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ABSTRACT
Participatory sensing is a paradigm that allows each partic-
ipant to sense, collect and transmit information about their
surroundings to either other members in the group or to a
centralized server. The information that is provided by the
community of users is then combined to provide a useful ser-
vice to all the participants. The focus of this work is one
such participatory sensing application, namely mobile traf-
fic monitoring. In this application each participant provides
real time update on location and speed of the user’s vehicle
to a centralized server; information from multiple partici-
pants is then aggregated by the server to provide current
traffic conditions to all participants. Successful participa-
tion in traffic monitoring application depends on two factors:
the information utility of the estimated traffic condition, the
amount of private information (speed and position) each
participant reveals to the server. Each user prefers to re-
veal as little private information as possible, but if everyone
withholds information, the quality of traffic estimation will
deteriorate. We model these opposing requirements by con-
sidering each user to have a utility function that combines
the benefit of high quality traffic estimate and the cost of
privacy loss. Using a novel Markov-based model, we mathe-
matically derive a policy that takes into account the mean,
variance and correlation of traffic on a given stretch of road
and yields the optimal granularity of information revelation
for this stretch of road to maximize user utility. We validate
the effectiveness of this policy through real-world empirical
traces collected from a day-long 100-vehicle experiment on a
highway in Northern California, conducted in 2008. The val-
idation shows that the derived policy yields utilities that are
very close to what could be obtained with an oracle scheme
that has full knowledge of the ground truth.

1. MOTIVATION FOR PARTICIPATORY SENS-
ING

In existing sensor networks, power-constrained sensors are
deployed in the targeted area and data is collected till the

sensor runs out of battery or the collection time window ex-
pires. There are several disadvantages in such traditional
sensor networks. First, the size of the sensor network is usu-
ally small. Second, most sensors are power constrained and
hence may need either replacing or recharging of their bat-
teries; either of these tasks is intrusive to the sensing process
and can sometimes be time consuming if the sensing envi-
ronment is not easily accessible. In order to overcome these
shortcomings of current sensor networks, researchers have
proposed projects such as MetroSense [2] and Participatory
Sensing [27].

This new generation of sensing projects are based on the
concept of“people-centric sensing”at a large scale (e.g., cam-
pus, town, or metropolis). People are central to the sensing
experience and represent the key architectural component
in this new paradigm. In this category of sensing, human-
carried sensors are brought into the environment that are
interested in sensing. The key element of such sensing is
that people might be sensing their surroundings as they go
about their daily activities without even making any explicit
effort to sense. Mobile phones have become a key enabler for
such silent sensing. Mobile phones with several integrated
sensors, such as GPS, audio, Bluetooth, and Wifi are in-
creasingly being used in such participatory sensing projects.

In this paper, we focus on one particular participatory sens-
ing application, namely urban traffic monitoring. In this
traffic monitoring application, sensors such GPS are inte-
grated either into a mobile phone or into a user’s vehicle.
These sensing systems have the potential to radically im-
prove the accuracy and timeliness of traffic information. In
this application, several users driving on various road seg-
ments can use their GPS-enabled sensors to accurately de-
termine their speed and position information. The measured
information is then transmitted to a backend aggregation
server. The aggregator collects segmented traffic reports
from individual users and combines the reports to obtain
complete traffic condition on the entire road stretch. The
global traffic information is in turn used by the aggregator to
provide real-time traffic and travel time estimates to all the
users in the system. Traffic sensing is an important applica-
tion class where the accuracy of traffic estimation improves
with increasing number of participants.

1.1 Importance of Traffic Sensing
Population growth in the U.S. metropolitan areas has out-
grown the transportation infrastructure. As a result, free-



way congestion is rapidly becoming a major economic hur-
dle. Estimates show that traffic congestion cost over 10 bil-
lion dollars in economic activity in 2003 [3], and burnt over
400 million gallons of excess fuel in Los Angeles metropolitan
area alone. Commuters have turned their attention to real-
time traffic monitoring and drive time estimation services [4]
to avoid congested areas and to find alternate routes. These
services all rely on traffic estimation based on loop inductors
that are installed below the road surface on major freeways.
Inductors provide the speed and density estimates based on
vehicles that travel over the inductors. Many freeway in-
ductors are connected to a centralized data server and send
information to the server every time a car passes over an
inductor. Data from these inductors is aggregated by the
server to provide real-time traffic conditions. There are two
disadvantages of loop inductors. First, loop inductors are
expensive to install and maintain, and hence they are in-
stalled only on a few major road segments. Loop inductor
installation is estimated to have cost 2.5 billion dollars al-
ready in the state of California. Second, majority of the
installed inductors, except for those on some freeways, do
not provide traffic updates to the data server. These in-
ductors are primarily used for signal activation rather than
traffic data collection.

In such contexts, we believe that GPS-embedded mobile de-
vices will provide a cost effective alternative to provide real
time traffic information, where they can augment inductor-
based traffic sensor data by providing precise speed informa-
tion at any arbitrary location, not just on freeways. In par-
ticular, mobile devices can provide traffic information even
on secondary and tertiary roads where installing and man-
aging inductor coils may be prohibitively expense. Mobile
devices are integrating a variety of system components, such
as on-board GPS receivers, that make them uniquely well
suited for traffic sensing. They also have enough computing
power to process the sensor data to make intelligent local
decisions on when and how much traffic sensing informa-
tion to update to a backend server. Finally, they can use
their communication capabilities to instantly transmit that
data to a backend data aggregator that can provide cus-
tomized traffic service to an end user. The combination of
device features, near universal availability, and wide cover-
age create new opportunities to dramatically change traffic
sensing, traffic data aggregation, and most importantly real-
time traffic estimation.

1.2 Importance of Privacy
While the motivation for traffic sensing using mobile phones
is clear, the approach described above, where the user re-
ports the speed and position information to the aggregator
potentially compromises the participant’s privacy. The sim-
ple sense and transmit approach totally ignores the device
holder’s privacy. Note that, in traditional sensor networks,
since a sensor node is not associated with a particular in-
dividual the need for privacy is relatively low. However, in
participatory sensing particularly, when a mobile phone is
being used as sensor, the sensing device and the participant
are closely tied together. A mobile phone identifies the sen-
sor uniquely with a participant’s identify. The data sensed
is not only indicative of the participant’s surroundings, but
also reveals the participant’s location and speed. Hence, we
have to take the device holder’s (application subscriber’s)

privacy into account when designing the system. If the ac-
curate location/speed information is eavesdropped by mali-
cious attackers, the attackers can reveal the phone’s identity
by investigating the MAC layer packet headers. Once the
identity of the device holder is revealed with precise loca-
tion and speed information, the participant is exposed to the
attacker. Imagine the day when an unwary traffic sensing
participant gets a speeding ticket as an SMS message!

