
1

Scalable Node Level Computation Kernels for
Parallel Exact Inference
Yinglong Xia, and Viktor K. Prasanna, Fellow, IEEE

Abstract—In this paper, we investigate data parallelism in exact inference with respect to arbitrary junction trees. Exact inference

is a key problem in exploring probabilistic graphical models, where the computation complexity increases dramatically with clique

width and the number of states of random variables. We study potential table representation and scalable algorithms for node level

primitives. Based on such node level primitives, we propose computation kernels for evidence collection and evidence distribution.

A data parallel algorithm for exact inference is presented using the proposed computation kernels. We analyze the scalability of

node level primitives, computation kernels and the exact inference algorithm using the coarse grained multicomputer (CGM) model.

According to the analysis, we achieve O
(

NdCwC

∏wC

j=1
rC,j/P

)

local computation time and O(N) global communication rounds using

P processors, 1 ≤ P ≤ maxC

∏wC

j=1
rC,j , where N is the number of cliques in the junction tree; dC is the clique degree; rC,j is the

number of states of the jth random variable in C; wC is the clique width; and ws is the separator width. We implemented the proposed

algorithm on state-of-the-art clusters. Experimental results show that the proposed algorithm exhibits almost linear scalability over a

wide range.

Index Terms—Exact inference, Node level primitives, Junction tree, Bayesian network, Message passing.
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1 INTRODUCTION

A Full joint probability distribution for any real-world
systems can be used for inference. However, such a

distribution grows intractably with the number of vari-
ables used to model the system. Bayesian networks [1]
are used to represent joint probability distributions com-
pactly by exploiting conditional independence relation-
ships. Bayesian networks have found applications in a
number of domains, including medical diagnosis, credit
assessment, data mining, image analysis, and genetics
[2][3][4][5].

Inference on a Bayesian network is the computation
of the conditional probability of certain variables, given
a set of evidence variables as knowledge to the network.
Such knowledge is also known as belief. Inference on
Bayesian networks can be exact or approximate. Exact
inference is NP hard [1]. The most popular exact infer-
ence algorithm converts a given Bayesian network into
a junction tree, and then performs exact inference in
the junction tree [6]. Huang and Darwiche synthesized
various optimizations of sequential exact inference using
junction trees [7]. The complexity of the exact inference
algorithms increases dramatically with the density of
the network, the clique width and the number of states
of the random variables. In many cases exact inference
must be performed in real time. Therefore, in order to
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accelerate the exact inference, parallel techniques must
be developed.

Several parallel algorithms and implementations of
exact inference have been presented. Early work on
parallel algorithms for exact inference appeared in [1],
[8] and [9], which formed the basis of scalable parallel
implementations discussed in [10] and [11]. In [10], the
authors converted a Bayesian network to a junction tree
by modifying the structure of the graph. In [11], the
authors present the parallelization of exact inference
using pointer jumping, which exploits the structure level
parallelism.

The structure level parallelism can not offer large
speedups when the size of the cliques or the number
of states of the variables in a given junction tree in-
creases, making the operations with respect to potential
tables the dominant part of the problem. Unlike [10]
or [11], we start with a junction tree and explore the
data parallelism, including potential table representation
and the parallelization of the operations with respect to
potential tables. In this paper, we refer to the operations
with respect to potential tables as node level primitives. We
present scalable algorithms for the node level primitives.
A composition of the node level primitives in a certain
order (see Section 5.5) can be used to update the potential
table in a clique. Such a composition is called a scalable
computation kernel for evidence propagation. We present a
data parallel algorithm for exact inference by traversing
the cliques in a junction tree and updating each clique
using the proposed computation kernels.

For the sake of illustrating the performance of par-
allel algorithms, several models of computation have
been well studied. The parallel random access ma-
chine (PRAM) model is very straightforward. How-
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ever, speedup results for the theoretical PRAM model
do not necessarily match the speedups observed on
real machines [12]. The PRAM model assumes implicit
communication and ignores the communication cost.
Since our target platform is a cluster with distributed
memory, where the communication cost is relatively
expensive, the PRAM model is not suitable for us. The
bulk synchronous parallel (BSP) model requires a low
or fixed gap g [13]. The coarse grained multicomputer
(CGM) model generalizes the BSP model and consists
of alternating local computation and global communi-
cation rounds [14]. The CGM model is essentially the
BSP model with additional packing and coarse grained
requirements, which captures the behavior of explicit
message passing. Therefore, we utilize the CGM model
to analyze the proposed algorithms in this paper.

We summarize our key contributions in this paper:
1) We explore data parallelism and present scalable
algorithms for the node level primitives. 2) We propose
two scalable computation kernels using the node level
primitives, one for evidence collection and the other
for evidence distribution. The computation kernels are
constructed by assembling the node level primitives in
a certain order, so that a potential table can be updated
using these primitives. 3) We present a data parallel
algorithm for exact inference using the computation
kernels. 4) We analyze the node level primitives, com-
putation kernels and the parallel exact inference algo-
rithm using the CGM model. The parallel exact inference

algorithm achieves O
(

NdCwC

∏wC

j=1 rC,j/P
)

local com-

putation time and O(N) global communication rounds
with respect to P processors, where N is the number of
cliques in the junction tree; dC is the clique degree; rC,j
is the number of states of the jth random variable in C;
wC is the clique width; and ws is the separator width.
The exact inference algorithm scales linearly over the
range 1 ≤ P ≤ maxC

∏wC

j=1 rC,j , compared to 1 ≤ P ≤ n
for most structure level parallel methods [1], where n
is the number of nodes in the Bayesian network. 5)
We implement the parallel exact inference algorithm on
state-of-the-art clusters using message passing interface
(MPI). 6) We experimentally evaluate the data parallel
algorithm for exact inference using various junction trees
and show linear scalability.

The paper is organized as follows: Section 2 discusses
the background of Bayesian networks, junction trees and
the CGM model. Section 3 addresses related work on
parallel exact inference. Section 4 presents the repre-
sentation for potential tables in a given junction tree.
Section 5 discusses evidence propagation, node level
primitives and computation kernels for exact inference.
Section 6 presents the parallel exact inference algorithm
based on the node level primitives. Experiments are
shown in Section 7. Section 8 concludes the paper.

2 BACKGROUND

2.1 Exact Inference

A Bayesian network is a probabilistic graphical model that
exploits conditional independence to represent a joint
distribution compactly. A Bayesian network is defined
as B = (G,P), where G is a directed acyclic graph (DAG),
and P is the parameter of the network. The graph G is
denoted G = (V, E), where V = {A1, A2, . . . , An} is the
node set and E is the edge set. Each node Ai represents
a random variable. If there exists an edge from Ai to
Aj i.e. (Ai, Aj) ∈ E , then Ai is called a parent of Aj .
pa(Aj) denotes the set of all parents of Aj . Given the
value of pa(Aj), Aj is conditionally independent of all
other preceding variables. The parameter P represents a
group of conditional probability tables, which are defined
as the conditional probabilities P (Aj |pa(Aj)) for each
random variable Aj . Given the Bayesian network, a joint
distribution P (V) can be given as [6]:

P (V) = P (A1, A2, · · · , An) =

n
∏

j=1

P (Aj |pa(Aj))

.

