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Abstract. The paper describes a Markov Decision Process (MDP) framework for coordinated 
sensing and adaptive communication in embedded sensor networks. The technique enables 
distributed sensor nodes to adapt their sampling rates in response to changing event criticality and 
the availability of resources (energy) at each node. The relationship between energy consumption, 
sampling rates, and utility of coordinated measurements is formulated as a stochastic model. The 
resulting model is solved as an MDP to generate a globally optimal policy that specifies the 
sampling rates for each node for all possible states of the system. This policy is computed offline 
before deployment and only the resulting policy is stored within each node. The on-line 
computational cost of executing the policy is minimal since it involves only a lookup of the 
optimal policy table. The optimal policy is computed under the assumption that the state of all 
sensors is completely observable. During execution, each sensor maintains a local estimate of the 
other sensor’s states. Sensors exchange their true local states when an information theoretic model 
of the uncertainty in the local state estimates exceeds a pre-defined threshold. Thus, the 
communication cost of executing a global policy is incurred only when a relatively large gain in 
the accuracy of the global state estimate is expected. We show results on simulated data that 
demonstrate the efficacy of this distributed control framework, the effect that the various model 
parameters have on the generated control policy, and compare the performance of the proposed 
controller with other policies. 
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1 Introduction 
Wireless sensor networks are being increasingly used in scientific and defense applications. In these 
applications, multiple homogeneous or heterogeneous sensors make simultaneous measurements of their 
environment to obtain better estimates than is possible from one sensor alone. However, energy and 
computation capacity still remain the most significant bottlenecks in practical deployability of sensor 
networks. Limitations of battery capacity and the high energy cost of radio transmission, necessitate energy 
efficient communication and on-board processing to extend system lifetime in practically useable scenarios 
[1].  

We consider a mobile continuous health monitoring body sensor network where size and ergonomic 
constraints severely limit the availability of power to battery sources that can be recharged only every few 
days or weeks. Our body sensor network hardware system is described in [2, 3] and is based on work being 
done at the Children’s Hospital Los Angeles and the University of Southern California [2, 4]. In this 
application, a patient’s vital signs are continuously measured by using multiple physiological and metabolic 
sensors attached to the patient’s body (also called a “body sensor network”). Unlike other sensor network 
applications, only a relatively few sensors (less than 5) are attached to a person.  These sensors typically 
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take measurements at a relatively low rate when the sensor readings are within normal limits, with higher 
sampling rates during critical periods. An important performance metric in this application is the life time 
of the body sensor network. The energy reserves within a sensor node get depleted with increasing amounts 
of sensing, communication, and computation. For instance, some physiological sensors have 
electromechanical components that make sensing an energy-intensive process [3]. Ideally, the system of 
sensors should operate for an extended period while maintaining an acceptable level of sensor performance. 

We use a Markov Decision Process (MDP) as a formalism to determine a coordinated sampling policy 
for the sensor network such that the system lifetime is extended without compromising detection and 
monitoring of critical and/or life threatening events. This computation of the coordinated policy is 
completed before nodes are deployed and only the resulting policy is stored within each sensor node. In this 
way, though the computational cost of computing a sophisticated policy off-line may be high, only a simple 
table lookup is sufficient to execute the policy on-line. The MDP formulation represents the relevant 
features of the sensing system (energy consumption rates, expected changes in event criticality) as part of a 
stochastic model. The energy reserves, control time, and event criticality are represented as discrete 
variables. These variables define the state of the system at any time. In addition, the utility of coordinated 
sampling and the penalty for running out of energy is quantified into a reward associated with each state. 
The objective is for the system to operate for a minimum specified length of time without the sensors 
running out of power while optimizing the reward function for health monitoring. The model is “solved” to 
determine a policy which specifies the sampling rate for each sensor for every possible state of the system 
(i.e., for different amounts of energy reserves at a sensor node). The policy obtained in this manner is 
optimal under the assumptions of the underlying model. 

The optimal policy is calculated offline with the assumption of full observation, i.e., it assumes that the 
energy reserves at any sensor is known by all other sensors. However, during execution the world is only 
partially observable since communication occurs infrequently, i.e., one sensor does not know the local state 
(sampling rate and consumed energy) of other sensors. In our approach, each sensor maintains an estimate 
of other sensor’s internal state and this estimate is used by the sensor to choose its sampling rate from the 
stored policy table. As this error in the estimate increases over time, nodes periodically have to exchange 
their true local state via communication in order to reset their estimates. We discuss a new value of 
information (the information entropy in the estimate) based communication scheme to reduce 
communications between sensors and thereby conserve energy. Communication broadcast only occurs  
when the expected value of information resulting from the communication exceeds a given threshold.  

This paper is organized as follows.  In the second section we describe related work in energy 
conservation in sensor networks and MDPs. In section 3, we describe the mathematical models for 
representing the sensor network as an MDP and the associated stochastic functions. In section 4, we discuss 
our approach for communication between sensor nodes to execute the coordinated sampling policy.  In 
section 5 we present the detailed simulation results for global policy computation and life time analysis of 
this sensor system for different operational parameters of the system.  In Section 6 we present concluding 
remarks and plans for future work. 

