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Abstract— In this paper, we present a systematic framework to identify delay marginalities in a design 

during first silicon validation. Our method guarantees the excitation of the worst-case delay of the chips 

in the first silicon batch without introducing any pessimism. It embodies several innovations, including a 

resilient gate delay model to capture process variations, new conditions that vectors must satisfy to invoke 

the maximum delay of a target path, and a new approach to generate multiple vectors (vector-spaces) 

guaranteed to invoke the worst-case delay of the target path. We also present extensive experimental 

results for benchmark circuits to demonstrate the effectiveness of our method. 

Keywords: delay marginalities, first silicon validation,   resilient delay model, multiple vectors. 

I. INTRODUCTION 

 The development of a new digital chip starts with its specifications, which describe the desired 

functionality and key parameters, such as performance and power (see Figure 1).  A design process 

produces a detailed design in the form of a gate/transistor-level netlist and a layout. In most existing flows 

for custom or semi-custom design, the quality of chips shipped to customers is ensured via a sequence of 

three processes, namely pre-silicon verification of a chip‘s design, post-silicon validation of the first-
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silicon for the design and testing of each fabricated copy when the design is fabricated in high volume 

[1]. Any misbehavior identified during validation that is deemed likely to cause a significant fraction of 

fabricated chips to fail (and hence threaten the chip‘s economic viability) is addressed via redesign. Each 

such redesign is commonly referred to as a new silicon spin. Such redesign is expensive and time-

consuming, since it requires diagnosis to identify the root cause, redesign, creation of a new set of masks, 

and re-fabrication. When validation is eventually successful, the corresponding set of masks is used to 

manufacture chips in high volume. 

 

Fig. 1: A typical design flow. (Solid arrows show flow of design information, while dashed arrows indicate re-

design/go-ahead signals.)  

Despite advances in design and verification, it is becoming increasingly common for many chip designs 

to undergo multiple silicon spins. This is the case not only for high-performance custom and semi-custom 

chips but also for application-specific integrated circuits (ASICs), which are typically much less complex 

and much less aggressive in terms of area efficiency and performance. For example, as reported in [2][3], 

Collett International Research reports that 37% of ASICs require a second spin while 24% of ASICs 

require more than two spins (see Figure 2). Similar data from Numetrics Management Systems, Inc. has 
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been presented in [4]. The fact that multiple silicon spins are required implies that it is becoming 

increasingly common for many causes of serious circuit misbehavior, in particular marginalities, that can 

cause significant reduction in yield to be first discovered during validation. As the fabrication process is 

pushed to limits, marginalities (defined in Section II) will continue to grow in importance for the 

foreseeable future, rendering existing validation approaches inadequate. Hence the primary emphasis of 

our systematic framework is on the development of a high quality validation methodology that is 

guaranteed to detect all possible serious causes of circuit misbehavior (delay marginality being the one 

addressed here) which threaten a chip‘s economic viability. 

 

Fig. 2: Most ASICs require multiple silicon spins. (Source: Collett International Research cited in [2][3]). 

For historical reasons, existing validation approaches largely target design errors missed by 

verification. To this end, existing validation approaches use functional, pseudo-random, and biased 

random vectors as well as verification test-benches [5][6][7] . Most approaches do not quantify the quality 

of vectors. Few approaches that do, do not consider marginalities but use logic and higher-level metrics 

adopted from software testing [8] and high-level verification [6][7], such as HDL statement/block 

coverage. None of the existing approaches generates vectors with the objective of invoking worst-case 

severities for effects that are behind marginalities.  

Delay marginality is one such effect which eventually leads to slow ICs. Path delay test (PDT) has 

traditionally been believed to be superior for identifying slow paths and considered to be more useful for 

speed binning and performance characterization. However, recent silicon studies by nVidia [9], Freescale 
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[10], and Sun [11] have shown that existing path delay testing approaches generate vectors that fail to 

invoke the worst-case delays in first-silicon (see Section II). Existing approaches for generating vectors 

for testing for low-level effects such as capacitive crosstalk and ground bounce 

[12][13][14][15][16][17][18][19][20][21] and [22] , use nominal values for parameters and parasitics. 

This makes the generated vectors non-resilient, i.e., unreliable for any fabricated copy of the chip, and 

hence unsuitable for validation. 

In this report we propose a systematic approach to generate a set of multiple vectors that will be used 

for high quality post silicon delay marginality validation of high performance designs. In particular our 

approach will guarantee invocation of the worst-case delay of the chips in first silicon batch. 

The report is organized as follows. In Section II, the motivation and importance for our approach is 

presented. In Section III, the overall approach is presented. In Section IV, the new concepts and 

algorithms are presented. The experimental setup and results are described in Section V. Finally, 

conclusions are presented in Section VI. 

II. BACKGROUND 

A chip may have erroneous behavior due to (i) design errors, (ii) marginalities, and (iii) defects. A 

design error is a logic error or a gross delay problem in a design that causes an unacceptable deviation 

from desired functionality or a catastrophic reduction in yield. It is caused by a designer mistake or 

serious inadequacies of the models or tools used for design. All information required to identify design 

errors in a circuit, namely its gate-level netlist and first-order models of delays of gates and wires, is 

available during pre-silicon verification. Since a design error is catastrophic, re-design is necessary. 

Hence, one should strive to detect all design errors during verification to avoid an additional silicon spin 

and associated mask costs and increase in time-to-market. 

