is (1, c′).

Case 6 1
2 < a′ < 2 and c′ ≤ 1

2
This is the symmetric case with case 5. Applying the
same process of eliminating dominated strategies, we
know that P1 choosing C1 and P2 choosing C2 is
the Nash equilibrium. The payoff is (a′, 1)

Case 7 1
2 < a′ < 2 and 1

2 < c′ < 2
This case doesn’t have a dominant pure strategy for
either user. Instead, two pure Nash equilibria exist for
the game. In each of these two pure Nash equilibria,
users are separated in two channels. However, since
we assume that there is no pre-defined agreement
between the two users and it is a simultaneous game,
it is hard for the users to decide which channel
to choose. This is the classic equilibrium selection
problem. To avoid this, instead of using pure strategy
Nash equilibrium, we claim that the mixed strategy
Nash equilibrium is focal and that each user will
employ a mixed strategy. In a mixed strategy Nash
equilibrium, the users intelligently randomize their
strategy selection.
Assume that user P1 has probability p to use channel
C1 and user P2 has probability q to choose channel
C2. If user P1 has employed a mixed strategy at
equilibrium, then it must be the case that P1 is
indifferent between his or her two possible pure
strategies. We can use this fact to calculate user P2’s
strategy at equilibrium point. We use the original
payoff table as in II and illustrate that the mixed
strategy keeps the same for payoff table II and
normalized payoff table III. If user P1 picks channel
C1, the expected utility is

aq

2
+ (1− q)a

If user P1 chooses channel C2, the expected utility
is

b

2
(1− q) + bq

To make user P1 indifferent, we need
aq

2
+ (1− q)a =

b

2
(1− q) + bq

Hence we get q = 2a−b
a+b . Applying similar methods,

we can obtain that p = 2c−d
c+d . When using the

Fig. 1. Case number in corresponding regions

normalized payoff table III, we get that p = 2c′−1
c′+1

and q = 2a′−1
a′+1 ; since a′ = a/b and c′ = c/d, this

is exactly the same equilibrium point, as expected.
In the case of normalized payoffs, the correspond-
ing expected payoff at Nash equilibrium point is
( 3a′

2(a′+1) ,
3c′

2(c′+1) ). We point out that when 1
2 <

a′ < 2, the utility at the Nash equilibrium point is
increasing with a′ and 1

2 < 3a′

2(a′+1) < 1. Similar
result holds by c′.
Note that mixed strategy Nash equilibrium may
perform worse than either pure strategy equilibrium
for both users. For instance, when 1 < a′ < 2 and
1 < c′ < 2, at the two pure strategy equilibria the
users gain (1, c′) or (a′, 1). Hence, the worst payoff
obtained by a user in a pure strategy equilibrium is 1,
which is greater than what he/she gets in the mixed
Nash equilibrium. Unfortunately, as discussed previ-
ously, neither of the two pure strategy equilibria are
focal, so without some coordination it is impossible
for the users to preselect one of them.

Figure 1 illustrates each of these cases as two-dimensional
regions in a plot where the x-axis represents the value of a′

and the y-axis represents the value of c′.

V. NASH BARGAINING SOLUTION

In the previous section, we have analyzed the Nash equi-
libria of the non-cooperative game. In this section, we will
discuss the Nash bargaining solution.

Typically, the Nash bargaining solution is only considered
for convex payoff regions. To convexify the payoff region
for our game, we first introduce the notion of a coordination
signal. Time is divided into slots. At the beginning of each
slot, the coordinator uniformly generates a random number,
s ∈ [0, 1], which is observed by both players.

Given such a signal, we claim that all Pareto efficient
outcomes for the convexified game are of the following form,
for some pre-agreed value of α ∈ [0, 1]: If s ≤ α, then user
P1 picks channel C1 and user P2 picks channel C2 for the
timeslot; otherwise, user P1 is assigned to channel C2 and
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user P2 is assigned to channel C1. When α is given, the ex-
pected utilities for users P1 and P2 are u1(α) = a′α+(1−α)
and u2(α) = α+ c′(1− α), respectively.