The evidence in a Bayesian network is the variables
that have been instantiated with values, for example,
E = {Ae1 = ae1 , · · · , Aec

= aec
}, ek ∈ {1, 2, . . . , n}. Given

the evidence, the new distribution of any other variable
can be inquired. The variables to be inquired are called
query variables, i.e. the random variables in which we
are interested. Exact inference propagates the evidence
throughout the entire network so that the conditional
distribution of the query variables can be computed.

Traditional exact inference using Bayes’ Theorem fails
for networks with directed cycles [6]. Most inference
methods for networks with undirected cycles convert
a network to a cycle-free hypergraph called a junction
tree. A junction tree is defined as J = (T, P̂), where T

represents a tree and P̂ denotes the parameter of the tree.
Each vertex Ci, known as a clique of J, is a set of random
variables. Assuming Ci and Cj are adjacent, the separator
between them is defined as Ci ∩ Cj . All junction trees
satisfy the running intersection property (RIP) [6]. P̂ is a
group of potential tables (POTs). The potential table of Ci,
denoted ψCi

, can be viewed as the joint distribution of
the random variables in Ci. For a clique with w variables,
each taking r different values, the number of entries in
the potential table is rw.

In a junction tree, exact inference proceeds as follows:
Assuming evidence E = {Ai = a} and Ai ∈ Cj , E is
absorbed at Cj by instantiating the variable Ai and renor-
malizing the remaining constituents of the clique. Each
updated clique continues on propagating the evidence to
all non-updated adjacent cliques through separators, un-
til all cliques are updated. Mathematically, the evidence
propagation between two adjacent cliques is represented
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as [6]:

ψ∗
S =

∑

Y\S

ψ∗
Y , ψ∗

X = ψX
ψ∗
S

ψS
(1)

where S is a separator between cliques X and Y ; ψ∗

denotes the updated potential table; ψ is the stale table.
After all cliques are updated, the distribution of a query
variable Q ∈ Cy is obtained by summing up all entries
with respect to Q = q for all possible q in ψCy

.

Fig. 1. An example of (a) Bayesian network and its (b)

junction tree. The bold circle indicates the root of the

junction tree.

2.2 CGM Model

The coarse grained multicomputer (CGM) model, as a
practical version of the BSP model [13], was proposed
by Dehne et al. [14]. The CGM model assumes a system
consisting of P processors, P1, P2, · · · , Pp, with O(m/P )
local memory per processor and an arbitrary commu-
nication network. Here m refers to the total memory
capacity. Using an arbitrary communication network, the
processors can communicate with each other by sending
and receiving messages over the network. All algorithms
based on the CGM model consist of alternating local
computation and global communication rounds. In every
global communication round, each processor can send
O(m/P ) data and each processor can receive O(m/P )
data. The CGM model requires that all data sent from
any processor to another processor in one global com-
munication round be packed into one long message,
therefore minimizing the overhead.

Finding an optimal algorithm in the CGM model is
equivalent to minimizing the number of global com-
munication rounds, the size of data transferred in each
global communication round and the local computation
time. Chan [14] indicates the importance of reducing the
number of global communication rounds to a constant or
to a slowly growing function of P that is independent of
m, e.g. logP and log2 P . As shown in [15], a number of
global communication rounds independent of m leads
to parallel algorithms with good speedup in theory and
practice because of a good amortization of communi-
cation overhead: When m increases, the number of mes-
sages remains constant and only the message size grows.

Thus, the total message overhead remains unchanged,
but the message overhead per data unit decreases.

3 RELATED WORK

There are several works on parallel exact inference, such
as Pennock [1], Kozlov and Singh [8], and Szolovits [9].
However, the performance of some of those methods,
such as [8], is dependent upon the structure of the
Bayesian network. Others, such as [1], exhibit limited
performance for multiple evidence inputs, since the
evidence is assumed to be at the root of the junction
tree. Rerooting techniques are employed to deal with
the case where the evidence appears at more than one
clique. Some other works address certain individual
steps of exact inference. Reference [10] discusses the
structure conversion of the junction tree from Bayesian
networks, where data parallelism is not addressed. The
algorithm given in [11] also explores structural paral-
lelism, although the authors used an OpenMP clause to
accelerate the execution of loops in the implementation.
The algorithm in [11] is suitable for junction trees with
high topological parallelism, but it does not parallelize
the node level primitives across compute nodes in a
cluster. Note that structure level parallelism can not offer
large speedups when the size of the cliques in a junction
tree or the number of states of the random variables
increases, making node level operations the dominant
part of the problem. Thus, we focus on data parallelism.
Reference [16] introduces parallel node level primitives.
However, in [16], all the random variables must have
exactly the same number of states. Such a constraint
is ignored in this paper. Unlike [16], we optimize the
node level primitives with respect to evidence collec-
tion and evidence distribution, respectively. We propose
computation kernels in Section 5.5 using the optimized
node level primitives. Reference [16] analyzes node level
primitives using the PRAM model, where the communi-
cation cost is ignored. This paper uses the CGM model to
capture both the computation and communication costs.

4 POTENTIAL TABLE ORGANIZATION

4.1 Potential Table Representation

Each node of a junction tree denotes a clique, which
is a set of random variables. For each clique C, there
is a potential function, ψC , which describes the joint
distribution of the random variables in the clique [6].
The discrete form of the potential function is called a
potential table. A potential table is a list of non-negative
real numbers, where each number corresponds to a
probability of the joint distribution. The straightforward
representation for potential tables stores the state string
along with each entry [11]. In such a representation,
a potential value can be stored in any entry of the
potential table. However, for large potential tables, such
a representation occupies a large amount of memory.
In addition, frequently checking the state string of an
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entry adversely affects the performance. For the sake of
enhancing the performance of computation, we carefully
organize the potential tables. The advantages of our
representation include: 1) reduced memory requirement;
2) direct access to potential values based on the mapping
relationship.