A marginality is any aspect of a design that makes it probable that a significant fraction of fabricated 

chips will have erroneous behavior, even in the absence of defects and even when the variations in the 

fabrication process (process variations) are within the normally expected levels, i.e., even when there is 
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no abnormal process drift. Low-level effects, such as, delay variations, inadequate noise margins, 

excessive leakage currents, charge sharing, ground bounce, crosstalk, and inherently stochastic behavior, 

are root causes of marginalities. The severity of each such effect depends on the values of circuit 

parameters and parasitics and may be aggravated by process variations. Unavailability of information and 

computational complexity make it difficult to identify all marginalities during pre-silicon verification 

without significant guard-banding, i.e., pessimism. Also since a marginality causes erroneous behavior 

for a fraction of the normal range of process variation, it is possible to leave an instance of marginality 

un-rectified before moving the design into high volume fabrication, when the reduction in yield due to the 

marginality is lower than the costs (e.g., increase in the time-to-market) and penalties (e.g., performance 

reduction) associated with redesign. 

A. Motivation 

This paper is motivated by the clear trend that, despite advances in design and verification, a growing 

proportion of chips require two or more silicon spins. This trend will continue to become more severe for 

the foreseeable future – CMOS scaling in the near future and wide adoption of new nano-technologies 

thereafter. Hence, it is imperative to strengthen techniques for verification and validation. Marginalities 

constitute an increasing proportion of misbehaviors first discovered during validation. This increase in 

importance of marginalities – caused by low-level effects and aggravated by variations – is due to the 

following reasons: 

 Increase in percentage variations in values of key parameters and parasitic [23], as feature sizes and 

separations shrink deep into nano-scale and push fabrication processes to their limits and beyond.  

 Increase in the importance of low-level effects – delay variations, inadequate noise margins, charge 

sharing, crosstalk, and so on. 

 Need for aggressive design, and hence lower guard-banding, as we experience a slowdown in 

scaling, notably in its performance benefits.  
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The fact that this increase in importance of marginalities will continue unabated for the last years of 

CMOS scaling is clearly evident from the amount of research effort devoted to related concerns (e.g., see 

the Proceedings of IEDM for any recent year). The importance of our research will increase even more 

dramatically when new technologies start replacing or supplementing CMOS. While the technologies that 

might eventually replace or supplement CMOS are still in infancy, it is clear that each will be plagued by 

corresponding low-level effects and noise sensitivity to even greater extents. For example, in some 

technologies, reliable operation can be obtained only when the functional circuit is supplemented by 

redundant circuitry whose total size is many times the size of the functional circuit (e.g., see [24][25]). 

B. Previous work: Recent silicon studies 

We have already reviewed shortcomings of the existing validation approaches in Section I. Since we 

are primarily interested in the validation of high performance circuits, here we summarize several silicon 

experiments from nVidia, Freescale, and Sun [9][10][11]  to understand the limitations of path delay 

testing when used to characterize the timing behavior of circuits. Though the specific details may vary, 

the general methodology followed by industry for PDT is:  

 Use static timing analysis (STA) to obtain a ranked list of timing critical paths. 

 Categorize paths based on path cell types – wire bound and gate bound.  

 Select top ranked paths. 

 Generate statically-sensitized robust tests for these paths. 

One common observation from [9][10][11] is that the PDTs invoke lesser delay than the functional tests 

since the critical paths in silicon are different from those identified by STA. 

Reasons evident from [9][10][11] for this anomaly viz-a-viz everyone‘s expectations for PDT are: 

 Inaccurate delay models [10][11]– Existing delay models do not take into account all relevant 

lower order effects. 

 Non resilient delay models [10][11] – Existing delay models do not take into account the effects 

of variations on delay. 
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 Wrong path selection approach [10][11] – Selecting top ranked paths based on ranking will 

eliminate certain paths with similar delays from consideration for test generation. 

 Wrong sensitization conditions [10][11] – Existing sensitization conditions are based on 

erroneous assumptions regarding gate delay and hence do not excite worst case delay and can 

falsely declare certain testable paths untestable.  

 Statically sensitized robust PDT [9][11] – PDTs used in these studies apply static values at side 

inputs to facilitate delay diagnosis. Such tests do not guarantee invocation of the worst-case delay 

for a target path. 

 Additional reasons, such as test application differences and pre silicon – post silicon netlist 

mismatches, account for the anomaly under consideration. Though we deal with marginalities and not 

faults, a systematic PDT approach, where above shortcomings are eliminated is a suitable candidate for 

our framework. 

C. Unique challenges and key ideas 

We begin by examining the proposed framework from the perspective of its potential users to identify 

the practical considerations that we must use to define the objective functions and constraints for our 

research. 

 Completeness: We must impose quality constraints on validation as these are necessary to 

provide the dramatic reductions in costs and time to market. In particular, our framework must 

detect a high percentage (preferably, 100%) of all possible instances of delay marginalities to 

virtually eliminate the need for a third silicon spin.  

 No pessimism: It is imperative that our framework for validation  does not raise many false 

alarms. Each false alarm requires time-consuming and expensive diagnosis.  

 Only require realistically available models and information regarding parameters, parasitics, 

and variations: The uncertainty in the values of parameters, variations, and so on continues to 

grow with each scaling generation of fabrication process. Hence, any such framework must 
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require only a practically characterizable subset of all such information. This is a prerequisite to 

ensuring completeness and accuracy, since use of unreliable models and values (including those 

obtained via extrapolation from the past technology generation) may cause validation to miss 

debilitating marginalities that emerge for a new fabrication process.  

In addition to above, precise models for low-level effects may be unavailable or not useable due to 

their complexities or reliance on unavailable parameter values.  

We will deal with these challenges by using our following key ideas: 

 The use of actual chips allows each vector to invoke every relevant low-level effect while 

inherently considering the precise values of all circuit parameters and parasitics. 