Note that these utilities are higher than those that would
be obtained by the corresponding mixed strategies. In mixed
strategies, users must randomize independently. Hence, there is
a non-zero probability that they will land on the same channel
and suffer reduced payoff. Moreover, the payoffs are higher
than those that can be obtained through pure-strategy channel
sharing. Namely, suppose that both users have a strong pref-
erence for C1. That is, a′ > 2 and c′ > 2. Then the maximum
payoff that the users can obtain by deploying pure strategies
is to share channel C1 and obtain payoff tuple a′/2, c′/2. But,
if the users deploy a coordinator and set α = 1/2, then their
a priori expected payoffs are (a′ + 1)/2, (c′ + 1)/2. This is
because the coordinator allows the user that is not selected in
a given slot to use the other channel during that time slot;
without a coordinator, both users will spend all their time
contending for channel C1. In latter part of this section, we
focus on how to choose α to optimize the Nash bargaining
result.

The Nash bargaining outcome is dependent upon the dis-
agreement point. This is the operating point that the users
expect to prevail in the absence of bargaining. We assume the
disagreement point of the Nash bargaining game is the Nash
equilibrium point when the two users share a same channel or
use mixed Nash strategies. When the users do not compete for
the same channel, the previous pure Nash strategy equilibrium
(cases 3, 4, 5, and 6) is already efficient. We discuss the Nash
bargaining solution in cases 1 and 7, described in previous
section. As we have pointed out in previous section, case 2 is
symmetric with case 1 if the channel labels are switched. For
brevity, therefore, we omit the discussion of case 2 here.

Axiomatically, the Nash bargaining solution is the only
outcome that can satisfy four conditions: (1) Pareto efficiency,
(2) symmetry, (3) invariance to equivalent payoff representa-
tions (affine transformations of utility), and (4) independence
of irrelevant alternatives. For details on these axioms, which
define reasonable expectations for the outcome of a bargaining
process, see [11].

Mathematically, it can be shown that if the payoff region
is convex, then the Nash bargaining solution is the point that
maximizes the so-called Nash product. That is:

max
α∈[0,1]

(u1(α)− u1(ne))(u2(α)− u2(ne))

where ui(α) is user i’s utility using the coordination signal
strategy described above with parameter α and ui(ne) is
user i’s utility gain at the disagreement point (i.e., the Nash
equilibrium point in the non-cooperative game), for i = 1, 2.

Case 1 Recall that in case 1, a′ ≥ 2 and c′ ≥ 2. At the
disagreement point, u1(ne) = a′

2 and u2(ne) = c′

2 .
Substituting the disagreement point to the maxi-
mization problem, we need to find out the α that
maximizes the following quadratic equation:

(a′α+ (1− α)− a′

2
)(α+ c′(1− α)− c′

2
) (1)

Therefore,

Fig. 2. Sliced plot for α’s value when a′ and c′ vary from 2 to 10

Fig. 3. User P1’s utility increase ratio in case1 after Nash bargaining

α =
2a′c′ − 3c′ − a′ + 2
4(a′ − 1)(c′ − 1)

(2)

Figure 2 shows the change of α’s value with different
a′ and c′ values. Compared to the disagreement
point, user P1 increases his/her utility by u1(α) −
u1(ne) = a′+c′−2

4(c′−1) and user P2 increases his/her
utility by u2(α) − u2(ne) = a′+c′−2

4(a′−1) . To illustrate
the utility improvement, we define the increase ratio
for user i as the ratio of utility increase after Nash
bargaining to the disagreement point (Nash equilib-
rium) utility. Mathematically, user Pi’s increase ratio
Ri is

Ri =
ui(α)− ui(ne)

ui(ne)

Figure 3 shows user P1’s utility increase ratio when
a′ ≥ 2 and c′ is sampled as 2.5, 3.5, 4.5, 5.5, 6.5.