We define some terms to explain the potential table
organization. We assign an order to the random variables
in a clique to form a variable vector. We will discuss how
to determine the order in Section 4.2. For a clique C, the
variable vector is denoted VC . Accordingly, the combina-
tion of states of the variables in the variable vector forms
state strings. A state string is denoted S = (s1s2 · · · sw),
where w is the clique width and si ∈ {0, 1, · · · , ri− 1} is
the state of the ith variable in the variable vector. Thus,
there are

∏w
i=1 ri state strings with respect to VC . Since

for each state string there is a corresponding potential
(probability), we need an array of

∏w
i=1 ri entries to store

the corresponding potential table.
Traditionally, state strings are stored with a potential

table, because both the state strings and potentials are
required in the computation of evidence propagation.
As each potential corresponds to a state string, we
need O(w

∏w
i=1 ri) memory to store the state strings, w

times larger than that for storing a potential table. In
addition, this approach leads to large message size in
communication among processors.

We optimize the potential table representation by
finding the relationship between array indices and
state strings. That is, we encode a given state string
S = (s1s2 · · · sw) as an integer number t, where si ∈
{0, 1, · · · , ri − 1} and t ∈ {1, 2, · · · ,

∏w
i=1 ri}:

t = 1 +
w

∑

i=1

si

i−1
∏

j=1

rj (2)

The formula that maps an index t to a state string
S = (s1s2 · · · sw, where si, 1 ≤ i ≤ w, is given by:

si =

⌊

t− 1
∏i−1
j=1 rj

⌋

%ri (3)

where % is the modulo operator.
To demonstrate the correctness of Eq. (2), we briefly

prove that, for an arbitrary state string S, t is a legal
index of the potential table. That is, t is an integer and
1 ≤ t ≤

∏w
i=1 ri. Because si and rj are integers for any i,

it is apparent that t is also an integer. Since si and rj are
nonnegative,

∑w
i=1 si

∏i−1
j=1 rj is also nonnegative. Thus,

t ≥ 1 is satisfied. To prove t ≤
∏w
i=1 ri, we notice that

si ∈ {0, 1, · · · , ri − 1} i.e. si ≤ ri − 1. Therefore, Eq. (3) is
given by:

t = 1 +

w
∑

i=1

si

i−1
∏

j=1

rj ≤ 1 +

w
∑

i=1



(ri − 1)

i−1
∏

j=1

rj





= 1 +

w
∑

i=1





i
∏

j=1

rj −

i−1
∏

j=1

rj



 =

w
∏

i=1

ri (4)

Therefore, for a given state string S, Eq. (2) always maps
S to an index of the potential table.

To demonstrate the correctness of Eq. (3), we prove
that, using the expression of t given in Eq. (2),
⌊

(t− 1)/(
∏i−1
j=1 rj)

⌋

%ri in Eq. (3) gives si, the i-th ele-

ment of S. Notice that ⌊x⌋ rounds x, and % is the modulo
operator. We have:

⌊

t− 1
∏i−1
j=1 rj

⌋

%ri =









(

1 +
∑w
k=1 sk

∏k−1
j=1 rj

)

− 1
∏i−1
j=1 rj







 %ri

=









w
∑

k=i

sk

k−1
∏

j=i

rj +

i−1
∑

k=1

sk
∏i−1
j=k rj







%ri

=





w
∑

k=i+1

sk

k−1
∏

j=i

rj + si



 %ri = si (5)

In Eq. (5), note that
∑w
k=i sk

∏k−1
j=i rj is an integer and 0 ≤

∑i−1
k=1 sk/

∏i−1
j=k rj < 1. Therefore, according to Eq. (5) we

have proven that Eq. (3) correctly produces si for any
i ∈ {1, 2, · · · , w}.

We organize the potential table using Eq. (2) and
Eq. (3). For each entry index t (t = 1, 2, · · · ,

∏

i ri), we
convert t to a state string S using Eq. (2). For a given
state string S, we store the corresponding potential in
the t-th entry of the potential table, where t is obtained
from S according to Eq. (2). For example, we show
a segment of a sample potential table in Figure 2. In
Figure 2 (a), we show a sample clique C with variable
vector (a, b, c, d, e, f). A segment of the potential table
(POT) for C, i.e. ψC , is given in Figure 2 (b). For each entry
of ψC , the corresponding state string and index are also
presented. For the sake of illustration, we assume all ran-
dom variables are binary in Figure 2 (b). In Figure 2 (c),
however, we assume random variables a, c, e are binary,
while b, d, f are ternary. Using Equations (2) and (3), we
obtain the relationship among indices, state strings and
entries of the potential table shown in Figure 2 (c).

4.2 Separators Between Cliques

A separator is the intersection of two adjacent cliques.
Therefore, for each edge in a junction tree, there is a
separator with respect to the two cliques connected to
the edge. In Figure 2 (a), we show three separators
related to clique C. Spa(C) is the separator between C and
its parent, pa(C). Sch1

(C) and Sch2
(C) are two separators

between C and its two children, ch1(C) and ch2(C). The
terms defined in the previous section, such as variable
vector and state string, are also applied to separators.
Using Eq. (2) and Eq. (3), we organize the potential tables
for separators as we do for cliques.

For each clique C in the given junction tree, we impose
the following requirement on the variable vector of C
and the variable vector of Spa(C): the variable vector of
C is ordered by VC = (VC\Spa(C), VSpa(C)), where VSpa(C)

is the variable vector of Spa(C), and VC\Spa(C) consists of
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Fig. 2. (a) A sample clique and its variable vector; (b) The relationship among the potential table (POT) index, state

string and potential table, assuming all random variables are binary variables; (c) The relationship among the array

index, state string and potential table, assuming a, c, e are binary while b, d, f are ternary.

random variables existing in VC but not in VSpa(C). The
order of variables inside of VC and VSpa(C) is arbitrary.
The advantage of such a requirement is the simplification
of the computation in evidence propagation. Details are
given in Section 5.5.

In evidence propagation, we propagate evidence from
the input separators to C, and then utilize the updated
ψC to renew the output separators. We define input sep-
arators with respect to clique C as the separators which
carry evidence information before updating C. The output
separators are defined as the separators to be updated.
Taking Figure 3 as an example, in evidence collection,
Sch1

(C) and Sch2
(C) are the input separators while Spa(C)

is the output separator. In evidence distribution, Spa(C)
becomes the input separator while Sch1

(C) and Sch2
(C)

become the output separators.

5 NODE LEVEL PRIMITIVES

5.1 Primitives for Evidence Propagation

Evidence propagation is a series of computations on the
clique potential tables and separators. Based on the node
level probability representation addressed in Section 4,
we introduce four node level primitives for evidence
propagation: table marginalization, table extension, table
multiplication, and table division.

According to Eq. (1) and the above primitives, we
describe the evidence propagation between adjacent
cliques as follows: Assume two cliques A and B are

adjacent and A has been updated. We use the updated
potential table of A, denoted ψ∗

A, to update the potential
table of B. Let S denote the separator between A and B.
In this case, S is one of the output separators of clique A
and one of the input separators of clique B. Propagating
evidence from A to B, we obtain the potential table of
S, denoted ψ∗

S , by marginalizing ψA. We also obtain
the potential table of S, denoted ψS , by marginalizing
ψB. Then, ψ∗

S is divided by ψS . The division result is
denoted ψ†

S . Finally, the potential table of B is updated
by multiplying ψ†

S and ψB. The primitive of table ex-
tension identifies relationship between entries in ψB and
those in ψ†

S . Table extension is implicitly utilized by table
multiplication.