 Process variations and variations in voltage and temperature are explicitly captured by sampling 

chips from the first-silicon batch and repeating validation for different values of voltage and 

temperature. This implies that all we need to do is to generate and apply appropriate vectors and 

the chips take care of the rest.  

 As vectors can be applied to chips at rates near 10
9
 vectors/second, large numbers of vectors can 

be used for validation, especially those applied using the circuit’s functional modes. Hence we 

can develop approaches that use more vectors to achieve specific objectives, including  

 A methodology to deal with uncertainties in values and models. 

 to identify resilient sets of multiple vectors to detect each target, i.e., identify a set 

containing vectors that is guaranteed to include the vector that invokes the worst-case 

effect for the target despite all model, parameter, and variation uncertainties.  

  We can use bounding approximations, i.e., approximations that provide upper and lower bounds 

on the actual values (of parameters and parasitics) or behavior (of low-level electrical effects). 

Bounding approximations will be used to reduce run-time complexities of tools, and to tackle the 

unavailability of precise models and values.  

 During validation, these approximations will be used to generate vectors. A loose bounding 

approximation might lead to generation of a larger set of vectors than necessary. However, when 
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the generated vectors are applied to chips, the behavior invoked is determined by the actual chips 

and is unaffected by any approximation used during vector generation. Hence, the use of 

approximations in our framework does not make validation pessimistic. 

III. PROPOSED APPROACH 

In this paper, combinational circuits comprised of primitive gates are considered. We start by presenting 

the basic terminology and definitions [26] and a top-down view of the overall approach. 

A. Terminology and definitions 

Maximum rising arrival time (A
X

RL): The latest (largest) time at which a rising transition at line X 

may reach 50% of power supply voltage, VDD. Maximum falling arrival time (A
X

FL), minimum rising 

arrival time (A
X

RS), and minimum (smallest) falling arrival time (A
X

FS) are similarly defined. 

Logic value system: Throughout this paper we deal with sequences of two vectors, even though for 

simplicity we often refer to them as vectors. Hence we denote logic values at a line by using a subset 

of {CF, CR, S0, S1, TF, TR, H0, H1}, where CF stands for clean falling (no hazard), S0 stands for 

static 0 (no hazard), TF stands for transition to value 0 (dynamic hazards possible), and H0 stands for 

hazardous 0 (static hazards possible). CR, S1, TR, and H1 are similar. 

Controlling value (CV): The controlling value of a multi–input gate is the logic value which when 

applied to any one of the gate’s inputs, uniquely determines its output value. NCV represents the 

gate’s non controlling value. The output value caused by the application of the controlling value at 

any one gate input is called controlling response. Non controlling response is the complement of the 

controlling response. 

To-controlling transition: The to-controlling transition at an input of a multi-input gate is a 

transition from NCV to CV. To-non controlling transition is similarly defined. 

Logical path (P): A logical path (P) is a sequence of lines along a circuit path L1 (a primary input), 

L2, …, and Ln (a primary output) and a set of signal transitions Tr1, Tr2, …, and Trn, where Tr  {R, 

F}, such that Tri represents the signal transition at Li. The lines L1, L2, …, and Ln are called on-path 
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lines. Gates along P are called on-path gates. If a line directly connects to one of the on-path gates but 

is not an on-path line, it is called a side-input of path P. 

B. The overall approach 

The overall approach has four main components (see Figure 3). 

 

Fig. 3: The overall approach 

 Resilient delay model: A delay model that will not be invalidated by inaccuracies and 

variations as it captures these using bounding approximations. 

 Path selection: A path selection approach that uses  the resilient delay model to identify a set 

of paths that is guaranteed to include all paths that may potentially cause a timing error if the 

accumulated values of additional delays along circuit paths is upper bounded by a desired limit. 

 Timing and logic conditions for guaranteed detection:  Identification of necessary timing and 

logic conditions that will guarantee invocation of worst case delay at each gate along a target 

path.  

 Selective enumeration: Using partial ordering (based on the worst case delay invoked) among 

the logic conditions, we develop an innovative search algorithm to arrive at a set of multiple 

vectors that will resiliently invoke maximum delay of the target path. 

C. Resilient delay model 

Pin-to-pin delay model is used by most STA tools. One main deficiency of this model is that it does not 

captures the effects of simultaneous switching on delay. Simultaneous to-controlling transitions at inputs 

of a primitive gate decrease gate delay due to activation of multiple charge paths [26]; simultaneous to-
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non-controlling tansitions at inputs increase the gate delay due to Miller effect [27]. Figure 4 shows the 

delay vs skew for near-simultaneous transitions at the inputs of a 2-input NAND gate. 

 

Fig. 4: Delay vs skew curve for near-simultaneous transitions 

The delay model proposed in [26] only uses qualitative information such as the causality property along 

with provable properties of underlying physics such as the effect of near simultaneous transitions on gate 

delay and hence is a suitable candidate for our framework. But a single curve as proposed in [26] cannot 

capture all inaccuracies and variations, we need an envelope comprising of two curves – one upper bound 

and one lower bound – to bound all inaccuracies and effects of process variations [28]. 

   

Fig. 5: Delay vs skew curve for near simultaneous transitions 

The inaccuracies and variations in these delay parameters can be captured using bounding 

approximations where the inaccuracies at each circuit line are bounded by ±ρ% where ρ captures 

inaccuracies in circuit parameters such as Vth, Leff, tox etc. Our approach expresses variability in terms of 
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the parameters of the devices in the gates. Using the value of device variability from [29] we perform 

Monte Carlo simulations to obtain the two envelopes to bound the gate delay as shown in Figure 5(details 

can be found in [28]). 

D. Delay defining parameters 

The delay defining parameters only use the limited qualitative information to define delays. 