The goal of this paper is to study the privacy risks in traffic
sensing. In order to protect users’ privacy, we derived a util-
ity based application method, which lets the users update
the system with “just enough” information to the backend
server that may tradeoff some data accuracy with improved
user privacy. In this research, we consider the location gran-
ularity as a mechanism to obfuscate the users’ precise loca-
tion information. For instance, using a coarse location gran-
ularity the user can inform the aggregator that he/she is
currently driving somewhere between two exits on a freeway
without disclosing the precise location. By coarse location
information, privacy is protected while the system can still
maintain reasonable service quality. In order to implement
such utility based information update policy, we propose a
novel Markov model to evaluate the impact of granularity
on the accuracy of traffic estimation (i.e., the application
service quality).

Specifically, in this paper we propose a policy which helps a
single user to decide on the optimal information precision.
We assume that the input to the policy is the mean, vari-
ance, and correlation information for a given road-stretch.
A novel Markov-based model formulation is applied to the
road traffic estimation accuracy measurement. Based on the
Markov model, we propose a particular utility function that
considers the tension between traffic estimation error and
users’ potential privacy loss. With the utility function, we
are able to compute the optimal granularity for traffic in-
formation update on the corresponding road section. We
validate this policy on a traffic update database. The traf-
fic update database was generated from a recent study in-
volving 10-hour 100-vehicles freeway real traffic experiment
which is conducted on Feb 8th 2008 jointly by the Nokia Re-
search Center and the University of California, Berkeley [1].
In this large scale study, the very first of its kind in the
United States, 100 drivers provided over one million traffic
updates to a backend database server.

It worth noting that the inherent trade-off between privacy
and traffic estimation precision is the core for application
design. One of our novel contributions is to formulate this
tension as a utility optimization problem from the perspec-
tive of a single user, and derive a near-optimal policy that
maps a set of available a-priori knowledge about traffic con-
ditions to a deterministic decision about what spatial gran-
ularity the user must send information to the server.

This paper makes the following three contributions. First,
we propose a Markov-based road model that takes into ac-
count the mean, variance, and correlation of traffic on a
given stretch of road for traffic conditions. This model al-
lows us to estimate the impact of granularity on estimation
accuracy. Second, we formulate the decision making prob-
lem for an individual user (to decide the information granu-



larity to contribute to the society) as a utility optimization
problem. The optimization problem assumes that the users
are intelligent with characteristic of rationality and selfish-
ness. A policy is derived based on the formulation which
yields the optimal precision of information revelation for
the corresponding road stretch. The information precision
is optimal in the sense that if a user uses this granularity
to reveal his/her local information, he/she can get optimal
utility, which is a trade-off between privacy leak risk and so-
cial service quality. Third, extensive performance analysis of
our proposed policy has been done on real experiment data
consisting of more than one million traffic update records
collected during a 10-hour 100-car experiment. Our analy-
sis shows that a) our proposed policy is near optimal in all
cases; b) the proposed policy is robust and it still yields good
utility gain for users when the three parameters’ estimations
have errors.

The paper is organized as follows. Section 2 describes the
traffic monitoring application. Section 3 and Section 4 de-
pict our novel mathematical formulation of the problem, in-
cluding the Markov-based road condition model and utility
modeling. In Section 5, we propose a practical policy that
suggests a near-optimal decision on maximizing user’s util-
ity. Our experiment methodology and encouraging results
are presented in section 6 and 7. Finally we present some re-
lated works in Section 8 and conclude our work in Section 9.

2. APPLICATION DESCRIPTION
As we have discussed in the introduction section, we believe
that the mobile based urban traffic monitoring system will
help relieve the traffic conditions in future and help applica-
tion users estimate traffic conditions on the road with pri-
vacy reservation concerns. A straightforward version of this
urban traffic monitoring application is shown in Figure 1(a).

In the simplest version of this application, we envision the
virtual trip line (VTL) sensors [22] as replacement for in-
ductive loop sensors mentioned before. Virtual trip lines
are GPS coordinates of a line that is virtually drawn on top
of any road segment by a traffic administrator, such as US
DOT (Department of Transportation). Virtual trip lines are
stored in a database clustered by a geographic region. Reads
to the database can be done by any mobile device client but
updating the database can be done only by the traffic admin-
istrators. Any mobile device that enters a geographic region
accesses the database and downloads the VTLs over the air.
Mobile devices monitor their location using GPS and use the
cached VTLs from a region to determine if they are cross-
ing a VTL. When they cross a VTL the device sends a raw
update to a backend server with accurate position (VTL id)
and speed information. The backend server aggregates the
information obtained from multiple devices and uses it to es-
timate the current traffic conditions and provide an accurate
traffic and drive time estimates back to the mobile devices
in real time. This information can then be used to alert the
vehicle drivers about possible traffic congestions and even
suggest alternate routes.

However, for the users on the road, the major privacy con-
cerns are focusing on users’ exact location and speed. If
the user’s update information is overheard, or maliciously

detected by eavesdroppers, the user’s privacy is leaked by
revealing the exact location and speed information. Note
that although the application may not need the user’s iden-
tity when collecting the traffic condition updates, the MAC
layer of the mobile devices implicitly reveals user’s identity
by using MAC address. In this case, the simplest version
for the traffic monitoring application does not preserve the
user’s privacy. We need to modify the application to do bet-
ter privacy protection. Therefore, we propose a utility based
privacy preservation model for the traffic monitoring appli-
cation (see Figure 1(b)). This modified application consid-
ers the tradeoff between the users’ desire to protect privacy,
and their requirement to have accuracy on traffic estimation
error and provides a policy to optimize this tradeoff. That is,
the improved traffic monitoring application allow the users
to contribute to the system with “just enough” amount of
information to preserve privacy and meanwhile, make the
use of the traffic estimation with proper precision.