Notice that the above primitives are essentially a series
of computations on the entries in potential tables.

Table marginalization is used to obtain the potential
table of a separator from the potential table of a clique.
The input to table marginalization is a potential table ψA,
and the separator between A and one of A’s neighbors.
The output is the potential table of the separator. Table
marginalization can be implemented in parallel, where
each processor handles a block of the clique potential
table, and obtains the separator potential table by com-
bining the results from all the processors.

Table multiplication and table division are used in
evidence propagation, which convert multiplication and
division between two tables to multiplication and divi-
sion between corresponding entries. The independence
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Fig. 3. Illustration of input and output separators of clique C with respect to evidence collection and evidence

distribution.

of operations on different entries leads to a parallel
implementation.

Table extension is used to assist table multiplication
and table division. It equalizes the size of two tables
involved in multiplication or division. After table exten-
sion, by multiplying values in the same location of the
two tables (shown in Figure 5), we obtain the result of
table multiplication. Similarly, dividing two entries in the
same locations of the two tables, if the divisor is not zero,
we obtain the result of the table division.

5.2 Table Marginalization

Table marginalization is used to obtain separator poten-
tial tables from a given clique potential table. For exam-
ple, in Figure 4, we marginalize ψC to obtain ψSch1(C)

,
ψSch2(C)

and ψSpa(C)
.

To obtain the potential table for the ith child of a
given clique C, i.e. ψSchi(C)

, we marginalize the potential
table ψC . The marginalization requires identifying the
mapping relationship between VSchi(C)

and VC . We define
the mapping vector to represent the mapping relationship
from VC to VSchi(C)

. The mapping vector is defined as
Mchi(C) = (m1m2 · · ·mwSchi

|mj ∈ {1, · · · , w}), where w

is the width of clique C and wSchi
is the length of Vchi(C).

Notice that VSchi(C)
⊂ VC . The value of mj is determined

if the mth
j variable in VC is the same as the jth variable in

VSchi(C)
. Using the mapping vector Mchi(C), we identify

the relationship between ψC and ψSchi(C)
. Given an entry

ψC(t) in a potential table ψC , we convert the index t to a
state string S = (s1s2 · · · sw). Then, we construct a new
state string S̃ = (s̃1s̃2 · · · s̃chi(C)) by letting s̃i = smi

. The

new state string S̃ is then converted back to an index t̃.
Therefore, we show that ψC(t) corresponds to ψSchi(C)

(t̃).
To compute ψSchi(C)

from ψC , we identify the relation-

ship for each t and accumulate ψC(t) to ψSchi(C)
(t̃). We

illustrate table marginalization for obtaining a separator
ψSchi(C)

from a given clique potential table ψC in Figure 4.
Algorithm 1 describes table marginalization for ob-

taining ψSchi(C)
from ψC . Let w and wout denote the

clique width and the separator width, respectively. The
input to table marginalization includes clique potential
table ψC , a mapping vector MC = (m1,m2, · · · ,mwout

),
and the number of processors P . The output is sep-
arator potential table ψout i.e. ψSchi(C)

. Each processor
is in charge of a segment of ψC , consisting of |ψC |/P
contiguous entries. Line 1 in Algorithm 1 launches P -
way parallelism and assigns an ID, p, to each processor.
Lines 2-8 form a local computation round. Line 2 in
Algorithm 1 initializes the output on the local processor,

denoted ψ
(p)
out. In Lines 4-7, each processor updates ψ

(p)
out.

Notice that Line 3 does not reallocate the potential table,
but converts the indices of the partitioned table into
the corresponding indices of the original potential table.
Then, in Line 4, the index scalar is converted into a state
string using Eq. (3). Line 5 transforms the state string by
assigning s̃i = smi

for i = 1, 2, · · · , wout. The resulting
state string is converted back to an index in Line 6.
Line 9 is a global communication round, where the all-
to-all communication is performed to broadcast the local

result ψ
(p)
out. Each processor receives ψ

(j)
out from the j-th

processor (j = 1, 2, · · · , P and j 6= p) and accumulates

(Line 10) ψ
(j)
out to its local result. The sum calculated

in Line 10 gives the updated separator potential table
ψSchi(C)

.

For the sake of illustrating the scalability of the algo-
rithm, we analyze Algorithm 1 using the CGM model
introduced in Section 2.2. Line 1 takes constant time to
initialize. Let wC denote the clique width of C. Line 4
takes 3wC time, since Eq. (3) computes wC elements, each
involving three scalar operations: a division, a modulo
and the increase of the product of rj . Line 5 takes wout
time and Line 6 takes 3wout time, since Eq. (2) also
involves three scalar operations. Note that wout < wC .
Line 7 takes constant time. Line 9 performs all-to-all
communication, which is the only global communication
round for Algorithm 1. The operation of Lines 9 and 10
is known as all-reduce [17]. By organizing the processors
into a spanning tree with logarithmic depth, all-reduce
takes O(|ψout| logP ) time [18]. Since |ψout| ≪ |ψC | in
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Fig. 4. Illustration of using table marginalization to obtain separator ψSchi
(C) from clique potential table ψC .

Algorithm 1 Marginalization for separator ψSchi(C)

Input: clique potential table ψC , mapping vector MC ,
number of processors P

Output: separator potential table ψout
1: for p = 1 to P pardo

{local computation}

2: ψ
(p)
out (1 : |ψout|) = ~0

3: for t = |ψC|
P

(p− 1) to |ψC|
P
p− 1 do

4: convert t to S = (s1s2 · · · sw)
5: construct S̃ = (s̃1s̃2 · · · s̃wout

) from S using map-
ping vector MC

6: convert S̃ to t̃
7: ψ

(p)
out(t̃) = ψ

(p)
out(t̃) + ψC(t)

8: end for

{global communication}

9: broadcast ψ
(p)
out and receive ψ

(j)
out from Processor

j (j = 1, · · · , P and j 6= p)

{local computation}

10: ψout =
∑P
j=1 ψ

(j)
out

11: end for

our context, the local computation time is O(|ψC |wC/P ),
1 ≤ P ≤ |ψC |.

5.3 Table Extension

Table extension identifies the mapping relationship be-
tween two potential tables and equalizes the size of the
two tables. Table extension is an inverse mapping of
table marginalization, since the former expands a small
table (separator potential table) to a large table (clique
potential table), while the latter shrinks a large table to
a small table. Table extension is utilized to simplify table
multiplication and table division.