 Maximum delay (α) is the maximum delay associated with every input to every output for a gate. 

For a gate with input X, output Z and rising transition at output, the maximum delay is denoted by 

αXZR.  

 Near simultaneous range (δ) is the minimum separation between transitions at inputs preventing 

the effect of one from interfering with the other. For a 2-input gate with falling transitions at inputs 

X and Y when X precedes Y, this is denoted by δXYF.  

    

Fig. 6: Delay defining parameters for resilient delay model [28] 

  Figure 6 shows the delay defining parameters for the resilient delay model [28]. Note that our method 

can work with any other resilient delay model. 

E. The value system 

Delay validation and testing requires a logic value system where the state of a signal has the ability to 

represent any possible situation that can occur during two consecutive vectors [37]. A resilient delay 

validation approach requires a value system that is complete. By complete we mean to say that the value 

system must be able to represent transitions and corresponding delay effects. Thus a complete value 

system must be able to represent steady values as well as hazardous (static as well as dynamic) 
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transitions. Also for basic gates the impact on delay is different for static or dynamic hazard at the side 

input. Table I shows the analysis of existing prevalent logic value systems used for testing. The basic 8 

value system of [30] can be selected as the basis for deriving a complete value system as it distinguishes 

successfully between static and dynamic hazards (using the concept of transition as well as edges) . 

Table I: Analysis of Value System 

Reference 
Type of 

value system 
Basic values 

Total 

values 

Able to 

represent 

hazards 

Able to distinguish 

between static and 

dynamic hazards 

[33][36][38] Two  (0, 1) 4 N N 

[32] Four (S0, S1, R, F) 4 Y N 

[26][39][40] Three (0,1,X) 9 Y N 

[35] Five  (0, 1, s, p, -) 6 Y N 

[34] Five (s0, s1, u0, u1, XX) 5 Y N 

[37] Six (p0, p1, s0, s1, -0, -1) 23 Y N 

[30][31] Eight (S0, S1, T0, T1, CR, CF, H0, H1) 53 Y Y 

 

The basic 8 values {S1}, {S0}, {CR}, {CF}, {T1}, {T0}, {H1}, and {H0} can then be extended to the 

53 value system using the following six step procedure of [37][41] that generates  a complete value 

system from a basic value system using sensitization conditions and subsequent forward and backward 

implications on basic gates: 

1. Define the basic eight values - each of which contains only one of the basic logic values. 

2. Define "X" as composite value consisting of all basic logic values.  

3. Considering currently identified composite logic values construct (or reconstruct) tables to be 

used by (NOT/NAND/NOR) gates forward implication procedure. 

4. By applying combinations of currently identified composite logic values to backward implication 

procedure, identify new composite values that are needed to be added. 

5. By applying combination of currently identified composite logic values to the forward implication 

procedure, identify other new composite values to be added. 

6. Repeat steps 3 to 5 until no new value is added. 

The resultant 53 value system thus provides closure for backward and forward implication procedures. 

This value system ensures that no information is lost during implication and hence is complete in every 
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sense. Note that our delay validation approach can work with any other complete value system too. 

Table II: The complete eight value system [30] 

# Value # Value # Value # Value # Value 

1 {}1 12 {CF,T0}5 23 {CR,T1,H1}5 34 {S0,H0,CR,T1}5 45 {CF,CR,S1,T0,T1,H0}5 

2 {CF}3 13 {CR,T1}5 24 {CR,T1,H0}5 35 {S1,H1,CF,T0}5 46 {CF,S0,S1,T0,H1,H0}5 

3 {CR}3 14 {CR,S1}5 25 {S1,T1,H0}5 36 {CF,S0,T0,H1}5 47 {CR,S0,S1,T0,H1,H0}5 

4 {S1}3 15 {S0,CF}5 26 {CF,T0,H1}5 37 {S0,S1,H0,H1}5 48 {CF,CR,S0,T0,T1,H1}5 

5 {S0}3 16 {T0,H1}5 27 {S0,T0,H1}5 38 {CR,S1,T1,H1}5 49 {CF,CR,S1,H0,H1,T1,T0}4 

6 {T0}3 17 {T0,H0}5 28 {S0,S1,H0}5 39 {CR,T0,T1,H1,H0}5 50 {CF,CR,S0,H0,H1,T1,T0}4 

7 {T1}3 18 {T1,H0}5 29 {S0,S1,H1}5 40 {CF,T0,T1,H1,H0}5 51 {CF,CR,S0,S1,H1,T1,T0}5 

8 {H0}3 19 {T1,H1}5 30 {CF,S0,S1}5 41 {CF,S1,S0,T0,H1}5 52 {CF,CR,S0,S1,H0,T1,T0}5 

9 {H1}3 20 {CF,S1}5 31 {CR,S0,S1}5 42 {CR,S1,S0,T0,H1}5 53 {CF,CR,S0,S1,H0,H1,T1,T0}2 

10 {S1,H1}4 21 {CR,S0}5 32 {S0,H0,CF,T0}4 43 {CF,CR,T0,S1,T1,H1}4   

11 {S0,H0}4 22 {CF,T0,H0}5 33 {S1,H1,CR,T1}4 44 {CF,CR,T0,S0,T1,H1}4   
1-Empty value, 2-Fully composite value, 3-Basic value, 4-Values based on sensitization conditions, 5-Values derived from implications (forward and backward) 

 

F. Path selection approach 

In [30] a new approach to efficiently identify paths for delay testing is arrived at using a realistic delay 

model [26] and several new concepts (timing threshold, settling times [31], and timing blocking line) and 

algorithms, to identify a set of paths that is guaranteed to include all paths that may potentially cause a 

timing error if the accumulated values of additional delays along circuit paths is upper bounded by a 

desired limit, Δ. We use this approach as it deals with upper and lower bounds and also checks for both 

functional sensitization and high delay excitation at the same time. 