Case 7 This is the mixed strategy case. The disagreement
point is set at u1(ne) = 3a′

2(a′+1) and u2(ne) =
3c′

2(c′+1) . We focus on obtaining α that maximizes the
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Fig. 4. Sliced plot for α’s value when a′ and c′ vary from 1
2

to 2

following expression for the Nash product that arises
in this case:

(a′α+(1−α)− 3a′

2(a′ + 1)
)(α+c′(1−α)− 3c′

2(c′ + 1)
))

(3)
Let B denote a′2(2c′2−c′)+a′(c′2−1)+c′−4c′2+2

4(a′+1)(c′+1)(a′−1)(c′−1) .
The optimal value of α which maximizes the Nash
product is then different for each of the following
cases:

7.1 If both a′, c′ ∈ ( 1
2 , 1) or both a′, c′ ∈ (1, 2),

we have
• If B > 1, α = 1 is optimal
• If B < 0, α = 0 is optimal
• If 0 ≤ B ≤ 1, α = B is optimal

7.2 When a′ ∈ ( 1
2 , 1) and c′ ∈ (1, 2), α = 0 is

optimal.
7.3 When c′ ∈ ( 1

2 , 1) and a′ ∈ (1, 2), α = 1 is
optimal.

7.4 If a′ = 1, we need to maximize 1
4 ((1 −

c′)α+ c′ − 3c′

2(c′+1) ). Therefore, the optimal
value of α is as follows:

α =
{

0 if 1 < c′ < 2
1 if 1

2 < c′ < 1

7.5 If c′ = 1, we need to maximize 1
4 ((a′ −

1)α+1− 3a′

2(a′+1) ). In this case, the optimal
value of α is as follows:

α =
{

1 if 1 < a′ < 2
0 if 1

2 < a′ < 1

Figure 4 shows α’s distribution when a′ varies from
1
2 to 2 and c′ is sampled at 0.6, 0.8, 1.2, 1.5 and 1.8
in the interval of ( 1

2 , 2).
Figure 5 illustrates the utility improvement ratio for
user P1 when a′ ∈ ( 1

2 , 2) with 5 sampled c′ value
with the Nash bargaining solution comparing to the
disagreement point (i.e. the mixed Nash strategy).

Fig. 5. User P1’s utility increase ratio in case7 after Nash bargaining

VI. TRUTHFULNESS CONSIDERATION

In this section, we consider the truthfulness of users’ chan-
nel condition reports. We first present some assumptions and
relevant truth-telling models and then investigate if the non-
cooperative game and Nash bargaining games preserve truth-
fulness. Specifically, truthfulness here refers to each users’
report of his or her channel condition, a′ or c′ for user P1
and P2, respectively.

Here, we consider players that are rational and selfish but
not malicious. Such a user will not sacrifice his/her own utility
in order to impact the other user’s utility. We also assume
that neither user has knowledge of the other user’s channel
condition distribution.

We need to consider two issues of individual user’s behavior
when analyzing truthfulness in this interaction game. The first
aspect is “lying” or “truth-telling”, by which we judge each
user’s behavior objectively. The second aspect is “suspicious”
or “gullible,” by which we identify user’s subjective beliefs
when they make rational decisions. A “suspicious” user will
not trust the other user’s report while a “gullible” user will
take the other user’s report as the truth and consider it during
decision making.

We have to point that if the individual user is suspicious,
the user cannot make rational decision in some cases (e.g.
case 7) because it is even unclear how to compute his/her best
response without knowing the other user’s beliefs about the
distribution of channel valuations. For this reason, we do not
treat the “suspicious” case in the scope of this paper.

There are three different truthfulness models. We present
them from stronger to weaker as following.

• (M1) Lying prone model: if a user will not lose anything
by lying, he/she will lie.

• (M2) Neutral model: if a user can possibly gain and never
lose by lying, the user will lie.