 

2 Background and Related Work 
Distributed sensor networks are used in a number of real world applications which include habitat 

monitoring, vehicle detection and tracking, perimeter crossing detection, tactical surveillance, health 
monitoring etc. In general, a set of sensor nodes with different sensing modalities are deployed in such 
applications to perform sensing, data fusion, and computing results. The sensor nodes are all homogeneous 
in some situations, for example a sensor web monitoring events, however they often are heterogeneous, for 
example surveillance with acoustic sensors and infrared cameras, to improve coverage, accuracy, and life 
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time of such networks.  These sensor nodes operate with battery and in many cases in hostile and 
unattended environments.  Therefore, energy efficiency in sensing, communication and processing are 
important in a sensor network to extend its lifetime. 

Distributed microsensor networks use inexpensive sensors (Motes, Mica, etc.) and wireless 
communications.  During the past decade there has been extensive research on developing energy efficient 
techniques for communication protocols, processing and memory operations, as well as application 
software [1,5-15].   A combination of techniques can be employed to reduce the total energy budget of a 
system.  Several distributed sensor projects were funded by DARPA programs with military applications, 
NASA AIST has projects with sensor webs to monitor long range earth phenomena, and we briefly discuss 
a few projects with real world applications.  A. Mainwaring et. al. [16] deployed a 32-node network on 
Great Duck Island off the coast of Maine to monitor seabird nesting environment and behavior. In [17] 
distributed sensor webs are used for volcano activity monitoring.  These types of applications can use a 
large number of inexpensive sensors to collect data and monitor changes to signal alarms.   Increasing 
lifetime of sensor network will be important in such systems and they apply several techniques to reduce 
processing and communication energy costs. 

Another approach to increasing lifetime of a sensor network is by carefully managing the energy budget 
to meet system function requirements. One project with a focus on overall system energy efficiency is 
about detecting and tracking vehicles in a field using acoustic and geophone sensors [18].  In this 
application, a group of sensors equipped with acoustic sensors detect a vehicle at a distance by taking 
acoustic samples, processing data, and collaborating with other sensors to perform beamforming to detect 
and track vehicles.  Energy reduction for this application was important as the requirement is to operate the 
sensor network for many days with battery power with few events in a day. Techniques used range from 
using tripwires to wake up sensors when events happen, tradeoff computation and accuracy with energy, 
and reduce unnecessary communications. In [19], X. Tang et. al. balance the energy consumption of nodes 
to extend network lifetime based on data precision from different sensor nodes. In [20], M. Cardei et. al. 
adjust sensing ranges to achieve network lifetime maximization with the condition that each sensor set 
covers all targets.  In [21, 22], the authors place relay or mobile nodes to achieve energy efficiency. 
Recently, M. Ceriotti et. al. [23] deployed a system in Torre Aquila in Italy for heritage building 
monitoring. They used dedicated software to collect, disseminate data, as well as time synchronization. The 
estimated lifetime of the system is beyond one year.   

J. Beutel et. al. [24] implemented PermaDAQ in high-mountain permafrost in order to gather real-time 
environmental data. PermaDAQ system uses the Dozer protocol [25] scheme to reduce communication 
energy, which is achieved by coordinating MAC-layer, topology control and routing operations. As the 
active state of the radio consumes a relatively large amount of energy, managing sleep cycles of a 
collection of nodes is a viable means of energy conservation. Ye et al. [26] employs a periodic cycle to 
coordinate the sleeping and waking processes. Each sensor node sleeps for a fixed duration and then wakes 
to listen for transmissions. In most of these applications, researchers formulate the energy efficiency or 
lifetime as an optimization problem, and use techniques based on linear and non-linear programming to 
solve them [15, 21, 27-30]. 

Recently, there is strong interest in using multiple sensor nodes for monitoring human activity as well as 
patients in critical care.  These senor networks are called body area networks and use short range wireless 
communications among the sensors and nearby base stations. In health monitoring application, energy 
efficient operation is critical to extend the lifetime to allow for continuous monitoring of patients. 
CodeBlue is a wireless network  designed for use in emergency medical care [31]. Joshi et al. suggested a 
mobile cardiac outpatient telemetry (MCOT) system [32] which does not require activation by the patient, 
and is mobile and flexible. MCOT system only monitors the cardiac symptom of patients and provides a 
service for communicating the information to doctors through cardionet. But these applications are not 
focus on energy efficiency. U. Varshney [33] presents a patient monitoring solution using ad hoc wireless 
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networks to allow reliable transmission, where the focus is on system reliability.  In [34] critical-path based 
low energy scheduling algorithms are used for energy efficiency in body area networks.  They model 
patient monitoring with a task graph consisting of various sensing and processing tasks with precedence 
and solve the scheduling problem to achieve overall system energy efficiency. C. U. Subrahmanya et. al. 
[35] propose an energy-aware task-aware algorithm for body area networks, based on the existing max-
flow min-cut algorithm. The algorithm maps tasks onto a heterogeneous wireless system of sensor nodes 
such that the tasks meet the deadline and also energy consumption is minimum. The authors have 
integrated physiological and metabolic sensors into a wireless network and use nonlinear optimization to 
manage the power efficiency [36]. 