G. Taxonomy of timing cases 

Consider a 2 input NAND gate with inputs X and Y and output Z. Let X be the on-path input and Y be 

the side input. Let arrival times of X and Y be [A
X

FS, A
X

FL] and [A
Y

FS, A
Y

FL] respectively.  

 

Fig. 7: To controlling transitions at the inputs of a 2-input NAND gate 
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Using the delay parameters α and δ, the following timing cases corresponding to a falling transition at 

on path input X can be derived. 

 Region 1: Y not near-simultaneous with respect to X: Transitions at X and Y are separated at 

least by δYXF (for Y before X) or by δXYF (for X before Y). Hence X and Y will not interact with 

each other. This is Region 1 of the delay curve in Figure 7. 

 Region 2: Y near-simultaneous but does not overlap with X: Transitions at X and Y are 

separated at most by δYXF (for Y before X) or by δXYF (for X before Y). Transition at Y can affect 

the transition at X due to first order effects such as multiple charge paths [26]. This is Region 2 of 

the delay curve in Figure 7.  

 Region 3: Y overlaps X: The timing ranges of X and Y are not mutually exclusive. Hence 

transitions at X and Y can overlap (as shown in Figure 7 ). 

Figure 7 clearly shows that in Region 1 the delay of the NAND gate is equal to the pin to pin delay 

whereas in Region 2 the delay needs to be arrived by using simulations and curve fitting techniques [28]. 

Table III: Classification of timing cases for to-controlling transition at on path input of a 2 input NAND gate 

Timing case Explanations 

1. Y before X and not 

near simultaneous 
Y arrives at least δYXF before transition at X. Hence Y and X cannot interfere.                                     

AY
FL < =AX

FS – δYXF 

2. Y before X and 

near simultaneous 

but no overlap 

Y arrives at most δYXF before transition at X. Effects of Y and X may interfere with each other 

due to Miller effect, multiple charge paths, state of internal capacitance etc. 

AX
FS > A

Y
FL >AX

FS – δYXF 

AX
FS > A

Y
RL >AX

FS – δYXF 

3. Y overlaps X The timing ranges of X and Y overlaps. X and Y may or may not interfere with each other 

4. Y after X and near 

simultaneous but 

no overlap 

Y arrives at most δFXY   after transition at X. Effects of Y and X may interfere with each other 

due to multiple charge paths etc. 

AX
FL  < AY

FS <AX
FL + δXYF 

5. Y after X and not 

near simultaneous 
Y arrives at least δFXY after transition at X. Hence Y and X cannot interfere. 

AY
FS >= AX

FL + δXYF 

 

Table III shows the detailed classification of timing cases along with necessary equations for to-

controlling transition at on path input of a 2-input NAND gate. Table IV shows the same for the to-non 

controlling case (also see Figure 8). 
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Fig. 8: To non-controlling transitions at the inputs of a 2-input NAND gate 

Table IV: Classification of timing cases for to-non controlling transitions at inputs of a 2 input NAND gate 

Timing case Explanations 

1. Y before X and not near 

simultaneous 
Y arrives at least δYXR before transition at X. Hence Y and X cannot interfere. 

AY
RL < =AX

RS - δYXR 

2. Y before X and near 

simultaneous but no overlap 

Y arrives at most δYXR before transition at X. Effects of Y and X may interfere with each 

other due to Miller effect, multiple charge / discharge paths etc. 

AX
RS > A

Y
RL >AX

RS - δYXR 

3. Y overlaps X The timing ranges of X and Y overlaps. X and Y may or may not interfere with each other 

4. Y after X and near 

simultaneous but no overlap 

Y arrives at most δRXY   after transition at X. Effects of Y and X may interfere with each 

other due to Miller effect, multiple charge / discharge paths etc. 

AX
RL  < AY

RS <AX
RL + δXYR 

AX
RL  < AY

FS <AX
RL + δXYR 

5. Y after and not near 

simultaneous 
Y arrives at least δRXY after transition at X. Hence Y and X cannot interfere. 

AY
RS >= AX

RL + δXYR 

 

H. Timing conditions and partially ordered graphs 

Consider a to-controlling transition at on path input X (Figure 7). The functional sensitization 

conditions [31] provide the necessary conditions at the side input Y to be able to sensitize the target path 

from X to Z. The robust conditions as used in [9][11] will allow only {S1} on the off path inputs for all 

the timing cases and eventually will miss certain suitable candidates and hence may miss the vector that 

invokes the worst case delay. Hence, robust conditions are not suitable for generating vectors for delay 

marginality validation. 
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In contrast to robust conditions, our approach starts with the set of all possible values (see Table V) and 

eliminates only those cases that can be proven as being unable to invoke the worst-case delay under any 

circumstance. 

Table V: High delay sensitization conditions for to-controlling transition at on path input of a NAND gate 

Timing Case Logic Conditions 

1. Y before X and not near simultaneous {CR, TR, S1, H1} 

2. Y before X and near simultaneous but no overlap {CR, TR, S1, H1,CF,TF} 

3. Y overlaps X {CR, TR, S1, H1, TF, CF.H0} 

4. Y after X and near simultaneous but no overlap {CF, TF, S1, H1} 

5. Y after X and not near simultaneous {CF, TF, S1, H1} 

 

Using the limited timing information available and the timing cases we arrive at our high delay 

sensitization conditions (HDS) for each side input (Figure 9).  