Figure 5 illustrates table extension using the sample
clique and separator given in Figure 4. The clique con-

sists of 6 random variables where the numbers of states
are ra = rc = re = 2 and rb = rd = rf = 3. The
separator consists of 2 random variables rd and rf . In
Figure 5 (a), we illustrate the state strings of ψS(C),
the corresponding state strings of ψC , and the indices.
We can see from Figure 5 (a) that an entry in ψS(C)

corresponds to multiple entries in ψC . In addition, the
corresponding entries in ψC may not be contiguous.
However, after applying table extension, each entry in
ψS(C) corresponds to the entry with the same index in
ψC (see Figure 5 (b)).

Fig. 5. (a) The mapping relationship between separator

ψS(C) and clique potential table ψC ; (b) The mapping

relationship between extended ψS(C) and ψC , where every

entry in ψS(C) corresponds to the entry in ψC with the

same index.

The parallel algorithm for the primitive of table ex-
tension is shown in Algorithm 2. The input to table
extension includes the original separator ψS(C)

, the size
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of the corresponding clique potential table |ψC |, the map-
ping vector MC = (m1,m2, · · · ,mwout

), and the number
of processors P . The output is an extended separator
table ψext. Regarding the data layout, we assume that a
segment of ψext (|ψC |/P entries) is maintained in local
memory. Other inputs are stored in every local memory.
Line 2 in Algorithm 2 initializes the output by allocating
memory for |ψC | entries. In Line 3-7, each processor as-
signs values to ψext in parallel. Line 4 converts an index
scalar to a state string using Eq. (3). Line 5 transforms the
state string by assigning s̃i = smi

for i = 1, 2, · · · , wout.
The resulting state string is converted back to an index in
Line 6. Line 7 copies the value in the identified entry to
ψext(t). No communication is needed in table extension.

Using the CGM model, we analyze the complexity of
Algorithm 2. Line 2 takes constant time for memory
allocation. As with the analysis for Algorithm 1, we
know Line 4 in Algorithm 2 takes 3wC time for local
computation. Line 5 takes wS time, where wS is the
width of separator S. Line 6 requires 3wS time since we
need three scalar operations to obtain each element of
S̃. Therefore, the local computation time is O(|ψC |wC/
P ), where 1 ≤ P ≤ |ψC |.

Algorithm 2 Table extension for separator ψS(C)

Input: separator potential table ψS , the size of clique
potential table |ψC |, mapping vector MC , number of
processor P

Output: extended separator potential table ψext
1: for p = 1 to P pardo

{local computation}
2: allocate memory of |ψC |/P entries for ψext
3: for t = |ψC|

P
(p− 1) to |ψC|

P
p− 1 do

4: convert t to S = (s1s2 · · · sw)
5: construct S̃ = (s̃1s̃2 · · · s̃wout

) from S using MC

6: convert S̃ to t̃
7: ψext(t) = ψS(t̃)
8: end for
9: end for

5.4 Table Multiplication and Table Division

In exact inference, table multiplication occurs between a
clique potential table and its separators. For each entry in
a separator, table multiplication multiplies the potential
ψS(t) in the separator with another potential ψC(t̃) in
the clique potential table, where the random variables
shared by the separator S and the clique C have identical
states. Table multiplication requires the identification of
the relationship between entries in the separator and
those in the clique potential table. We use table extension
to identify this relationship.

We present the algorithm for table multiplication in
Algorithm 3. The input includes the separator potential
table ψS , the clique potential table ψC , the mapping
vector MC , and the number of processors P . The output

Algorithm 3 Table multiplication

Input: separator potential table ψS , clique potential
table ψC , mapping vector MC , number of processor
P

Output: resulting potential table ψ∗
C

1: ψext = extend ψS to size |ψC | using Algorithm 2
2: for p = 1 to P pardo

{local computation}

3: for t = |ψC|
P

(p− 1) to |ψC|
P
p− 1 do

4: ψ∗
C(t) = ψC(t) ∗ ψext(t)

5: end for
6: end for

is the updated potential table ψ∗
C . Line 1 extends the

separator with respect to ψS using Algorithm 2. Lines 3-
5 update ψC by multiplying the extended separator and
the clique potential table. Each processor is in charge of
a segment of the ψ∗

C .
Since Line 1 utilizes Algorithm 2, the local compu-

tation time is O(|ψC |wC/P ). Lines 3-5 consist of |ψC |/P
iterations, where each iteration takes O(1) time for local
computation. Therefore, the total computation time for
Algorithm 3 is also O(|ψC |wC/P ), where 1 ≤ P ≤ |ψC |.
Notice that |ψC | =

∏wC

i=1 ri.
Table division is very similar to table multiplication,

as shown in Algorithm 4. According to Eq. (1), table di-
vision occurs between two separator potential tables ψ∗

S

and ψS . Algorithm 4 shows the primitive of parallel table
division. Similar to the analysis for table multiplication,
we obtain the total computation time for Algorithm 3 as
O(|ψC |wC/P ), where 1 ≤ P ≤ |ψC |.

Algorithm 4 Table division

Input: separator potential tables ψ∗
S and ψS , mapping

vector MS , number of processor P
Output: resulting potential table ψ†

S

1: ψext = extend ψS to size |ψS | using Algorithm 2
2: for p = 1 to P pardo

{local computation}

3: for t =
|ψ∗

S
|

P
(p− 1) to

|ψ∗

S
|

P
p− 1 do

4: if ψS(t) 6= 0 then
5: ψ†

S(t) = ψ∗
S(t)/ψext(t)

6: else
7: ψ†

S(t) = 0
8: end if
9: end for

10: end for

5.5 Optimized Computation Kernels for Evidence
Propagation

The node level primitives discussed above can be uti-
lized to implement exact inference. In this section, we
optimize the primitives with respect to evidence collec-
tion and evidence distribution separately. The optimized
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primitives form the computation kernels for evidence col-
lection and distribution.

Table marginalization for obtaining the separator be-
tween clique C and its parent pa(C) can be simplified by
avoiding conversions between indices and state strings.
To obtain the potential table ψSpa(C)

, we also marginalize
the potential table ψC . However, notice that in Sec-
tion 4.2 we require the variable vector of clique C to
be ordered by VC = (VC\Spa(C), VSpa(C)), where VSpa(C)

is the variable vector of Spa(C) and VC\Spa(C) consists
of random variables existing in VC but not in VSpa(C).
Using the relationship between VC and VSpa(C), we sim-
plify the table marginalization for obtaining ψSpa(C)

from
ψC . Since VSpa(C)

is the lower part of VC , the relation-
ship between entries in ψSpa(C)

and entries in ψC is
straightforward (see Figure 6). Segment i of ψC denotes
ψC

(

(i− 1)|ψpa(C)| : (i|ψpa(C)| − 1)
)

, i.e. an array consists
of entries from the (i−1)|ψpa(C)|

th to the (i|ψpa(C)|−1)th

in ψC . Thus, this marginalization can be implemented
by accumulating all segments, without checking the
variable states for each entry of the potential table.