 There are a variety of techniques that can be applied at different aspects of a system to enhance the life 
time of distributed sensor networks used in healthcare applications.  In our work on using multiple sensors 
to continuously monitor a patient, there are constraints on what processing and communication techniques 
can be employed.  Also, the sensors attached to the body of a patient can operate for 2 to 3 days without 
replacement.  We are interested in the problem of how best to monitor a patient based on health condition 
for a given period of time.  For this purpose, we use sampling rates in sensors based on the health status and 
other state information to improve energy efficiency, accuracy and the system life time.  For our 
application, it is assumed that other variable such as using fewer sensors or less accuracy is not 
applicable.  A patient is monitored with multiple sensors capable of taking measurements at several 
different sampling rates. The energy cost is expected to be proportional to the sampling rate and careful 
coordination among the sensors and their sampling rates can lead to high energy efficiency.  This is the 
focus of this paper and we formulate this as a Markov Decision Process to determine optimal sampling 
rates of sensors at different time steps and health status. 

Due to the non-determinism in the outcomes of the actions and the limited observability of the 
environment, distributed partially observable Markov Decision Problems (Distributed POMDP) are ideally 
suited to plan such policies [37-39]. However, the problem of finding the optimal joint policy for general 
distributed POMDPs is NEXP-complete [40]. Therefore we use completely observable MDPs assuming 
that all sensors can make perfect observations on the environment while generating the global policy. 
MDPs have been used elsewhere for control of physical systems [41]. The problem of determining a 
communication protocol to coordinate the actions of distributed entities using an MDP-based framework is 
an area of active research in the Agents community. Xuan et al. [42] consider two separate MDPs that use a 
common global utility function, and model communication as an explicit action that incurs a cost. They 
describe two heuristic approaches to communication. This approach is applicable only if the transition 
models are independent. Communication using the framework of Partially Observable MDPs (POMDP) 
has also been studied [43, 44]. However, in distributed POMDPs, the central planner must reason explicitly 
about the possible observations of all agents when generating a policy for one agent [45]. This reasoning 
about observations makes distributed POMDPs much more complex than distributed MDPs. Makoto et al. 
[46] try to divide one large joint policy tree into many small joint policies through communication in 
POMDPs. But the number of joint policies grows exponentially to the length of the time horizon. Boutilier 
[47] proposes a method for solving sequential multi-agent decision problems by allowing agents to reason 
explicitly about specific coordination mechanisms. The assumption in that work is that agents are 
observable to each other and hence no communication is needed. These approaches model communication 
as an explicit or implicit action during the construction of the global policy. This significantly increases the 
size of the action space. In our work, we do not consider communication during the policy building phase. 
Communication decisions are made only during policy execution.  
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3 Model For Coordination 
We consider the situation where multiple sensors observe the same phenomenon and make measurements. 
Consecutive sensor measurements are assumed to be independent and to contain Gaussian random errors. 
Under this assumption, the error variance in the measurement estimate can be reduced by averaging the 
individual sensor readings. This corresponds to increasing the sampling rate of the sensors. Increasing the 
sampling rate also increases the rate of energy consumption (in a physical system, this could be because the 
sensor operation itself consumes significant amounts of power or that the larger amounts of data resulting 
from higher sampling rates have to be transmitted using wireless transmission). We assume that the energy 
reserves at each sensor node are limited. We desire the system to remain in operation for some desired 
duration, i.e., the sensor nodes should not all run out of power before this time. In addition, we expect the 
system to respond to changes in the criticality of the event being monitored. Event criticality will be 
application dependent. For instance, in a human health monitoring network where sensors measure 
physiological parameters (such as heart rate), anytime the sensor measurements are outside normal ranges, 
could be classified as a critical event. It is expected that more frequent measurements will be taken when 
the event criticality is high and less frequent measurements will be sufficient at other times.  The problem 
then is to determine the sampling rates of the individual sensors such that the phenomenon can continue to 
be measured until the desired lifetime with highest possible sampling rates. If the sampling rates are too 
high, then the sensors may run out of power before the desired lifetime. On the other hand, if they are too 
low then the phenomenon is sampled suboptimally.  

Our approach is to model the system described above as a Markov Decision Process (MDP). An MDP 
uses a discrete state space representation of the system being modeled with transitions between system 
states being defined stochastically (with the Markov assumption). The state transitions are influenced by 
actions that can be performed in a state. In addition, a reward function ascribes a value to each state that 
represents the desirability of reaching that state. The decision process is then to determine the optimal 
sequence of actions that will maximize the reward collected after starting from the initial state. 

In our MDP formulation, the system state represents the energy reserves at every sensor and the event 
criticality. The energy consumption rates and the expected changes in event criticality are modeled as 
stochastic transitions between system states. These rates are dependent on the sensor sampling rates (the 
actions). The reward in each state quantifies the utility of sampling at particular rates and the penalty of 
running out of power. The MDP formulation enables us to compute the optimal policy, which specifies the 
optimal sampling rate for every sensor at every possible state of the system. This optimal policy is then 
stored within each sensor node for execution after deployment. 