This modified traffic monitoring application (which is the
focus of the remaining parts of this paper) consists of four
message exchanges .

• First, application subscribers request an estimation of
mean, standard deviation in speeds and road correla-
tion factor for a certain stretch of road in a certain
time interval 1. For example, a user can send queries
to backend server by asking “what are the correspond-
ing parameters for highway I-10 exit 31 to exit 33 at
4:00pm-4:30pm, July 4th?”.

• Second, the backend server returns those parameter
values (also referred as model statistics in this paper)
possibly based on the historic data, as well as an esti-
mated number of users.

• Third, users send out the optimized local information
updates to the backend server. Upon receiving these
model and estimated statistics, the application at the
user side either computes or uses a look-up table to
find an optimized update granularity. Note that in
such a community-based application, the quality of
collected global information depends on the quality of
information contributed by individual end users who
have the motivation to protect their privacy. Our pro-
posed utility-based privacy policy formulates the ten-
sion between traffic estimation accuracy requirement,
and user’s desire about his/her own privacy into a
utility function, then maximizes this utility function
to obtain the optimal updates. With this modifica-
tion, instead of reporting exact location information,
as in the original simplest version, a user might vague
his/her location information into a proper distance
length such as “somewhere between VTL 34 and VTL
39”. This information includes an implicit spatial gran-
ularity (user’s location information with proper preci-
sion) and the user’s current vehicle speed (i.e., traffic
flow speed) with a timestamp.

1These parameters are used in the Markov model we pro-
posed in section 3 to measure the impact of traffic estimation
accuracy for the application subscribers. We will discuss
these parameters in detail in later sections.



(a) Original Application Model (b) Modified Application Model

Figure 1: Comparison of the original (intuitive) scheme and modified scheme

• Fourth, the backend server returns current traffic con-
ditions on the road stretch to the application sub-
scribers. According to the reported information from
all users in the community, the application server is
capable of estimating real-time averaged traffic flow
speed on the road, which can help users monitor the
traffic conditions for the interested road stretch.

In the following section, we will focus on how the traffic is
modeled, how to obtain the model statistics/parameters at
the backend server, how to use the model to calculate the
utility for each user, and how to calculate the optimized
updates.

3. THE MARKOV ROAD MODEL
We propose a Markov-based road model in this research
to measure the traffic estimation precision with minimized
number of parameters. The main purpose of this Markov-
base traffic model is to characterize the impact of granularity
on traffic estimation accuracy, so that we can measure the
system quality of service as a function of granularity. In this
section, we present this novel model after describing the pre-
liminaries, necessary assumptions, and notations used in the
paper.

3.1 Preliminaries
Before we introduce the Markov-based road model, we first
formally define the concept of spatial granularity which is an
important parameter for our future analysis. Spatial gran-
ularity here is defined as an integer, each unit represents a
length of road segment between two adjacent VTL. In other
word, each VTL intervals implies a spatial granularity. For
example, “between the 105th and 110th VTLs” implies gran-
ularity 5.

Both the user’s local information submitted to the central-
ized server and the server to user’s aggregated information
feedback are a tuple of VTL intervals and speed. For ex-
ample, (100 − 105thV TLs, 30mph) is a valid information
submittal.

It is straightforward that in this traffic monitoring applica-
tion, the backend traffic estimation precision depends on the
accuracy of the local sensing information contributed by in-
dividual users. On one hand, precise information submission
yields better integrated traffic estimation but compromises
on an individual’s privacy. On the other hand, too conser-
vative a contribution to the system will make the quality of

traffic estimation suffer. In order to quantify the quality of
service as a function of location information spatial gran-
ularity, we propose a novel Markov road condition model
in this section. This Markov-based model only takes 3 sta-
tistical parameters into account and is able to quantify the
estimation error with spatial granularity.

3.2 Assumptions and Notations
We assume a complete road stretch as a line with length l.
n VTLs are settled on the whole road from left end to right
end. The road is divided into sections evenly by the VTLs.
The sections are continuous and non-overlap road segments.
Each section contains a length of l

n
where n is the number

of VTLs.

Suppose that the average vehicle speed in each section at cer-
tain time spot is a random variable, denoted byX1, X2, . . . , Xn
from the first section to the n-th section. Considering the
fact that the traffic flow at certain section on the road is di-
rectly affected by the traffic condition ahead of this section,
we assume the speed Xi at the i-th section is correlated with
the speed Xi+1 at the (i+ 1)-th section. To model this cor-
relation on the traffic flow, we import a correlation factor α
(α ∈ (0, 1]). Road correlation factor α reflects the impact
of the average speed in section i to the average traffic flow
speed in section i + 1. We will discuss how α is related to
the traffic flow in the following section.

3.3 The Markov-based Road Model
Consider a road as shown in figure 2 which is separated into
n sections. Recall that Xi denotes the average traffic speed
in the i-th section, a first-order Markov-based equation is
proposed as follows:

{
Xn = xn,
Xi = αXi+1 + (1− α)xi, i = 1, 2, . . . , n− 1

(1)

where xi is a random variable corresponding to the speed
fluctuation related to the vehicle location. x1, x2, . . . , xn are
independent, with corresponding mean µi and variance σ2

i .
Note that the distribution of xi shows the exterior, isolated
road conditions at every single location. As mentioned be-
fore, α is the road correlation factor between the speed at
two neighboring sections. Specifically, the larger α is, the
smoother the traffic flow is on this road stretch.

Note that the parameter α is dependent on the time of the



Figure 2: Illustration for a road with n sections

day and the shape of the road. For instance, during peak
hours Xi is likely to be dependent on fluctuations within its
own segment (xi) and is less dependent on the Xi+1. Hence,
the optimal spatial granularity computed by our model (dis-
cussed later) is valid for a given road segment and for a given
time interval.

3.4 Service Quality Measurement
As mentioned before, this application’s service is provided
by a centralized server. The quality of the service is mea-
sured by the accuracy of the feedback estimated averaged
traffic speed. Mathematically, the quality of the service is
measured by a statistical variable: expected Mean Square
Error (MSE).