• (M3) Truth telling prone model: if a user doesn’t lose by
telling the truth, he/she will not lie.

We consider the neutral model (M2) in the rest of this paper.
Formally, in this model, a user will lie when reporting his/her
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channel valuation if and only if the following two conditions
hold:
• Incentive Condition: There exists a case in which the lie

will strictly increase the user’s utility.
• Risk Aversion Condition: In all possible cases, the user’s

utility is not decreased by lying.
Theorem 1: In the non-cooperative game with the gullible-

user assumption, truthfulness for both users is ensured under
the neutral model (M2).

Proof : Without loss of generality, we present the logic from
user P1’s aspect of view. We consider all possible scenarios:

1 When a′ ≥ 2. We claim that there is no incentive
for user P1 to lie about his/her channel valuation.
We can infer this claim by examine the following
two scenarios. Notice that the only way to lie is to
under-report channel valuations in this scenario.

1.1 If the truth value of c′ > 2, telling truth will
make user P1 gain a′

2 ≥ 1. Under-reporting
cannot strictly increase this value.

1.2 If the truth value of c′ < 2, telling the truth
will make user P1 gain a′, which is the
maximal possible gain for user P1 in the
game. User P1 still lacks incentive to lie.

2 We claim there is no incentives for user P1 to lie
on channel valuation when a′ ≤ 1

2 . We separate this
case into three subcases.

2.1 If P2’s true value c′ > 2, as we already
known in previous step, P2 will choose
channel C1 anyway. In this case, the best
payoff P1 can obtain is 1. Over-reporting
cannot help improve utility for user P1.

2.2 If 1
2 ≤ c′ ≤ 2, telling truth will give P1

payoff 1, which is the highest P1 can obtain
since a′ < 1

2.3 If c′ < 1
2 , telling truth will guarantee each

user 1
2 payoff. However, if lying on channel

valuation for user P1 is better than telling
truth, the same conclusion will be drawn
by user P2 according to symmetry. This
fact means that they either end up in mixed
strategy which yields a payoff 3a′

2(a′+1) (this
value is less than 1

2 when a′ < 1
2 ) for user

P1, or end up with competing in channel
C1 which yields a payoff a

2 <
1
2 for P1.

3 Here, we consider the case where 1
2 ≤ a′ ≤ 2. The

following subcases are considered.
3.1 If the truth value of c′ > 2, c has no

incentive to lie. When P1 tells truth, he/she
will get channel C2 and the corresponding
payoff is 1. Since in this case, payoff 1 is
dominant all other strategies for P1, P1 has
no incentive to lie.

3.2 If the truth value of c′ is also in [ 12 , 2], we
point out a scenario that lying might hurt
the user’s utility which contradicts the risk
averse condition in the neutral model M2.

Suppose both users’ true channel valuations
(a′ and c′) are between (1, 2). Assume lying
is better than truth-telling in this scenario.
Suppose that P1 reports a′ > 2 and sees
c′ > 2 (i.e. assume telling larger channel
valuations is better. 3), according to the
gullible assumption 4, the game will end
up at both users using channel C1, which
yields user P1 a′

2 utility. Notice that a′

2 <
3a

2(a+1) , which contradicts the risk averse
condition. User P1 will therefore report the
truth.

3.3 If c′ < 1
2 , if P1 tells the truth, he/she will

get payoff a′ and choose channel C1. If
lying can help forcing P2 choosing channel
C1, P1 will be able to use channel C2
and gain 1. However, we can come to the
conclusion that P2 will not choose channel
C1 since in all cases staying at channel C2
is P2’s dominant strategy. Therefore, lying
on the channel valuation will not help P1
in this case either.

From the above, we can conclude that truthfulness is ensured
for both players. �

Theorem 2: Truthfulness is not ensured in current Nash
bargaining mechanism under the neutral model M2.