The state space formulation of the system used for calculating the optimal sampling policy assumed that 
the internal state (current energy reserve) of all the sensors is observable by a sensor at every control-step. 
But during execution, the world is only partially observable, i.e., one sensor does not know the local status 
(consumed energy) of the other sensors. In a distributed network, such a global policy can be executed only 
if the nodes exchange state information before every control-step. In a wireless network, such exchanges 
are energy intensive. We have formulated a method that is less communication intensive for executing the 
optimal global policy. In our method, every sensor node maintains an estimate of the other sensors’ internal 
states utilizing the same stochastic model used for policy creation. A sensor uses this estimated global state 
to choose the action from the MDP global policy table. 

Over time, the accuracy of these local estimates will decrease. If the communication is cost-free, the 
agents can communicate their local states at every control step and the optimal global policy can be 
executed. As communication incurs some energy cost, at every control step, a node computes the 
information entropy in the local estimate. Only if this entropy is over a threshold, does the node trigger an 
exchange of the true state information with all other sensors. Thus, communication is initiated only if the 
expected value of information that is to be received is above a pre-defined limit. After a communication 
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3.1 MDP Model for Multiple Sensor Nodes 
An MDP is a 4-tuple ሺܵ, ,ܣ ܲ, ܴሻ. ܵ is a finite set of states, in one of which the world exists. ܣ is a set of 
actions that may be executed at any state. ܲ is a probability function that defines how the state changes 
when an action is executed:ܲ: ܵ ൈ ܣ ൈ ܵ ՜ ሾ0,1ሿ. The probability of moving from state ݏ to state ݏԢ after 
executing action ܽ א ,ݏሺ is denoted ܣ ܽ,  Ԣሻ. The probability of moving to a state is dependent only on theݏ
current state (the Markov property). ܴ  is the reward function:ܴ: ܵ ൈ ܣ ՜ ࡾ . ܴሺݏ, ܽሻ  is the real-valued 
reward for performing action ܽ when in state ݏ. A policy is defined as a function that determines an action 
for every stateݏ א ܵ. The quality of a policy is the expected sum of future rewards. Future rewards are 
discounted to ensure that the expected sum of rewards converges to a finite value, i.e., a reward obtained ݐ 
steps in the future is worth ߛ௧, 0 ൏ ߛ ൏ 1, compared to receiving it in the current state. ߛ is called the 
discount factor. The value of a state ݏ under policy ߨ, denoted byܸஈሺsሻ, is the expected sum of rewards 
obtained by following the policy ߨ from ݏ. The value function determines the action to be executed in state ݏ  under ߨ: 

argmaxא ቌܴሺݏ, ܽሻ  ߛ  ,ݏሺ ܽ, ௌאԢሻ௦ᇲݏ ܸஈሺݏԢሻቍ 
(1) 

A policy is optimal if the value of every state under that policy is maximal. If all the model parameters 
are known, the optimal policy can be computed by solving the Bellman equations:  ܸሺݏሻ ൌ maxא ൭ ,ݏሺ ܽ, ௌאԢሻ௦ᇲݏ ሾܴሺݏ, ܽሻ   Ԣሻሿ൱ݏሺܸߛ

(2) 

The Bellman equations are solved using the Value Iteration algorithm. In this algorithm, the value 
function is initialized to arbitrary values ܸሺݏሻ . At iteration ݇  0, the value function is updated: 

ܸሺݏሻ ൌ maxא ൭ ,ݏሺ ܽ, ௌאԢሻ௦ᇲݏ ሾܴሺݏ, ܽሻ  ߛ ܸିଵሺݏԢሻሿ൱ 
(3) 

As ݇ ՜ ∞, ܸ converges to the optimal policy values. 

We now describe how the problem of coordinated sensing in a resource constrained sensor network can 
be formulated as an MDP. We discretize all real-world features since the MDP formulation we use requires 
a discrete state space. Let ܰ denote the number of sensors that are to coordinate with each other. The local 
state of node ܰ is represented by the state vector ሺݐ, ݄, ݁ሻ. ݐ א ሼ1,2, ڮ , ܶሽ indicates the number of control 
steps completed since the initial time. ܶ  corresponds to the guaranteed lifetime desired from the joint 
system. ݄ א ሼ1,2, ڮ , ሽܪ  is a measure of the criticality of the sensor readings. This is application 
dependent. For instance, this could correspond to the health condition of a patient in a human health 
monitoring application. ݁ א ሼ1,2, ڮ ,  ሽ is the amount of energy consumed. We assume that the eventܧ
criticality can be estimated at each sensor node based on its local sensor measurements. is available to each 
sensor node i.e.,݄ ൌ ݄, ݅ ൌ 1,2, … , ܰ  . Representing the state using components each representing an 
independent entity is called a feature space representation. 