Fig. 6. Illustration of using the primitive of table marginal-

ization to obtain separator ψSpa(C) from clique potential

table ψC .

Since multiplication and division have the same prior-
ity in Eq. (1), we can either perform either first. However,
if we perform multiplication first, we must perform
table extension twice (for multiplication and division
respectively). If we perform division first, we need to
perform table extension only once (ψ∗

S and ψS in Eq. (1)
have the same size, so table extension is not needed by
division). In this paper, we always perform the division
between two separators first. Notice that the variable
vectors of the two separators are the same. Therefore,
we eliminate table extension (Line 1) from Algorithm 4
and the table division becomes the element-wise division
between two arrays.

Table multiplication can also be optimized by com-
bining table extension and multiplication. According to
Algorithm 3, the extended table has the same size as
ψC . Since the size of the clique potential tables can be
very large, allocation of memory for the extended table is
expensive. To avoid allocating memory for the extended
table, we combine table extension and multiplication.
Once we obtain the value of ψext(t), where ψext is the

extended table and t is the index, we multiply ψext(t) by
ψC(t) instead of storing ψext(t) in memory. The product
of the multiplication replaces the original data in ψC(t).

We analyze the complexity of Algorithms 5 and 6
based on the analysis of the node level primitives. Line 1
in Algorithm 5 launches P -way parallelism. Lines 2-11
plus Line 13 perform table marginalization for each child
of C. Lines 2-11 take O(dC |ψC |wC/P ) time for local com-
putation, where dC is the number of children of clique C.
Line 11 is a global communication round. Line 14 takes
O(|ψ∗

ini
|) local computation time to performs element-

wise table division. Notice that we do not parallelize
the computation of table division. Considering |ψini

| is
very small in our context, the communication overhead
due to the parallelization of table division is larger than
the local computation time. Without loss of generality,
we assume |ψout|/P ≥ |ψini

| ≈ |ψout| in this analysis.
Lines 15-17 perform table multiplication on dC |ψC |/P pairs
of entries. Using t̃j computed in Lines 5-7, Lines 19-
22 perform simplified marginalization, for which the
local computation time is O(|ψC |/P ). Line 23 is the
second global communication round. Therefore, the local
computation time for Algorithm 5 is O(dC |ψC |wC/P ),
1 ≤ P ≤ |ψout|. The number of global communication
rounds is 2. Similarly, the local computation time for
Algorithm 6 is O(dC |ψC |wC/P ), and the number of global
communication rounds is also 2.

6 EXACT INFERENCE WITH NODE LEVEL

PRIMITIVES

6.1 Data Layout

For an arbitrary junction tree, we distribute the data
as follows: Let P denote the number of processors.
Instead of simply splitting every potential table ψC into
P segments, we compare |ψC |/P with |ψS |, where ψS is
the largest potential table of the separators adjacent to C.
If |ψC |/P ≥ |ψS |, each processor stores |ψC |/P entries of
the potential table. Otherwise, we find another clique
C̃, which can be processed in parallel with C (e.g. C
and C̃ share the same parent clique). We distribute ψC

to ⌊P |ψC |/(|ψC | + |ψC̃ |)⌋ processors and ψC̃ to the rest
(see Figure 7). Similarly, if (|ψC | + |ψC̃ |)/P ≤ |ψS | and
k parallel cliques exist (k > 2), each having a small
potential table, then we allocate the processors to the
k cliques. Let the k cliques be denoted by C1, C2, · · · , Ck,
then ψCi

, ∀i ∈ [1, k], is partitioned into Pi = P |ψCi
|/

∑k
j=1 |ψCj

| segments, each being stored by a processor.
The allocation information of potential tables is main-
tained in each processor using a queue called clique
queue: Let Ci denote the clique queue maintained in
Processor i. Ci gives the order by which Processor i
updates the cliques. Such an order must be consistent
with the breadth first search (BFS) order of the junction
tree. Each element in Ci consists of a clique ID denoted
C, the index of a segment of ψC stored in Processor i
and the processor IDs where other segments of ψC are
processed. In Figure 7 (b), each column corresponds
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Algorithm 5 Computation kernel of evidence collection

Input: input separators ψ∗
ini

, clique potential table ψC ,
mapping vector Mini

(i = 1, 2, · · · , dC)
Output: updated clique potential table ψC and the out-

put separator ψout
1: for p = 1 to P pardo

{local computation}
2: for i = 1 to dC do
3: ψ

(p)
ini

(1 : |ψ∗
ini

|) = ~0

4: for j = |ψC|
P

(p− 1) to |ψC|
P
p− 1 do

5: Convert j to S = (s1s2 · · · sw)
6: Construct S̃ = (s̃1s̃2 · · · s̃|in|) from S using

Mini

7: Convert S̃ to t̃j
8: ψ

(p)
ini

(t̃j) = ψ
(p)
ini

(t̃j) + ψC(j)
9: end for

10: end for

{global communication}

11: broadcast ψ
(p)
ini

and receive ψ
(k)
ini

from Processor
k (i = 1, · · · , dC ; k = 1, · · · , P and k 6= p)

{local computation}
12: for i = 1 to dC do
13: ψini

=
∑P
j=1 ψ

(j)
ini

14: ψini
(1 : |ψ∗

ini
|) = ψ∗

ini
(1 : |ψ∗

ini
|)/ψini

(1 : |ψ∗
ini

|)
for non-zero elements of ψini

15: for j = |ψC|
P

(p− 1) to
|ψ∗

C
|

P
p− 1 do

16: ψC(j) = ψC(j) ∗ ψini
(t̃j)

17: end for
18: end for
19: ψ

(p)
out(1 : |ψout|) = ~0

20: for j = |ψC|
P

(p− 1) to |ψC|
P
p− 1 do

21: ψ
(p)
out(j%|ψout|) = ψ

(p)
out(j%|ψout|) + ψC(j)

22: end for

{global communication}

23: broadcast ψ
(p)
out and receive ψ

(k)
out from Processor

k (k = 1, · · · , P and k 6= p)

{local computation}

24: ψout =
∑P
j=1 ψ

(j)
out

25: end for

to a clique queue. In addition to the potential tables,
each processor maintains O(dC |ψS |) memory to store the
adjacent separators during evidence propagation.