Proof : We provide a counterexample. Consider the case
where the true value of user P1’s channel valuation is 1 <
a′ < 2. User P1 considers the following cases for the true
value of c′.
• c′ ≥ 2: User P2 might tell the truth or might report

increased c′.5 Whether or not P2 is truthful, if user P1
tells the truth, he/she will get payoff 1 since channel C2
is assigned to him/her after bargaining (i.e., α = 0). If P1
were to (falsely) report that a′ > 2, he/she will separate
his/her time on using channel C1 and C2. The utility
he/she obtains is a′α + (1 − α) > 1. Hence, lying has
incentive here.

• 1 < c′ < 2: This is the tricky case. Notice the fact that
since a′ > 1, the more time user P1 can get on channel
C1, the higher his/her utility. Since α is calculated based
on the reported values, â′ and ĉ′, if â′ > ĉ′, α > 0.5; if
â′ < ĉ′, α < 0.5. In this case, if user P2 does not lie,
user P1 can improve utility by over-reporting that â′ > 2.
However, we assume that P1 and P2 are both rational.
If we assume that the possible channel valuation values
are upper bounded by a large enough value µ >> 2, then
we claim that both users will end up reporting â′ = ĉ′ =

3Similar checking process can be done for other cases. We omit the details
here for brevity.

4Notice that if the users are suspicious, he/she is not able to make action
decision in this case because of insufficient knowledge.

5It can be proved that user P2 will not report a decreased c′. Intuitively,
channel C1 is better for user P2 and he/she wants to claim larger channel
valuation so that he/she can gain more time portion in using this channel.
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µ. This is because for fixed ĉ′, α is monotonically non-
decreasing with â′. If a user reports a value â′ < µ, then
once the other users’ reported value, ĉ′, is known he/she
can always improve by increasing his/her reported â′. The
equilibrium outcome is when both report µ.
It is worth noting, though, that at this liar’s equilibrium
where â′ = ĉ′ = µ, α = 0.5. If the true value of
a′ > c′, then P1’s utility would have been higher in
the truthful outcome. Nevertheless, telling the truth is not
advantageous for P1, as P2 will take advantage of his/her
truth-telling and suppress α’s value.

• 1
2 < c′ ≤ 1: If both users tell truth in this scenario,
then C1 is allocated to P1 and C2 to P2 (i.e., α = 1).
User P2 does not have incentive to compete with P1 for
channel C1. However, even if P1 over-reports channel
C1’s valuation (e.g., P1 reports that â′ > 2), α will not
change.

• c′ ≤ 1
2 : In this scenario, user P2 prefers to use channel

C2 alone so there is no incentive to over-report the value
of c′. Moreover, it is obvious that over-reporting â′ > 2
does not reduce the utility gained by user P1.

From the analysis above, we can see that when 1 < a′ < 2,
lying (reporting â′ > 2) is advantageous in the case where
c′ ≥ 2 and 1 < c′ < 2 and does not violate the risk aversion
condition in any cases. Thus, lying by over-reporting a′ is
beneficial for user P1. �

We conclude that truthful channel condition reporting is not
incentivized in the current Nash bargaining mechanism. Thus
some mechanism is needed to enforce the truthfulness during
the bargaining process. We leave the investigation of such a
mechanism as an open problem for future work.

VII. CONCLUSION

In this work, in addition to analyzing the Nash equilibria
in a non-cooperative game formulation, we have proposed a
novel channel bargaining mechanism for cognitive radios that
can be implemented with low overhead in a decentralized
fashion. This mechanism, which uses the Nash Bargaining
Solution, guarantees 100% utilization of the available spec-
trum resources, while providing improvements for each user
compared to the non-cooperative outcome.

We have seen that even this basic problem involving just
two users and two channels has surprising complexity in
many dimensions: in the number of cases that arise with
respect to the equilibria; in the non-trivial behavior of the
Nash bargaining solution in some cases; and in the modeling
involved in reasoning about truthfulness.

There are several directions for future work. One is to design
a mechanism that can enforce truthfulness in the bargaining
process; another is to extend this analysis to multiple users
and multiple channels.
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