The global state is the joint local states of all the sensors, ሺ ଵܵ, ܵଶ, … , ܵேሻ. Let ܵ denote the finite set of all 
possible global states. The joint action space ܣ is the action concurrently executed by all sensors, ܣ ൌ ଵܣ ൈܣଶ ൈ … ൈ  denotes the set of all possible sensor ܣ  is the action space of sensor node ܰ andܣ ே whereܣ
sampling rates.  ܲ is the transition probability function defining how the global state changes when a joint action is 
executed, ܲ: ܵ ൈ ܣ ൈ ܵ ՜ ሾ0,1ሿ. The probability of moving from state ݏ to state ݏ after taking action ܽ is 
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denoted by ൫ݏ, ܽ, ൯ݏ ൌ  ቀሺݐ, ݄, ,ሻࢋ ሺܽଵ, ܽଶ, … , ܽேሻ, ൫ݐ, ݄ , ൯ቁࢋ  where ࢋ ൌ ൫݁ଵ,, ݁ଶ,, … , ݁ே,൯  and ࢋ ൌ ൫݁ଵ,, ݁ଶ,, … , ݁ே,൯. The increase in control-step, change in event criticality, and fall in energy reserves 
are independent and hence we can define 

,ݏ൫ ܽ, ൯ݏ ൌ ,ݐ൫் ,ு൫݄൯ݐ ݄൯ ෑ ,ா൫݁, ܽ, ݁,൯ே
ୀଵ  

(4) 

We define the component transition functions below.  

൫௧,௧ೕ൯் ൌ ቐ1, if ݐ ൌ ݐ ൌ ܶ1,if ݐ ൌ ݐ  10,otherwise  
(5) 

,ா൫݁ ܽ, ݁൯ ൌ ۔ە
ۓ 1, if ݁ ൌ ,ሺܽሻܧ if ݁ ൌ ݁1 െ ሺܽሻ,if ݁ ൌ ݁  10,otherwise  

(6) 

The rate at which energy is consumed by a sensor is dependent on the sampling rate (action) and 
modeled with probability ாሺܽሻ. The energy consumption rate increases with the sampling rate. 

ு൫,ೕ൯ ൌ ۔ۖەۖ
ۓ ݅ ு,if ൌ ுchange,if ݄2݆ ൌ 1, ݄ ൌ 2 or ݄ ൌ ,ܪ ݄ ൌ ܪ െ ,ுchange1 if ห݄ െ ݄ห ൌ 10, otherwise  

(7) 

 ுchange are probabilities that model the change in event criticality (the two values are dependent ுand
since the sum of all transition probabilities out of a state must sum to 1). These component transitions are 
illustrated in Figure 2 and the evolution of the full local state is shown in Figure 3. ܴ ൌ ܴሺݏ, ܽሻ ൌ ܴ൫ሺݐ, ݄, ݁ଵ, ݁ଶ, … , ݁ேሻ, ሺܽଵ, ܽଶ, … , ܽேሻ൯ is the reward function and it depends only on the 
sensor sampling rates and the event criticality. Intuitively, the sampling rate should be higher during critical 
events. There is a penalty, ܴpowerout, if the system (i.e., all sensor nodes) runs out of power before the 
desired lifetime. The reward function is defined as ܴ൫ሺݐ, ݄, ݁ଵ, ݁ଶ, … , ݁ேሻ, ሺܽଵ, ܽଶ, … , ܽேሻ൯

ൌ ۔ە
,poweroutܴۓ if ݐ ൏ ܶ, ݁ ൌ ,ܧ ݅ ൌ 1,2, … , ܰ݇ ൈ  ܽே

ୀଵ,ழா ൈ ݄ , otherwise  

(8) 

If multiple sensors are able to sense simultaneously, then the reward is proportional to the sum of the 
sampling rates, i.e., the reward is inversely proportional to the expected variance in the fused estimate. This 
is obtained from the assumption that successive sensor measurements are independent and that the true 
measurement is corrupted by zero-mean Gaussian noise. The above formulation holds true when the 
sensors have the same error variance and zero co-variance. This term can be modified to reflect unequal 
error variances and co-variances (for instance, using a Kalman filter formulation). 

The global policy is obtained by solving this MDP through the value iteration or policy iteration 
algorithms. 
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Let ݐ denote the control step when the decision to communicate has to be made by node ܰ. Denote by 
subscript – ݅ the set of parameters of all nodes other than ܰ (for example, ݁௧,ି denotes the set of energy 
reserves of all nodes other than ܰ at time ݐ). Let the global state at ݐ െ 1be precisely known to be ݏ௧ିଵ ൌ൫ݐ, ݄, ݁௧ିଵ,, ݁௧ିଵ,ି൯ and the action executed at ݐ െ 1 be ܽ௧ିଵ ൌ ൫ܽ௧ିଵ,, ܽ௧ିଵ,ି൯. At control step ݐ, ܰ only 
knows its local energy reserve, ݁௧, (local state) but not that of the other nodes. (For simplicity of notation, 
we assume that the event criticality, , does not change.) Let ݁ି  denote an arbitrary vector with 
components  ሺ݁ଵ, ݁ଶ, … , ݁ିଵ, ݁ାଵ, … , ݁ேሻ. The set of possible states at ݐ contains those states which have a 
non-zero transition from the state at ݐ െ 1: ܵ௧ ൌ ൛൫ݐ, ݄, ݁௧,, ݁ି൯|ா൫݁௧ିଵ,, ܽ௧ିଵ,, ݁൯  0, ݆ ് ݅ൟ (9) 