Suppose the road stretch is divided into n sections. Given
the average speed Xi at each section i at certain time, the
Mean Square Error(MSE) of estimation can be calculated
as:

MSE =
1

gbn
g
c

gbn
g
c∑

i=1

(Xi − Yd i
g
e)

2 (2)

where Yk = 1
g

∑k∗g
i=(k−1)∗g+1Xi is the estimated speed col-

lected by the service for section (k− 1) ∗ g+ 1 through k ∗ g.
For instance, if spatial granularity is 5 (i.e. g = 5), Yk mea-
sures the average speed over 5 consecutive road sections.
Xi − Yk computes the error in estimation due to reduced
precision of location information in each section.

However, this only calculates the estimated error during a
certain time interval for a given granularity g. To obtain
the expectation for estimated error, we have to aggregate
the error during each period and calculate the average.

Assume that the period of sampling is a constant t, the
estimated error on speed will accumulate to t

√
MSE in each

sampling time period. We derive the expectation of the
estimated MSE from equations 2 and 1. Given a fixed time
interval, let µi denotes the expectation of xi and σi denote
the standard deviation of xi. Consider the following three
equations:

E(x2
i ) = µ2

i + σ2
i

E(xi) = µi

E(
∑

(xi −
∑
xi
g

)2) = E(
∑

x2
i −

(
∑
xi)

2

g
)

LetEk(g) represents the average MSE of the estimated speed
in the road segment that contains section (k−1)g+ 1 to kg.

We have

Ek(g) =
1

g
{(µ2

kg + σ
2
kg)(

1− α2g

1− α2
−

(1− αg)2

g(1− α)2
) (3)

+

g−1∑
i=1

(µ
2
(k−1)g+i + σ

2
(k−1)g+i)[

1− α
1 + α

(1− α2i
)−

(1− αi)2

g
]

+ 2
∑

1≤j≤g−1

µkgµ(k−1)g+j [
αg−j − αg+j

1 + α
−

(1− αg)(1− αj)

g(1− α)
]

+ 2
∑

1≤j<i≤g−1

µ(k−1)g+iµ(k−1)g+j [
1− α
1 + α

(α
i−j − αi+j

)−

−
(1− αi)(1− αj)

g
]}

The averaged MSE for the whole road stretch can be com-

puted as E(g) = 1
x n

g
y

∑bn
g
c

k=1 Ek(g). Let e(g) denote the

estimated traffic speed error aggregated in the given time
interval t. e(g) can be calculated by:

e(g) =
√
E(g)t (4)

We have to emphasize that the MSE measurement using
the Markov road model creates a bridge between service
quality and the information granularity. It quantifies the
impact of information granularity on traffic estimation ac-
curacy, therefore makes user utility modeling on the tradeoff
between service quality and privacy protection feasible. We
will now show in section 4 how we use e(g) while computing
the user’s utility formulation.

4. UTILITY FORMULATION
Privacy modeling is the difficult part for this application de-
sign. In previous section, we proposed a Markov road traffic
model to quantify the quality of service with the spatial
granularity of the location and speed information reported
by on-road users. In this section, we focus on discussing how
to quantify the privacy loss in terms of information preci-
sion.

As we have mentioned in section 2, we have to take peo-
ple’s privacy into account in this application. If a malicious
attacker can obtain the application user’s identity informa-
tion with accurate location and speed information, the ma-
licious attacker will be able to track the user’s location and
his/her movements, which is dangerous for the application
user. Therefore, properly addressing the privacy concerns is
the first step to ensure broad user participation which is a
primary requirement for our approach to work in practice.

However, as inherited behavior for this class of applications,
the accuracy of traffic estimation depends on the accuracy of
following three fundamental factors: vehicle location infor-
mation, time of VTL crossing, speed of VTL crossing. Accu-
racy of traffic estimation is proportional to the information
accuracy along these three dimensions. Coincidentally, the
notion of user’s privacy is inversely proportional to the infor-
mation accuracy. User’s privacy can be compromised if the
combination of these three factors can be used to correlate
a traffic update with a given user. In this work, we focus on
the vehicle location dimension and assume trustfulness and
safety of the other two dimension: time and speed.



Finally, if a series of traffic updates within a time window can
be associated with a single user then it is easy to reconstruct
the user’s travel path. This information when combined
with the road network knowledge can even predict the user’s
future trajectory of motion.

In our application, we use granularity to give users choice
to vague their exact locations to increase the difficulty of
malicious tracking. On the other hand, in order to obtain
remarkable performance of the whole service, the users have
to impose some information to the system to get useful sys-
tem traffic estimation.

The utility function of each application user has two parts:
privacy protected (denote as a function p(g)) and the ex-
pected feedback estimation error (derived in previous sec-
tion as e(g)). We linearly combine these two parts with a
weight factor β.

Privacy protected function p(g) is modeled as a function of
granularity g. Intuitively, the users updated information can
be explained as “I am driving between an interval with this
speed”. Increasing length of the interval will vague the in-
formation so that decreases the probability that users exact
location got detected. This fact means p(g) is a function
that increases when g increases. There are different ways to
model the privacy in this application. Particularly, we use
the following function to model the privacy protected 2:

p(g) = l
g − 1

g
(5)

This function is proportional to g. The physical meaning of
this equation can be explained as following. Suppose that
the car we are discussing is now at somewhere of the road
we considered and the road total length is l. If the user’s
upload information does not narrow down the search scope,
the driver owns a private space with the length of l. That
is, the probability to reveal the exact location of the user
is uniformly distributed in this piece of road. On the other
hand, if g = 1, we suppose the exact location of the driver is
revealed to the system. If the information comes with gran-
ularity g, according to the previous section, the malicious
tracker has the chance 1

g
to detect the exact location. That

is, the driver’s private space is reduced by 1
g

compare to the
best privacy reservation that can be reached in this problem.
Hence, the private space, i.e., the expectation of the length
for which the vehicle runs without being detected, becomes
l(1− 1

g
).

The other part of the utility function is the estimation ac-
curacy. As we described in previous section, the accuracy
loss is modeled as the expected speed estimate error. Math-
ematically, each single user’s utility function u(g) is defined
as:

u(g) = −β ∗ e(g) + p(g) (6)

2We are aware that privacy can be modeled in multiple ra-
tional ways in this traffic monitor application. We pick one
example with meaningful physical implication here. The
utility modeling methodology can be applied to diverse pri-
vacy functions. This methodology can also be applied to
other utility functions that combine the estimation accuracy
and privacy in an arbitrary non-linear fashion.