 

Fig. 9: Partial ordered graph for the side input values for various timing cases for to-controlling 

transition at on path input of a 2-input NAND gate 

Consider the timing case 1 (Y before X and not near simultaneous), in order to propagate the falling 

transition at on path input X, a final value 1 at Y becomes imperative and hence we arrive at the set of 

{S1, CR, H1, TR} 
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{TF} {CF} {H1} 

4 
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{S1, CF, H1, TF} 

5 

{S1} 
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logic conditions {CR, TR, S1, H1}. Since transitions at Y and X do not interact with each other, each of 

the four members of this set is equally good i.e., invokes identical delay for the target path, and thus all 

are equivalent (Figure 9). Going along similar lines, for the timing case 5 (Y after X and not near 

simultaneous), we arrive at the equivalent set of logic conditions {CF, TF, S1, H1} (Figure 9).  

Consider the timing case 4 (Y after X and near simultaneous with no overlap),in order to propagate the 

falling transition at on path input X, an initial value 1 at Y becomes imperative and hence the all inclusive 

logic conditions {CF, TF, S1, H1}. However,  because of possibility of activating multiple charge paths 

[26] due to a falling transition at the side input, values {CF, TF, H1} becomes inferior to {S1} as they 

will invoke delay that is guaranteed to be less than or equal to the delay of a classical robust test. 

However, we cannot establish any provable relationship between the abilities of these three values to 

invoke greater delay for the target path. Hence, {H1}, {CF} and {TF} are considered non inferior with 

respect to each other (Fig. 8). Similarly, the partial order graph for the timing case 2 (Y before X and near 

simultaneous with no overlap) can be arrived at and shown in Figure 9. 

Consider the timing case 3 (Y overlaps with X), in order to attain a to-controlling response at Z, Y can 

have any or a subset of {S1, CR, TR, H1, CF, TF, H0}. Since transitions at Y and X can interfere with 

each other, nothing can be said in affirmative about the effect of one on the on-path delay over the other. 

Hence each of {CR}, {TR}, {S1}, {H1}, {CF}, {TF} and {H0} are non inferior with respect to each 

other (Figure 9). 

Table VI: High delay sensitization conditions for to-non controlling transition at on path input of NAND gate 

Timing Case Logic Conditions 

1. Y before X and not near simultaneous {CR, TR, S1, H1} 

2. Y before X and near simultaneous but no overlap {CR, TR, S1, H1} 

3. Y overlaps X {CR, TR, S1, H1} 

4. Y after X and near simultaneous but no overlap {S1, H1, CR, TR} 

5. Y after X and not near simultaneous {S1, H1} 
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Table VI shows the high delay sensitization (HDS) conditions for the to-non controlling case. Figure 10 

shows the partial ordered graphs for the same.  It can be seen that the logic values for timing cases 3 and 4 

(the near-simultaneous transition cases) are completely unordered. This is because of the fact that 

multiple to-non controlling transitions can increase as well as decrease the gate delay [27]. 

Consider the timing case 1 (Y before X and not near simultaneous). In order to propagate the rising 

transition at on path input X, a final value 1 at Y is necessary and hence we arrive at the set of logic 

conditions {CR, TR, S1, H1} shown in Table I. Since transitions at Y and X do not interact with each 

other for this timing case, each of the four members of this set is equally good, i.e., each invokes identical 

delay for the target path, and thus all are equivalent as shown in Figure 10.  This graph depicts that any of 

these four values, CR, TR, S1 and H1, guarantees invocation of the same delay for the target path.  

 

Fig. 10: Partial ordered graph for the side input values for various timing cases for to-non controlling 

transition at on path input of a 2-input NAND gate 

Consider the timing case 2 (Y after X and near simultaneous with no overlap). In order to propagate 

the rising transition at on path input X, an initial value 1 at Y is necessary and hence we derive the all 

inclusive set of logic conditions as {CR, TR, S1, H1}. However,  because of the Miller effect [27] due to 

a rising transition at the side input, any of the values in the set {CR, TR, H1} can be shown to be always  

superior to any in {S1} to invoke the worst case delay. Since we cannot derive any provable relationship 
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between the abilities of any of the other three values, namely {CR}, {TR}, and {H1}, to invoke greater 

delay for the target path compared to the remaining two, we consider {CR}, {TR}, and {H1} non inferior 

with respect to each other as shown in Figure 10.                   

Consider timing case 3. To attain a to-non-controlling response at Z, Y can have any or a subset of 

{S1, CR, TR, H1}. Since transitions at Y and X can interfere with each other, nothing universal can be 

said about the effect of one of these values on the target path‘s delay compared to any other value. Hence 

each value {CR}, {TR}, {S1} and {H1} is non inferior with respect to each other as shown in Figure 10.  

In such case complete enumeration is deemed necessary to guarantee that the generated vectors are 

collectively guaranteed to invoke the worst-case delay of the target path.  

I. Selective enumeration 

 

Fig. 11: Elimination of inferior vector-spaces at leaf nodes 

 

Case (b): ONIS changed and New VS added 

  

 

  
 

Deleted VS  

VS max path delay 

VS min path delay 

Case (a): ONIS unchanged and New VS discarded 
ddiscarded 

If (New_VSmax  < Max (VS(i)min) V VS (i) Є ONIS ) 

   Discard New_VS and ONIS unchanged 

Else 

  { for every VSe (i) Є ONIS 

     { if (VS(i)max < New_VSmin ) 

        ONIS = ONIS – VS (i)   

     } 

   ONIS = ONIS U New_VS 

  }  
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Using the partial ordered graphs we refine the logic values at side inputs to arrive at a set of multiple 

vectors termed as a test vector-space guaranteed to resiliently detect the target path. A test vector-space is 

a partially-specified vector where designated partially-specified values are expanded into all possible 

combinations and every one of them will be applied during validation. (For example, if the first two 

partially-specified values in xxd10 are designated as ‗x‘ for expansion while the third is designated as ‗d‘ 

for don‘t care, then our validation vector set comprises of  the following four partially-specified vectors: 

00d10, 01d10, 10d10, and 11d10, where d is don‘t care and can be replaced by either 0 or 1).  