Here, ாሺܽሻ is the transition probability function. The probability of the global state being a particular 
state ݏ א ܵ௧, with components ݏ ൌ ൫ݐ, ݄, ݁௧,, ݁ି൯ is given by 

Pr௧ሺݏሻ ൌ ෑ ,ா൫݁௧ିଵ, ܽ௧ିଵ,, ݁൯ே
ୀଵ,ஷ  

(10) 

Note that Pr௧ሺݏሻis dependent only on the transition probability and the action taken in the previous step. 
We desire to calculate the ambiguity in the set of possible states after the current control-step, i.e., at ݐ  1. 
Let ܵ௧ାଵdenote this set. ܵ௧ାଵ contains all the states that can be reached from a state in ܵ௧ by taking the 
action specified by the policy. Let ߨሺݏሻ denote the action (sampling rates) specified by the policy at a state ݏ. Then, ܵ௧ାଵ is given by ܵ௧ାଵ ൌ ሼݏ|ݏᇱ א ܵ௧, ,ᇱݏሺ ,Ԣሻݏሺߨ ሻݏ  0ሽ (11) 

The probability of the global state at ݐ  1 being a particular state ݏ א ܵ௧ାଵ is given by Pr௧ାଵሺݏሻ ൌ  Pr௧ሺݏᇱሻሺݏᇱ, ,Ԣሻݏሺߨ ௌאሻ௦ᇲݏ  (12) 

Note that the distribution of states at ݐ  1 is dependent on the policy, ߨ. We use the information entropy 
of this distribution as the value of communication, ௧ܸ, and is given by 

௧ܸ ൌ െ  Pr௧ାଵሺݏሻ log൫Pr௧ାଵሺݏሻ൯௦אௌశభ  (13) 

If ௧ܸ  exceeds a pre-defined threshold (determined empirically in our current work), the sensor node 
triggers a communication step, which leads to exchange of local state information and exact knowledge of 
the global state at control step ݐ. 

Each communication action incurs a cost, which is also modeled stochastically with a probability 
parameter . For each communication action, the energy reserve of the sensor node decreases by one with 
probability   and remains the same with probability of 1 െ  . The average energy consumed at each 
communication step is  . 

 

5 Simulation Results 
The MDP models that we described have several parameters such as the various transition probabilities 
(energy consumption rate), relative amounts of rewards/penalties, and communication cost. We first 
evaluate the effect of changing an MDP parameter on the computed policy. We next study the parameters 
that affect the amount of communication between sensors during policy execution. We then evaluate the 
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sensitivity of the policy to differences in the stochastic model parameters used during policy computation 
and policy execution. We also compare the performance of the MDP policy with other fixed and random 
policies. 

We use two metrics of system performance. Note that as the policy is stochastic, the metrics are expected 
values (obtained in simulation experiments by averaging the results from several policy executions). The 
first is the system energy outage percentage which is defined as the proportion of policy executions that 
ended with all sensors running out of power before the desired lifetime (ܶ). The second metric is the system 
lifetime which is defined as the expected number of control steps that the system is in operation (at least 
one of the sensors has power). 

 

5.1 Effect of MDP parameters on policy 
In these experiments, we execute the computed policy under two extremes of communication: full or no 

exchange of state information. In the full exchange case, the sensors communicate before every control step 
to learn the full state. In the no communication case, each sensor relies on a stochastic model of the other 
sensor’s performance in lieu of the true state. Figure 4 shows the probability of the system running out of 
power under these two cases. The parameters used in these simulations vary with the number of sensors to 
ensure that the policy can be computed in a reasonable amount of time (Table 1). The discount factor used 
to calculate the optimal MDP policy is  ߛ ൌ 0.99. The results are averaged from 10,000 simulation runs. As 
expected, full exchange of state information enables the execution of the optimal policy and hence the 
system has a longer lifetime.  

Table 1. The simulation parameters for the networks with different size 

# of sensors T H E Rpowerout 

2 70 10 10 -20000 

3 40 10 10 -20000 

5 14 4 4 -4000 

 
 

 

 

Fig. 4. Probability of system running out
of power under the full communication
and no communication case 

Fig. 5. Change in sampling rate over
time with changes in event criticality 
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We evaluated the policy over 10,000 executions with a time varying event criticality profile to study how 
the sampling rates (actions of the MDP policy) vary with event criticality. In this simulation, ܰ ൌ 2, ܶ ൌ20 , ܪ ൌ 10 , ܲ ൌ 10 , ܴ୮୭୵ୣ୰୭୳୲ ൌ െ10000 , ܽ א ሼ1,2, … ,10ሽ, ு ൌ 0.75, ߛ ൌ 0.99.  Figure 5 shows the 
change in sampling rate over time with changes in event criticality. The sampling rate increases during 
periods of high criticality while the policy still ensures that the system does not run out of power.  