6.2 Complete Algorithm

The process of exact inference with node level primitives
is given in Algorithm 7. The input to this algorithm
includes the number of processors P , the clique queue
Ci for each processor, the structure of a given junction
tree J, and the mapping vectors for all cliques with
respect to their adjacent separators. The output is up-
dated potential tables. Notice that the complete process
of exact inference also includes local evidence absorption

Algorithm 6 Computation kernel of evidence distribu-
tion
Input: input separator ψ∗

in, clique potential table ψC ,
mapping vector Mouti (i = 1, 2, · · · , dC)

Output: updated clique potential table ψC and the out-
put separator ψouti

1: for p = 1 to P pardo

{local computation}

2: ψ
(p)
in (1 : |ψ∗

in|) = ~0

3: for i = |ψC|
P

(p− 1) to |ψC|
P
p− 1 do

4: ψ
(p)
in (i%|ψ∗

in|) = ψ
(p)
in (i%|ψ∗

in|) + ψC(i)
5: end for

{global communication}

6: broadcast ψ
(p)
in and receive ψ

(k)
out from Processor

k (k = 1, · · · , P and k 6= p)

{local computation}

7: ψin =
∑P
j=1 ψ

(j)
in

8: ψin(1 : |ψin|) = ψ∗
in(1 : |ψ∗

in|)/ψin(1 : |ψin|) for
non-zero elements of ψini

9: for i = |ψC|
P

(p− 1) to |ψC|
P
p− 1 do

10: ψC(i) = ψC(i) ∗ ψin(i%|ψin|)
11: end for
12: for i = 1 to dC do
13: ψ

(p)
outi

(1 : |ψouti |) = ~0

14: for t = |ψC|
P

(p− 1) to |ψC|
P
p− 1 do

15: Convert t+ tδ to S = (s1s2 · · · sw)
16: Construct S̃ = (s̃1s̃2 · · · s̃|outi|) from S using

Mouti

17: Convert S̃ to t̃
18: ψ

(p)
outi

(t̃) = ψ
(p)
outi

(t̃) + ψC(t)
19: end for
20: end for

{global communication}

21: broadcast ψ
(p)
outi

and receive ψ
(k)
outi

from Processor
k (i = 1, · · · , dC ; k = 1, · · · , P and k 6= p)

{local computation}

22: ψouti =
∑P
j=1 ψ

(j)
outi

(i = 1, · · · , dC)
23: end for

and query computation. The parallelization of these two
steps is intuitive [16]. Therefore, Algorithm 7 focuses
only on evidence propagation, including evidence col-
lection and evidence distribution.

In Algorithm 7, Lines 2-7 perform evidence collection
in the given junction tree. In evidence collection, each
processor updates cliques in the reverse order given in
Ci. Therefore, a processor first processes leaf cliques.
Line 3 defines some notations. Since input separators are
always empty for leaf cliques during evidence collection,
Line 4 is not executed for the leaf cliques. Thus, Line 4
can not suspend all processors. For non-leaf cliques,
Line 4 ensures that all input separators are updated
before we process C. Line 5 applies Algorithm 5 to
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Fig. 7. (a) Sample junction tree where the size of the

nodes indicates the size of potential tables. (b) The layout

of potential tables. Each row consists of segments of one

or more potential tables, while each column corresponds

to a processor.

Algorithm 7 Exact inference using computation kernels

Input: number of processors P , clique queues
C1, · · · ,CP , junction tree J, mapping vectors
MS for all cliques with respect to their adjacent
separators

Output: updated clique potential tables for all cliques
1: for p = 1 to P pardo

{Evidence collection}
2: for i = |Cp| downto 1 do
3: Let C = Cp(i); ψ∗

inj
= ψchj(C);Minj

=
Mchj(C);ψout = ψpa(C),∀j = 1, · · · , dC

4: wait until nonempty ψ∗
inj
, ∀j = 1, · · · , dC , are

updated //leaf cliques do not wait
5: EvidenceCollect(C, ψ∗

inj
, ψout,Minj

)
6: set ψout as a updated separator w.r.t evidence

collection
7: end for

{Evidence distribution}
8: for i = 1 to |Cp| do
9: Let C = Cp(i); ψ

∗
in = ψpa(C); Moutj = Mchj(C);

ψoutj = ψchj(C),∀j = 1, · · · , dC
10: wait until nonempty ψ∗

in is updated //the root
does not wait

11: EvidenceDistribute(ψC , ψ
∗
in, ψoutj ,Moutj )

12: set ψoutj , ∀j = 1, · · · , dC , as updated separators
w.r.t evidence distribution

13: end for
14: end for

perform evidence collection. Line 6 declares that ψout
has been updated in evidence propagation. Lines 8-13
in Algorithm 7 perform evidence distribution. Line 10
ensures that all the inputs are ready. Line 11 performs
evidence distribution in C using Algorithm 6. The output
separator is updated in Line 14.

The computation in Algorithm 7 occurs in Lines 5
and 11. The local computation time and the number
of global communication rounds have been discussed
in Section 5.5. However, Lines 4 and 10 introduce two

more communication rounds. Based on the analysis in
Section 5.5, the local computation time for Algorithm 7 is
O(NdC |ψC |wC/P ). Since we perform six communications
per clique, the number of global communication rounds
is O(N).

7 EXPERIMENTS

7.1 Computing Facilities

We implemented the node level primitives using the
Message Passing Interface (MPI) on the linux clus-
ter in High-Performance Computing and Communica-
tions (HPCC) at the University of Southern California
(USC) [19].

The HPCC cluster at USC employs a diverse mix
of computing and data resources, including 256 Dual
Quadcore AMD Opteron quad-core processor nodes run-
ning at 2.3 GHz with 16 GB memory. This machine
uses a 10 GB low-latency Myrinet backbone to connect
the compute nodes. The cluster achieved 44.19 teraflops
in fall 2008, ranked at 7th among supercomputers in
an academic setting in the United States. The cluster
runs USCLinux, a customized distribution of the RedHat
Enterprise Advanced Server 3.0 (RHE3) Linux distribu-
tion. The Portable Batch System (PBS) is used to allocate
nodes for a job.

7.2 Experiments using PNL

Intel Open Source Probabilistic Networks Library (PNL)
is a full function, free, graphical model library [20]. A
parallel version of PNL is now available, which is de-
veloped by Intel Russia Research Center and University
of Nizhni Novgorod. Intel China Research Center and
Intel Architecture Laboratory were also involved in the
development process.

We conducted experiments to explore the scalability of
the exact inference algorithm using the PNL library [11].
The input graphs were denoted J1, J2 and J3, where
each clique in J1 had at most one child; all cliques except
the leaves in J2 had equal numbers of children; the
cliques in J3 had random numbers of children. All the
graphs had 128 cliques, each random variable having 2
states. We show the execution time in Figure 8 (a). We
can see from Figure 8 (a) that, although the execution
time reduced when we used 2 and 4 processors, we
failed to achieve reduced execution time when we used
8 processors. We measured the time taken by performing
table operations and non-table operations in exact infer-
ence implemented using the PNL library. We observed
that the time taken by performing table operations is the
dominant part of the overall execution time. With clique
width wC = 20 and the number of states r = 2, table
operations take more than 99% of the overall execution
time. This result demonstrates that parallelizing the node
level primitives can lead to high performance.