We eliminate only provably inferior (low delay invoking) vectors in our approach and hence our test 

vector-spaces comprise of sets of non inferior vectors that can resiliently detect a target. Our all inclusive 

approach selects all non inferior vector sub-spaces as suitable candidate for validation. The search starts 

by enumerating the values at each side input and reducing them to either a single value or a single 

equivalent set. At the leaf node of our search tree, it deals with the elimination of inferior vector sub-

spaces and storage of non inferior vector-spaces as per the algorithm shown in Figure 11. 

Let ONIS denotes the old non inferior set and VS(i) represents the i
th
 vector-spaces in the same. Then in 

order to speed up the search process the elimination of inferior vector- spaces can be done at intermediate 

nodes as per Figure 12.  

 

Fig. 12: Elimination of inferior vector-spaces at intermediate nodes 
 

 

  

Case (a): ONIS unchanged and New VS discarded 
ddiscarded 

If (New_VSmax  < Max (VS(i)min) V VS (i) Є ONIS ) 

   Discard New_VS and ONIS unchanged 
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IV. TIMING DEPENDENT FRAMEWORK 

We now present our approach for identifying a set of multiple vectors (MV) known as a test vector-

space guaranteed to resiliently detect the target path with no pessimism, even if loose bounding 

approximation models used to derive or analyze vectors. We have divided our approach to six phases 

(Figure 13). 

 Phase 0: Path selection where using ETA [31] and a timing threshold (∆) we arrive at a set of 

target paths. 

 Phase 1: Cone exhaustive approach where we mark the fan in cone of each target path to arrive 

at the set of primary inputs where the logic values need to be enumerated. 

 Phase 2: Apply enhanced functional sensitization (EFS) [31] conditions at side inputs of each 

gate along the target path and eliminate the target path if EFS conditions cannot be satisfied after 

implications. 

 Phase 3: Apply High Delay Sensitization (HDS) conditions at each side input and perform 

implications to arrive at a mother test vector-space. 

 Phase 4: Use side input refinement (SIR) algorithm using the partial order graphs for HDS 

conditions to refine side input values where each non-inferior refinement gives a vector sub-

space. 

 Phase 5:Use timing based pruning (TBP) approach for each vector sub-space to identify primary 

inputs where values must be enumerated. 
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Fig. 13: An overview of our 6-phase approach 

In this section we will illustrate the whole framework on the ISCAS89 benchmark circuit c17.  

A. Cone exhaustive approach 

Using the approach in [30] and our notion of significant marginalities (SM), i.e., those causing 

erroneous operations for significant proportion of fabricated chips, we perform ETA [31] and arrive at a 

set of target paths whose worst case delay is > Tc - ∆ where Tc (0.448 ns) is the minimum clock period 

obtained from ETA [31]. (Recall that such a set of target paths that is guaranteed to include all paths that 

may potentially cause a timing error if the accumulated value of additional delays along circuit paths is 

upper bounded by ∆.) Then for each target path we identify the primary input cone and mark these inputs 

as xx and the rest as dd. Here x stands for {CR, CF, S1, S0} which essentially means enumerate all 

Phase 0: Path selection 

Given a value of TTout (= TC – (Δ ± ρ)), identify timing sensitive (target) paths (TPs).  

Phase 1: Cone exhaustive 

For each TP identified in phase 0, mark the fan in cone.  

Phase 2: EFS 

Apply enhanced functional sensitization conditions to the TP and eliminate the TP if the 

conditions cannot be satisfied after implications 

Phase 3: HDS 

Apply high delay sensitization conditions to the TP and eliminate the TP if the conditions 

cannot be satisfied after implications; otherwise, arrive at the ―mother‖ test vector-space 

for the TP.  

Phase 4: SIR 

Refine each side input based on the partial ordered graphs and arrive at a set of non 

inferior vector sub-space for the TP. 

Phase 5: TBP 

Perform timing based pruning to identify primary inputs where values to be enumerated 

to arrive at the number of fully specified patterns. 
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possible combinations for these primary inputs whereas d stands for don‘t care. In Figure 14 we show the 

the logical path {R3, R7, F9, F10, R12, R13, F16}. Since, the fan in cone has 4 primary inputs (circuit lines 1, 

2, 3 and 4), at this stage the number of vectors needed for validation is 4
4
 = 256.    

 

Fig. 14: Cone exhaustive approach on c17 

B. Enhanced functional sensitization conditions 

In [31] the authors have shown that the use of enhanced functional sensitization conditions helps to 

reduce the number of paths that must subsequently be considered for delay test generation. We use the 

EFS conditions as a baseline to demonstrate the benefits of our approach. We applied the EFS conditions 

and performed implications to reduce the targets to be considered further and arrive at a set of MV. The 

fully specified values at line 1, 2, 3 and 4 shows that the number of vectors needed for validation is 

2*3*1*2 =12 as shown in Figure 15. 

 

 

Fig 15: EFS approach on c17 
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C. High delay sensitization conditions 

 
 

Fig. 16: HDS approach on c17 

Now we apply our HDS conditions and perform implications to eliminate target paths for which 

necessary conditions cannot be satisfied after implications and thus we arrive at the mother test vector-

space - the set of MV which is guaranteed to resiliently invoke the maximum delay for the target. The 

number of vectors needed for validation is 2*2*1*2 = 8 as shown in Figure 16. 