 

5.1.1 Effect of penalty for running out of power 
We changed the magnitude of the negative penalty that was used in the reward function (ܴpowerout) to study 
its impact on the policy. Figure 6 shows the system energy outage percentage for a range of penalties in the 
2-sensor case. The plot shows the benefit of (full) communication.  Figure 7 shows the average utility of 
the corresponding policies. The utility of full communication is below that of the no communication case 
when the magnitude of the penalty becomes small. Thus, the magnitude of the penalty should be higher 
than the crossover point shown in Figure 7. 

 

 
 

 

 

 

5.1.2 Effect of probability of change in criticality 
We changed the magnitude of the probability that was used in the transition function to model the change 
in event criticality with time (ு) to study its impact on the policy. This probability will be dependent on 
the specific application and the granularity of the model. Figure 8 and Figure 9 shows the system energy 
outage percentage and lifetime respectively for a range of probabilities. Each plot shows the benefit of 
(full) communication. These results show that while the policy responds appropriately to changes in event 
criticality, it is relatively insensitive to the specific values used to model the change in event criticality. 

 

Fig. 6. Effect of penalty in the reward
function on the system power outage
percentage for both the full and no
communication case 

Fig. 7. The utility of the MDP policy with
different penalties in the reward function
for both the full and no communication
case 
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5.1.3 Effect of energy consumption rate on lifetime 
In the MDP formulation, the rate at which energy is consumed at a sensor when sampling at a particular 
rate is modeled stochastically. We derived analytical equations to relate the energy consumption rate at a 
particular sampling rate to the expected system lifetime. In these derivations, we only consider the case 
where the sensors sample at a fixed rate. The goal is to understand the relationship between the stochastic 
energy consumption rate and the expected system lifetime in order to help us decide the appropriate 
discretization to be used while formulating the MDP model (i.e., to decide how finely time and energy have 
to be subdivided in the model).  

Let  denote the probability that the energy level increases by one at a particular sampling rate. Let ܲ 
denote the number of discrete energy levels and ܶ the number of discrete time levels. We now derive the 
expected lifetime for such a system. The lifetime is the number of time-steps that at least one of the sensors 
has not run out of energy. Note that the system lifetime could be an arbitrarily large number with some 
small but non-zero probability. As the time model in the MDP is finite, we set the lifetime to ܶ for all cases 
when the system survives beyond the maximum time level, ܶ, in the model. This enables us to compare the 
analytical results with finite simulations. 

Let Prfailሺݐ,  is the probability  .ݐ ሻ denote the probability that the lifetime of a single sensor is less than
that the energy level of the sensor increases in one time-step. Then, 

  

 

 

 

Prfailሺݐ, ሻ ൌ  ൬ ݆ െ 1ܲ െ 2൰ ିଵ௧ିଶ
ୀିଵ ሺ1 െ  ሻିାଵ

(14) 

Define Prfailሺݐ, ሻ ൌ 0if P-1t-2. This is the probability that the energy level increased at least ሺܲ െ 1ሻ 
times in ሺݐ െ 1ሻ time-steps. The probability of the lifetime being exactly ሺݐ െ 1ሻ is Prfail,tሺݐ, ሻ ൌ Prfailሺݐ, ሻ െ Prfailሺݐ െ 1,  ሻ (15)

The expected lifetime of the single sensors is given by 

Fig. 8. Effect of probability of change in event
criticality on the number of times the system
has a complete power outage for both the full
and no communication case 

 

Fig. 9. Effect of probability of change in
event criticality on the system lifetime for
both the full and no communication case 
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 ሺݐ െ 1ሻ ൈ Prfail,tሺݐ, ሻ்
௧ୀାଵ   ܶ ൈ ൭1 െ  Prfail,tሺݐ, ሻ்

௧ୀାଵ ൱ 
(16) 

The second term denotes the case where the sensor survives for more than ܶ time steps. The probability 
of the system (two sensors) lifetime is ሺݐ െ 1ሻ is given by Prfail,systemሺݐ, ሻ ൌ 2ൈPrfail,tሺݐ, ሻ ൈ Prfailሺݐ, ሻ െ ቀPrfail,tሺݐ, ሻቁଶ

 (17) 

The expected system lifetime is then given by  

 ሺݐ െ 1ሻ ൈ Prfail,systemሺݐ, ሻ்
௧ୀାଵ   ܶ ൈ ൭1 െ  Prfail,systemሺݐ, ሻ்

௧ୀାଵ ൱ 
(18) 

We plot the expected system lifetime with different values for energy consumption rate and maximum 
available energy in Figure 10. The maximum number of time-steps is 20. The plot enables us to set the 
range of probabilities that should be used to model the energy consumption rate at different sampling rates, 
and the relative values of maximum energy and time in the MDP model. 