We conducted an experiment using a Bayesian net-
work from a real application. The Bayesian network is
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called the Quick Medical Reference decision theoretic
version (QMR-DT), which is used in a microcomputer-
based decision support tool for diagnosis in internal
medicine [21]. There were 1000 nodes in this network.
These nodes formed two layers, one representing dis-
eases and the other symptoms. Each disease has one
or more edges pointing to the corresponding symptoms.
All random variables (nodes) were binary. We converted
the Bayesian network to a junction tree offline and then
performed exact inference in the resulting junction tree.
The resulting junction tree consists of 114 cliques while
the average clique width is 10. In Figure 8 (b), we
illustrate the experimental results using the PNL and our
proposed method respectively. Our method illustrated
almost linear speedup while the PNL based method did
not show scalability using 8 processors.

7.3 Experimental Results

We evaluated the performance of individual node level
primitives, the computation kernels and the complete
exact inference by using various junction trees generated
by off-the-shelf software. We utilized Bayes Net Tool-
box [22] to generate the input data including potential
tables and junction tree structures. The implementation
of the proposed methods was developed using the C lan-
guage with MPI standard routines for message passing.
Our implementation based on Algorithm 7 employed a
fully distributed paradigm, where the code was executed
by all the processors in parallel.

To evaluate the performance of individual node level
primitives, we generated a set of single cliques as well
as the adjacent separators to each clique. A potential
table was generated for every clique and separator. The
set contained potential tables with various parameters:
The clique width wC was selected to be 20, 25, or 30.
The number of states r was selected to be 2 for some
random variables, and 3 for the others. As double pre-
cision floating point numbers were used, the size of the
potential tables varied from 8 MB (wC = 20, r = 2) to
8 GB ( wC = 30, r = 2). The widths of the separators
wS were chosen to be 1, 2 or 4. The clique degree d (i.e.
maximum number of children) was selected to be 1, 2 or
4. The mapping vectors M for the junction trees were
constructed offline. The construction of the mapping
variables is explained in Section 5.2. We performed node
level primitives on these potential tables using various
numbers of processors (P was chosen from 1, 2, 4, 8, 32,
64 and 128). Each processor processed 1/P of the total
entries in a given potential table.

The experimental results are shown in Figures 9-12.
The default parameter values for the experiments were:
wC = 25, wS = 2, r = 2 and clique degree d = 2.
However, in each of the above figures, we let wC = 15 for
all Panels (b), since the size of the potential table with
wC = 25 and r = 3 is about 6 TB, which is too large to
fit in memory. For Panel (b) in each of the above figures,
the label r = 2 & 3 means that the number of states

for half of the random variables is 2 while for the other
half is 3. In each panel of the above figures, we varied
one parameter at a time to show the influence of each
specific parameter. Note that, for the sake of illustrating
scalability, the table division in Figure 12 was performed
between a clique potential table and a separator, rather
than between two separators as shown in Algorithms 5
and 6. The reason is the size of the separator potential
tables is too small to provide enough parallelism for
128 processors. From the experimental results, we can
see that the primitives exhibited almost linear scalability
using 128 processors, regardless of the input parameters.

We also evaluated the performance of the computation
kernels for evidence collection and distribution. Notice
that the computation kernels given in Algorithms 5
and 6 update a given clique potential table as well as
its related separators. We also used the same input data
used to evaluate node level primitives. We conducted
experiments for the two computation kernels separately
in Figures 13 and 14.

Finally, we evaluated the performance of the complete
parallel exact inference (Algorithm 7 in Section 6.2).
Unlike the experiments conducted above, the input to
Algorithm 7 included an entire junction consisting of
potential tables for each clique, the related separators,
and a clique queue for each processor. The data layout
for the input junction tree is addressed in Section 6.1. The
clique queues generated according to the layout were
sent to each processor separately. That is, each processor
kept partial potential potential tables, related separators
and a clique in its local memory. In our experiments,
we generated several junction trees with the number
of cliques N = 1024. For cliques and separators in the
junction tree, as with for evaluating primitives and ker-
nels, we also selected various values for the clique width
wC , the number of random variables r, the separator
width wS , and the clique degree dC . Notice that, by
varying these parameters, we obtained various types of
junction trees. For example, dC = 1 implies a chain of
cliques, while an arbitrary dC gives a junction tree with
random numbers of branches. The results are shown in
Figure 15 (a)-(c). In each panel of Figure 15, we varied
the value for one parameter and conducted experiments
with respect to various numbers of processors.

According to the results shown in Figure 15, the
proposed method exhibits scalability using 128 proces-
sors for various input parameters. For the junction tree
where N = 1024, wC = 25, r = 2 and d = 2, the
parallel exact inference achieved a speedup of 98.4 using
128 processors. Thus, the execution time was reduced
to about two minutes from approximately three hours
using a single processor. Compared to the experiment
in Section 7.2, our method performed exact inference in
junction trees with large potential tables. In addition, the
proposed exact inference algorithm exhibited scalability
over a much larger range. We observed almost linear
speedup in our experiments. According to the algorithm
analysis based on the CGM model in Section 6.2, the



13

Fig. 8. (a) Scalability of exact inference using parallel version of PNL; (b) Exact inference on QMR-DT network.

Fig. 9. Scalability of table marginalization with respect to (a) clique width; (b) number of states of random variables;

(c) separator width; (d) clique degree.

computation complexity is inversely proportional to the
number of processors, which matches the experimental
results.

8 CONCLUSIONS

In this article, we explored data parallelism for exact
inference in junction trees. We proposed scalable al-
gorithms for node level primitives and assembled the
primitives into two computation kernels. A parallel exact
inference algorithm was developed using the computa-
tion kernels. We analyzed the scalability of the node level
primitives, computation kernels and the exact inference
algorithm using the CGM model and implemented the
exact inference algorithm on state-of-the-art clusters. The
experimental results exhibited almost linear scalability
over a much larger range compared to existing methods

such as the parallel version of the Probabilistic Networks
Library. As part of our future work, we are planning
to study efficient data layout and scheduling policies
for exact inference on multicore clusters where each
compute node consists of multiple processors. We also
intend to explore parallelism in exact inference at mul-
tiple levels, and map the parallelism to the architecture
of the heterogeneous clusters. We plan to partition an
arbitrary junction tree into subtrees and schedule the
subtrees to various compute nodes in a cluster. Each
subtree is further decomposed and processed by the
processors or cores in the compute node. We expect
higher performance for exact inference by integrating the
parallelism at various levels.
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Fig. 10. Scalability of table extension with respect to (a) clique width; (b) number of states of random variables; (c)

separator width; (d) clique degree.
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