Individual user’s objective is to maximize his/her utility.
We need to point out that the particular p(g) we considered
in this paper is a concave function that captures significant
impact of g’s change when the granularity is already refined.
For example, if g drops from 2 down to 1, it causes more
significant loss of privacy than g dropping from 20 down to
19.

5. THE PRIVACY POLICY
Each user’s decision now is an optimization problem that
maximizes their own utility function. We suppose the only
parameters that the users need to pick is spatial granularity
g. The other parameters, including road correlation factor
α, mean traffic flow speed µi and traffic flow speed standard
deviation σi for a certain road stretch are obtained by the
user by querying backend server, as discussed in Section 2.
Since the road stretch we consider has a finite length, the
number of VTLs on this road is also a finite number. There-
fore, the number of feasible granularity, which can only be
taken from integers, is bound by the number of VTLs. A
straightforward way to compute the optimal granularity can
be done by direct enumeration in the finite search space.

For each tuple of (α, µ, σ), we can compute a pre-stored
look-up table entry 3 for optimized g. This look-up table
is pre-calculated and stored at the client side. Once a user
obtains the model statistic parameter tuple, the application
will retrieve the look-up table and find the best analytical
strategy for information update granularity. We will validate
this policy in the experiment results section. The validation
shows that the derived policy yields utilities that are very
close to what could be obtained with an oracle scheme that
has full knowledge of the ground truth.

It is worth noting that the validation is taken from a single
user’s aspect of view. If the user can know (or the backend
server can estimate and tell the user) that there are other
m− 1 subscribers in same road section with him. With the
assumption that the optimal granularity g is same to them,
it is a resource waste to collect m duplicated traffic condi-
tion records from every user in this road section. Also notice
that we assume the wireless channel is open and the server
broadcast the traffic condition estimation to all subscribed
users at this road section. Therefore, we only need one of
the m service subscribers to report to the server in order to
collect the current traffic information of this piece of road
section. An intuitive way to reduce duplications is that if
the subscriber gets to know the (estimated) number of other
users (suppose there are m − 1) are within the same road
section with him/her, he/she can use 1

m
as the probability

to contribute to the application. Note that if all the users
are hiring this non-deterministic probability to report traffic
conditions, we can only say that with high probability, the
users will get service from the server. A timer for service
tracking is needed in case no user reports the traffic condi-
tion in this section. If a user cannot receive feedback from
the server before each timer is ticked, he/she will increase the

3Note that we can also compute the policy online. Using
look-up table can improve response speed while occupies
memory space. Compute policy in real-time saves the stor-
age space but takes longer time in finding the optimized
policy. Here, we only pick up the look-up table as an exam-
ple.



probability to contribute his/her local knowledge to service.
The detailed design issues, system parameter configurations,
and performance evaluations for non-deterministic method
are one of the focuses of our future work. In the remainder
of this paper, we only consider the simplified case where the
users are not able to estimate how many other users in the
same road section to validate the utility-based policy we pro-
posed in this paper. That is, after determining the spatial
granularity, the users always report traffic conditions with
the optimized granularity.

In the following of this section, we are going to discuss
the effects of the parameters on the optimal strategy in a
simplified case where we assume random variables xi (i =
1, 2, ..., n) are identically distributed. The name “simplified”
case is to contrast the “complex” case. In the complex case,
we do NOT have the additional assumption that xi and xj
(for i, j = 1, 2, ..., n and i 6= j) are identically distributed.
For the “complex” case, each road stretch may have different
mean (µi) and variance (σi). The complex case is a closer
approximation to the real road traffic since the statistical
parameters are obtained directly from the historical data
without approximations, while the simplified case decreases
the computational overhead. Since this is a real-time power-
constrained mobile device involved application, we believe
the computational cost of the simple model is an attractive
way to compute granularity. Moreover, as we show later on
in section 7, the simplified model performs as well as the
complex model.

5.1 Impact of Parameters on the Optimal Gran-
ularity Using a Simplified Model

In this subsection, we analyze the impact of statistic pa-
rameters on the optimal granularity when applying a simpli-
fied model where the random variables xi are independently
identical distributed (i.i.d). With the i.i.d assumption, the
statistical parameters µ and σ satisfy µ1 = µ2 = · · · = µn
and σ1 = σ2 = · · · = σn. The corresponding traffic satisfies
the following property:

The expectation of the speed at every location are
equal.

Theoretically, this traffic pattern appears when, for instance,
the traffic moves ideally smoothly during a segment in the
middle of a freeway. However, in practice, small fluctua-
tion of traffic mean and deviation within a threshold range
can be estimated as having same µ and σ. The validation
in later section will show that although the calculated opti-
mized granularity is not overlap the actual optimized granu-
larity, the performance of this simplified model is very close
to the real optimization point in terms of user utility.

Figure 3 illustrates the impact of analytical optimized gran-
ularity g∗ in the simplified case for different α values when
β changes. In the remaining part of this section, we discuss
parameters one by one to show their impacts on analytical
g∗.

• general observations

g∗ decreases convexly with increasing β, regardless of
α. The fact that g∗ decreases with increasing β reflects

Figure 3: optimal granularity varying with β when
µ = 50, σ = 10.

the tradeoff between estimation accuracy and privacy
protection. When users care more about the accu-
racy of the information they receive(service-concerned
users), they had better choose finer granularity, to in-
crease the overall utility. Intuitively, the more a user
weights privacy, the more hesitate the user is to pro-
vide accurate information.

A notable observation from figure 3 is that g∗ is a con-
vex decreasing function. Specifically, this means when
β is relatively small, g∗ drops more quickly than β is
larger. This phenomenon is consistent with our chosen
of privacy function (as discussed in section 4). When
the information granularity is coarse enough (i.e., g is
sufficiently large), a further ambiguous of the granu-
larity will not have significant effect on the utility.

Another implication is that only users who are ex-
tremely strictly concerned with their privacy (β < 0.4
or so) will give very ambiguous information (g > 10).
For most β values, g is kept to below 6. In practice,
this observation implies that by using proposed utility
function, the service quality is ensured in an appropri-
ate level.