 

 
Fig. 10. Expected system lifetime with different discretization of available energy (P) and energy 
consumption rate (ࡱ ൌ  െ  (

 

5.2 Communication 
Figure 11 shows the change in the probability of system power outage with variation of the communication 
threshold for ܰ ൌ 5  cases. Figure 12 shows the corresponding average utilities. The communication 
threshold represents the minimum uncertainty in the global state estimate required to trigger an exchange of 
local state information between nodes via communication.   represents the cost (probability that energy 
reserves keeps the same) of a communication step. Higher values of   corresponds to lower 
communication cost. These figures show the trade-off between the energy cost of communication and the 
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amount of information available from communication. Increased communication leads to better execution 
of the optimal policy but it also incurs a higher cost from communication. When the threshold is low, the 
number of communication steps increases and this leads to execution of the optimal policy and low system 
outage. On the other hand, when the communication threshold is high, communication reduces and system 
performance begins to reflect the no communication case.  

 

5.3 Sensitivity to errors in model parameters 
In the earlier simulations, it was assumed that the stochastic model used during offline policy computation 
exactly matched the stochastic energy consumption model of the physical system during execution. Here, 
we generate the optimal MDP policy by underestimating and overestimating the true rate of energy 
expenditure of the sensor system (and which is used during execution). The amount of over- or 
underestimation is the difference in probability of energy increase (ா ) between the model used for 
computing the MDP policy and the true model used during execution.  

 

 
 

 

 

Figure 13 shows the effect that the model error has on the expected performance of the resulting policy 
and Figure 14 shows the decrease in energy reserves over time with varying amounts of model error 
(ܰ ൌ 2) when the agents do not communicate at all. (In these figures, an error of ݔ% indicates that the 
probability of energy increase used for simulation is 1  ݔ  times the probability used during policy 
calculation). In these cases, the resulting policy is impacted by model errors. Figure 15 shows the 
corresponding decrease in energy reserves when the agents communicate during policy execution ( ൌ0.9, threshold of communication = 1.75). These plots show that communication during execution offsets 
the inherent error in the model and removes the variation in the expected performance of the resulting 
policies. Figure 16 and Figure 17 show the probability of the system running out of power and the expected 
lifetime when the model over or underestimates the energy expenditure rate. The ability to communicate 
local state information (local energy reserve) increases the system lifetime.  

Fig. 11. Effect of varying the threshold
of communication on the system
power outage. N=5 

Fig. 12. Effect of varying the threshold of
communication on the average utility of
executing the MDP policy. N=5 
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5.4 Comparison with Random and Fixed Policies 
We now compare the performance of the sensor sampling policies as computed by the MDP model with 
other fixed and random sampling policies. The fixed policies are: 

a. “Min”: always sample at the lowest sampling rates.  

b. “Max”: always sample at the highest sampling rates.  

c. “Heuristic”: sample at a rate determined by remaining energy (RE), remaining time steps (RT), and 
energy consumption model  (p(a)) as the following equation:  ்ܴ ൌ ோಶଵିሺሻ. 

Fig. 13. Probability of system power
outage with varying amounts of model
error (ࡺ ൌ , , ) 

Fig. 14. Remaining energy over time
with varying amounts of model error
and no communication (ࡺ ൌ ) 

Fig. 15. Remaining energy over time with
varying amounts of model error and
communication during policy execution
ࡺ) ൌ , ࢉ ൌ . ૢ, threshold of communication
= 1.75) 

Fig. 16. Probability of system power
outage with varying amounts of model
error (ࡺ ൌ ) 
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The random policy (“Random”) is to sample at a random rate at every time step. The MDP policies are 
executed with communication with no energy cost (“MDP-FC”) and with a non-zero cost of 
communication (“MDP-CC”). The corresponding probability of system power outage is shown in Figure 
18. Figure 19 and Figure 20 show the corresponding average utility and average system lifetime. Note that 
the MDP-FC policy results in a power outage probability as low as the minimum sampling rate case (the 
best possible) but while enabling the sensors to sample at higher sampling rates towards the end of the 
desired (the highest utility). The MDP policy is thus able to use the current time and the desired lifetime to 
increase the sensor sampling rates when it becomes likely that the system will not run of power before the 
desired duration. 

 
Fig. 17. Average system lifetime with varying amounts of model error (ࡺ ൌ ) 

 

  

  
 

 

Fig. 18. System power outage of
MDP, Random, and Fixed policies
ࡺ) ൌ ) 

Fig. 19. Average Utility of MDP,
Random, and Fixed policies (ࡺ ൌ ) 
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Figure 20: Average System Lifetime of MDP, Random, and Fixed policies (ࡺ ൌ ) 

6 Conclusions and Future Work 
We have shown how the Markov Decision Process framework can be used as the basis for coordinated 
sampling in a sensor network. Our approach enables an optimal policy to be computed before deployment 
under the assumptions of full observability of the local state of all sensors. We have formulated 
communication scheme that enables individual sensors to execute this global policy by communication 
with other sensors only when the expected value of information to be gained from the communication is 
high. We have shown simulation results that characterize the performance of this control framework. This 
method is suitable for networks of relatively few sensors and where the computational capabilities and 
energy reserves at each node are limited. 

In future work, we plan to modify the policy computation algorithms and policy representation so that the 
technique can be scaled to larger number of node. One of the reasons for the large state space is because of 
the discretization of continuous parameters. We will also explore variants of MDPs that use continuous 
Markov models for this reason. 
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