• α’s impact

One observation from the plot is the corresponding β
value strictly increases at the points where g∗ drops
to 1 (user’s most accurate information is revealed at
this point) when α increases 4 Increasing α implies a
smoother road traffic condition. When the traffic flow
is smooth, privacy weights more than traffic estimation
concerns unless the user is very picky in the traffic
estimation accuracy (where a larger β is required).

• µ’s impact

Figure 3 is plotted using µ = 50, σ = 10. µ almost has
no impact on analytical optimized granularity as long
as σ << µ. This fact implies that what matters for the
calculation of the optimal granularity are the changes
in speed on the road stretch, not their absolute value.

• σ’s impact

4This is not a coincidence, it is provable. For the limit of
the pages, we omit the proof here but intuitively explain the
physical meaning of this phenomenon.



When σ increases, same β yields a larger analytical
optimal g∗. This fact is also intuitive. Note that σ
reflects the fluctuation of xi. When σ is large, the
road condition changes more significantly than when
σ is small. That means the users have to sacrifice
privacy to trade better traffic estimations.

We will show in the experiment that simplified case can also
approximate the optimal granularity comparing to the com-
plex case where xis are not assumed to be identical.

6. EXPERIMENTAL METHODOLOGY
In this section, we first describe how the real experiment
has been done and what the data structural of the trace
data base, followed by characteristics of the trace dataset.

6.1 The Experiments to Obtain the Trace
A large scale experiment to measure the effectiveness of
VTLs was conducted on Feb 8th 2008 jointly by Nokia Re-
search Center and University of California, Berkeley. In this
experiment 100 cars equipped with Nokia N95 phones which
are GPS enabled mobile devices were driven by volunteer
drivers along a carefully constructed path in the San Fran-
cisco bay area. In this experiment vehicles were driven for 10
hours on an 8 mile section of I-880 south of Oakland CA. A
real time screen snapshot taken during the live experiment
is shown in Figure 4. The length of test road segment was
chosen to have 1% to 2% penetration rate based on the num-
ber of participants and approximate round trip travel time.
The location of this experiment was specifically selected be-
cause it featured both free flowing traffic at greater than 50
mph, and congested, stop and go traffic. At the beginning
of the experiment all mobile devices downloaded the VTLs
corresponding to the test site to their local cache. As the
vehicles drove the travel route mobile devices continuously
monitored their location using GPS. As the devices crossed
a VTL they sent a traffic update to a backend database
server. The traffic update is a tuple containing the <VTL
number, time, speed>. For safety purposes during this ex-
periment the mobile device also explicitly sent its identifica-
tion information, a unique phone ID, to the backend server
to respond to emergencies during the experiment. Sending
a traffic update on crossing a VTL can be treated as spa-
tial sampling. The alternative approach to traffic sampling
is temporal sampling where the phone sends periodic traf-
fic updates. In order to compare the effectiveness of spatial
sampling over temporal sampling our mobile device client
also sent periodic (once every 3 seconds) traffic updates to
the backend server.

6.2 Characterize the Trace Dataset
This 10-hour experiment traffic dataset contains diversity
in terms of speed. It is consisted of fluent traffic flows
(> 50mph smooth flows), congested flows and stop and go
traffic (refer to a traffic lamp). There are 45 VTLs evenly
placed to record the speed measurements from the 20 vehi-
cles. In our experiment, the feasible granularity set contains
integers from 1 through 20.

The whole dataset is separated into two independent ones:
one of them includes data for all vehicles moving from south
to north (a.k.a. northbound data) and the other contains

Figure 4: Traffic Experiment

data for vehicles moving from north to south (a.k.a. south-
bound data).

In order to understand the features of the traffic dataset,
figure 5(a) and figure 5(b) plot the average traffic speed be-
tween every VTL for the whole road. For the northbound
data samples, we use time interval 45000s to 52000s (times-
tamp in the dataset) for the plot and the average is taken on
all the vehicle speeds of passing a VTL in 70 seconds. For
the southbound data, time interval is 40000s to 50000s and
speed aggregation occurs every 100 seconds.

It is hard to determine α directly from the distribution of
speed (Xis) because the distribution of xi is unknown. In
order to estimate road correlation factor α, we use best
curve fitting method on the MSE curve. Figure 6(a) and
figure 6(b) show the MSE curve fitting for northbound data
and southbound data, respectively.

For the northbound data, curve error of estimation calcu-
lated from the data traverses the theoretical Eα(g) from
α = 0.5 through α = 0.9, when g decreases. This fact im-
plies that the analytical result fits with the data with differ-
ent α for varying granularity. This result suggests that for
the samples we take from northbound data, the first order
Markovian model with a single correlation factor α may be
too simple to characterize the traffic in that region. How-
ever, the theoretical curve matches almost perfect to prac-
tical curve if we focus on the granularity within a smaller
range. For example, if we research intensively on g = 10
through g = 16, α = 0.6 is a good enough fitting parameter.

For southbound data, we find that the error curve is basi-
cally bounded by the two (α = 0.7 and α = 0.8) theoretical
MSE curves. A single value α may still insufficient to perfect
match the traffic pattern, however, the range of reasonable



(a) Northbound Data Set (b) Southbound Data Set

Figure 5: distribution of average speed at every section for a) northbound data set; b) southbound data set

(a) Northbound Data Set (b) Southbound Data Set

Figure 6: comparison of MSE for a) northbound data set; b) southbound data set

α is narrowed down to 0.7 ∼ 0.8. We also noticed that α
for southbound samples is larger than the northbound sam-
ples, which implies that in the spacial and temporal condi-
tion for southbound samples, the correlation between adja-
cent locations is larger than in northbound samples. This
conclusion is consistent with the information conveyed from
the speed plot. The higher road correlation factor indicates
more smooth distribution of speed (notice that the scales in
two speed plots are different).

7. RESULTS
In this section, we focus on presenting how well the policy
does on the real traces, compared to the real empirical opti-
mum in terms of individual user’s utility gained. According
to the experiment settings, the empirical data set is split
to two parts: northbound data and southbound data. We
validate the analytical optimal policy in both data sets.

7.1 Near Optimal Utility Validation
In this subsection, we illustrate that although the optimal
granularity calculated by our model is not always matching
the real optimal point in the trace data, its performance is
close to the optimal point in terms of individual user’s utility
gain.

7.1.1 Northbound data set
We let β varies from 0.2 to 5.0 with step size 0.2 in this
experiment. For each given β, utility at the empirical op-
timum and analytical optimal granularity g is compared in

a pair of plots. In all the plots, the continuous curve rep-
resents the corresponding utility gained by individual users
when granularity g changes. The vertical line is the ana-
lytical optimal granularity suggested by the traffic monitor
application. The intersection of the red vertical line and the
continuous curve is the actual utility gained for the applica-
tion user if he takes the suggestion.

We define two terminologies here we will use throughout the
experiments. These two terminologies are used to distin-
guish the method to compute statistical parameter µ (mean
of vehicle speeds) and σ (standard deviation of vehicle speeds).
In the “complex model”, µs and σs are calculated from real
empirical data set for each section of the road, while in the
“simplified model”, as discussed in section 5.1, with identi-
cal distribution assumption on a certain segment of the road,
simplified identical µs and σs applied for the whole segment.

It is worthy noting again that the number of parameters
(µ, σ, α) needed in a given stretch of road can vary, with
more parameters needed for roads with more complex traf-
fic, which needs to be determined empirically. In our exper-
iments data set, we find empirically that 3 sets of µ, σ and
α values are needed for the northbound, while just 1 set of
parameters gives good performance for the southbound.

In figure 8, each single user’s payoff is compared for three
different cases with the actual utility curve: a) the circle
point is the optimal utility a user could get if there has oracle
knowledge; b) dashed red vertical line is the utility obtained



(a) Northbound Data Set (b) Southbound Data Set

Figure 7: xi’s distribution a) α = 0.8 for northbound data set; b)α = 0.75 for southbound data set

(a) β = 0.2 (b) β = 0.6

(c) β = 1 (d) β = 5

Figure 8: Utility comparison for northbound data set among empirical optimal utility with oracle knowledge,
expected gained utility with complex distribution assumption and expected utility with simplified distribution
assumption



by applying “complex model”; c) dotted blue vertical line is
the user’s utility computed with “simplified model”.

The plot shows that over all, the derived policy yields util-
ities that are very close to what could be obtained with an
oracle scheme that has full knowledge of the ground truth
in all cases. There also exist some cases that the analyti-
cal granularity exactly matches the empirical optimal util-
ity with oracle scheme. Another notable observation is that
the “simplified model” performs no worse than the “complex
model” in terms of utility gain for individual users. No-
tice that “simplified model” is more practical than “complex
model” in real time traffic monitoring in the sense that the
parameter values are estimation values.

In this northbound data set performance validation exper-
iment, the accurate values we used in “complex model” are
illustrated in figure 7(a) and the estimated parameters we
used in “simplified model” are µ1 = µ2 = · · · = µ50 =
65, σ1 = · · · = σ50 = 5, µ51 = · · · = µ89 = 62, µ90 = 55, σ1 =
· · · = σ90 = 7. The road correlation factor α = 0.8 is cho-
sen by the best curve fitting method for all the experiments.
Tradeoff preference parameter β varies as 0.2, 0.6, 1, 5.

We want to highlight this significant result from the the util-
ity validation experiment. The results show that the utility-
based privacy policy model we have developed performs near-
optimally in all the cases. Notice that the actually opti-
mality can only be achieved by an oracle scheme that has
accurate full knowledge of the ground truth. This is very
impractical. Therefore, it is remarkable that our derived
policy can perform very close to the empirical optimal.

7.1.2 Southbound data set
Similar performance validation experiments have been done
to the southbound data set also. For the southbound data
set, the xi’s distribution used in “complex model” is illus-
trated in figure 7(b). As we have mentioned before, one set
of parameters for the whole road stretch is good enough for
the southbound data set. The parameters used in“simplified
model” experiments are µ = 55 and σ = 6. α value is set to
0.75 for both “complex” and “simplified” models. Figure 9
illustrates the utility for different granularity value curve ob-
tained from the empirical southbound data set. The circle
points are the maximum possible utility gained with oracle
knowledge of future. The vertical lines are the analytical
optimal granularity for complex and simplified models. The
set of plots vary β as 0.2, 0.6, 1 and 5. Similar results are
observed for the southbound set as well.

We also condense the comparison for different β in one plot
each for northbound and southbound data sets. In each
plot, the dotted line shows the optimal utility that can be
achieved. The solid lines are the utility that can be achieved
under the theoretical optimal granularity, with assumptions
of complex and simplified distribution respectively. For the
northbound data set 10(a), α is chosen as 0.8 and for the
southbound data set 10(b), α = 0.75.

7.2 Effects on Statistical Estimation Error from
Historic Data

Figure 13: effects of µ to the optimal utility gained
(β = 0.9)

As we have mentioned before, the statistical mean, varia-
tion and road coordination factor are obtaining from historic
data. It is obvious that these parameters from historic data
are different with current road conditions. In this subsec-
tion, we will show that even the statistical data is estimated,
using our model to compute optimal granularity is robust.
That is, we show a range of estimation error such that within
this range, the optimal granularity computed by our model
performs still close to the true optimal in terms of user util-
ity gains.

Assume we use i.i.d to estimate the parameters. We first fix
mean µ and road coordination factor α to investigate how
error of estimating deviation σ affects the result. When fix-
ing µ = 55 and α = 0.85, Figure 11 illustrates the effect of
changing σ from 1 to 18 when β = 0.1, 0.9, 5.0 (β is sampled
as low, medium and high values). The comparison founda-
tion is σ = 13.4, corresponding to the zero point in x-axis.
The experiment shows that when estimation deviation is less
than 50%, the performance of our algorithm is good.

Figures 12 demonstrates the cases where µ = 55, σ = 10,
when changing α from 0.5 to 1 and sampling β = 0.1, 0.9, 5.0,
the effects of error on estimating α to final optimal value.
The comparison basis is α = 0.73. The experiments suggest
that the estimation on α needs to be more accurate. The
estimated α deviation within 10% is tolerative.

We have also conducted same experiments on investigating
µ’s estimation error effects. However, the experiments show
that µ’s change does not affect the deviation of utility gained
from the model computed value to the empirical value. We
only show one plot here 13 (corresponding β = 0.9) and omit
other plots for brevity.

A problem we want to discuss here is the noise data in the
empirical data set. In the experiment validation section
when we were considering the effects of estimation error,
we have observed the phenomenon of sudden drop (in fig-
ure 11(b) when x-axis value is around −90) or sharp rise (in
figure 12(b) when x-axis value is around 35). Due to the fact
that there is only a single point deviating from other sur-
rounding nodes, we think that one possible reason of those
points’ appearance is that there exists noisy data in the raw
data set. In our validation procedure, the noisy data hasn’t
been taken into account. How to define, identify and elimi-



(a) β = 0.2 (b) β = 0.6

(c) β = 1 (d) β = 5

Figure 9: Utility comparison for southbound data set among empirical optimal utility with oracle knowledge,
expected gained utility with complex distribution assumption and expected utility with simplified distribution
assumption

(a) Northbound Data (b) Southbound Data

Figure 10: Utility performance for prediction with complex and simplified distributions for northbound and
southbound data sets

(a) β = 0.1 (b) β = 0.9 (c) β = 5.0

Figure 11: Effects of σ to the optimal utility gained



(a) β = 0.1 (b) β = 0.9 (c) β = 5.0

Figure 12: Effects of α to the optimal utility gained

nate the noisy data from this huge data set is an open prob-
lem and it is out of the scope of this paper.

8. RELATED WORKS
There is a large body of research in the area of privacy
preservation in traditional internet based social networking
applications [5, 10, 25, 20, 9, 7, 29]. However, bringing the
concept of mobility to social networking magnifies these con-
cerns immensely as compromising location privacy may lead
to serious security concerns. One major difference between
mobile social networking and traditional internet social net-
working is related to the user location information. In tra-
ditional internet, unless a user is willing to reveal his/her
location information (such as zipcode, street address) sub-
jectively, his/her precise location privacy is preserved. How-
ever, in some mobile social networking applications, location
information can be provided and used for social benefits such
as the urban traffic monitor application discussed in this pa-
per.

Several software solutions [14, 8, 17, 18, 11, 24] have been
proposed to protect privacy in mobile applications. Tang et
al. [31] proposed a distributed method for storing personal
information in mobile devices. Hong et al. [17, 18] proposed
Confab, a toolkit for mobile application developers and end
users which supports a broad spectrum of privacy needs.
Desmet et al. [11] implemented a software architecture to
allow the secure execution of third party applications on a
Windows Mobile device. Capra et al. [8] suggested a mid-
dleware architecture that provides privacy for mobile appli-
cations.

Several experimental systems [19, 32, 15] also built location
based services where the location of a mobile device is hidden
from the service provider for protecting privacy. However,
in these systems, a basic assumption is that there exists a
trusted central authority that is able to provide accurate in-
formation. Therefore, it is the authority’s responsibility to
preserve users’ privacy. In those applications, privacy can
be protected by applying k-anonymity [30] or l-diversity [21]
mechanisms. In contrast, our traffic monitor system does
not has a trusted capable authority to secure user’s infor-
mation. The application at the user side consider user’s
tradeoff preference between privacy and traffic estimation
accuracy, together with statistical traffic condition on cer-
tain stretch of road to decide reporting local traffic status
with some ambiguity that can optimize the tradeoff between

privacy preservation and quality of service. Protect privacy
at the user end before sending out the sensitive information
can not only reduce the overhead on protecting privacy in
air, but also decrease the cost to maintain a trusted capa-
ble authority. Therefore this mechanism is considered more
suitable for traffic monitor, as a light-weight real-time social
network mobile application.

It is only recently that human-involved sensor-embedded
mobile applications have come to one of the important streams
of sensor network research [26, 12, 22, 13, 23]. Miluzzo
et al. [22] proposed CenceMe, a large-scale deployment of
sensor-equipped mobile phones to facilitate the sharing of
“presence” information among friends. Eisenman et al. [13]
investigate how personal recreation can benefit from sens-
ing in the BikeNet projects. Musolesi et al. [23] are looking
at novel ways to blend the virtual world and the sensed
physical world together. Reddy et al. [26] developed Cam-
paignr framework for creating urban participatory sensing
using mobile devices. In [27], Reddy et al further develop
a set of metrics to help participatory sensing organizers de-
termine individual participants’ fit with any given sensing
project, and describe experiments evaluating the resulting
reputation system.Shilton et al. [28] discussed the benefits
and challenges of participatory design in participatory sens-
ing settings, and outline a method to integrate participatory
design into the research process. Hoh et al. [16] proposed a
social network based traffic sensing application using the
concept of spatial sampling with virtual trip lines. In these
previous studies the focus is primarily on absolute user pri-
vacy rather than trading privacy with service quality. This
paper specifically focuses on relative privacy where each sin-
gle user can trade his/her privacy with expected traffic esti-
mation accuracy by maximizing utility value.

9. CONCLUSIONS
In this work, we consider an urban traffic monitoring appli-
cation in which a centralized server collects updates about
locations and speeds from a population of sensor-embedded
mobile devices belonging to application subscribers in or-
der to estimate current traffic conditions. There is a ma-
jor tension between privacy preservation and service quality
requirement for the users. Specifically, an individual user
prefers to reveal as little of his/her own traffic information
as possible while maintaining certain level of traffic estima-
tion accuracy.



In order to solve this problem, we propose a utility-based
optimization policy. The trade-off from an individual user’s
perspective is modeled as a utility function that linearly
combines the benefit of high quality traffic estimate and the
cost of privacy loss. By using a novel Markov-based model,
we are able to measure the traffic estimation quality so that
it is feasible to mathematically derive an optimized informa-
tion update policy to let the user contribute “just enough”
local information to the backend server.

Furthermore, the efficiency of our proposed policy is vali-
dated through real-world empirical traces collected from a
day-long 100-vehicle experiment on a highway in northern
California, conducted in 2008. The validation demonstrates
that the policy yields utilities for each user that are close to
what could be obtained with an oracle scheme that has full
knowledge of the ground truth.

There are multiple directions to our possible future works.
As we mentioned in this paper, we need to take the effect of
traffic density into account and design an application that al-
lows non-deterministic traffic data aggregation scheme. An-
other possible direction is to relax the assumption that all
the users in a given stretch of road should use the same infor-
mation granularity, and investigate the case where different
users can choose different information granularity by using
game theoretic tools.
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