D. Side input refinement and sub cube generation 

Using the partial ordered graphs we refine the mother vector-space to arrive at the vector sub-space. 

Consider the state of circuit (lines and corresponding values assigned) after HDS as shown in Figure Fig. 

16. We have three circuit lines (4, 2 and 8) which can be identified as side inputs. 2 and 8 belong to the 

timing case where the side input is early and near simultaneous but does not overlap with on path input. 

The corresponding partial ordered graph gives two ({CR}, {S1}) equivalent classes at line 2 and three 

({S1}, {H1} and {CR}) equivalent classes at line 8. In this phase every side input assignment is refined to 

either one value or a single set of equivalent values. The corresponding search tree for c17 is shown in 

Figure 17.   
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Fig. 17: Search tree for SIR on c17 

 
 

Fig. 18: SIR approach on c17 

After SIR is finished we can see that we are left with only two leaf nodes thus giving rise to the two 

vector sub-spaces [{CF}, {S1}, {CR}, {CR}] and [{S0}, {S1}, (CR), (CR)] and each requiring just one 

vector to detect the target (also see Figure 18). The reason is because of implication conflict, two of the 

branches at intermediate node 2 are terminated whereas for intermediate node 8 each of the branches 

leads to a leaf node. Though the illustration shows a BFS approach we have implemented a more 

advanced DFS approach in our framework. Hence, at the end of this stage the number of vectors needed is 

1*1*1*1 + 1*1*1*1 = 2. 
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E. Timing based pruning 

 

Fig. 19: TBP on c17 

After SIR there is no more enumeration based on logic values as the values in singleton sets are all 

equivalent. Hence the objective now narrows down to identify side inputs where the values need to be 

enumerated because of timing conditions and by using these to back trace to identify the inputs with 

partially specified (x) values, where enumeration based on timing is required. We start with each side 

input where the timing case is either overlap or near-simultaneous transitions and recursively mark the fan 

ins and transitive fan ins with timing matters flag given the condition that the line does not contain any 

subset of static values {S0, S1}. At the end of this step only the primary inputs that are marked with the 

timing matters flag needs to be enumerated. For another logical path {F3, F7, R9, R10, F12, F13, R16} as 

shown in Figure 19, the MV for validation have reduced from 4*1*1*1=4 to 1*1*1*1=1 after TBP (see 

Table VII).  

Table VII: Values at Primary inputs after TBP 

Line no. (PI) Logic values Timing Matters? 

1 {S0, S1, CR, CF} No. 

2 {S1} No. 

3 {CF} No. 

4 {S1} No 

V. EXPERIMENTAL RESULTS 

We have applied our approach to combinational parts of ISCAS89 benchmark circuits (see Table VIII) 

using a Intel Core 2 Duo 2.2 GHz machine. All gates in the benchmark circuits are assumed to use 



 

28 

 

 

minimum-size transistors, and a 65nm CMOS technology is assumed. Our experiments use a resilient 

simultaneous delay model for both to-controlling and to-non-controlling transitions [28].  

Table VIII: ISCAS Benchmark circuits 

ISCAS 
Benchmarks 

No. of PI’s Logical paths Tc (ns) Type 

S298 17 462 0.639 Traffic Light Controller 
S953 45 2,312 1.142 Controller 

S1196 32 6,196 2.462 Controller 

S713 54 43,624 4.507 PLD 
 

In our first set of experiments, we characterize the delays of individual gates only using the nominal 

delay values (zero variations). We then compute TC as the maximum circuit delay using enhanced timing 

analysis [27]. Then using the variability values for the given 65nm technology, we estimate that the 

overall variability (primarily in threshold voltage, effective channel length, channel width and so on.) in 

each gate‘s delay is between 30% and 50%. Since in this set of experiments individual gate delay models 

do not capture variations, we capture variations by using ∆ values between 30% and 50%. In phase 0 we 

use the above gate delay models (zero variability) and ∆ values (30% to 50%) for target path selection.  

In phase 1 for each target path identified in phase 0, we mark its fan-in cone. In phase 2 we apply EFS 

conditions and perform implications. The path is not functionally sensitizable if implication fails. Hence, 

functionally unsensitizable paths are identified without performing any search. This leads to a 

considerable reduction in the number of target paths. In phases 3 and 4 we respectively apply our new 

high delay sensitization (HDS) conditions and side input refinement (SIR) approach to obtain the sets of 

MV (vector sub-spaces) for each target path. Phase 5 uses timing based pruning (TBP), to reduce the 

number of fully specified patterns in each MV. 

Table IX shows the results for number of target paths for three values of ∆ for four benchmarks. The 

data for various values of ∆ shows that the number of target paths rapidly increases as Δ is increased. The 

table demonstrates that the proposed approach identifies much fewer paths to target for every possible 

value of ∆. For example, for s713 and ∆ = 0.50 only 481 out of 43,624 logical paths can cause timing 



 

29 

 

 

errors at outputs if the cumulative value of additional delays along every path is upper bounded by ∆ and 

whose worst case delay is greater than Tc - ∆. 

Table IX: Analysis on ISCAS Benchmark circuits: Zero process variations in gate delay model, ∆ values 

capture all model variations 

 

 Δ 

Phase 1 Phase 2 Phase 3 Phase 4, 5 After justification Final 

vector 

spaces Paths Vectors 
CPU 

clocks 
Paths Vectors 

CPU 

clocks 
Paths Vectors 

CPU 

clocks 
Paths Vectors 

CPU 

clocks 
Paths Vectors 

CPU  

clocks 

S298 

0.3 126 6.49 x 106 42 95 2.04 x 105 85 36 512,60 379 30 87 1,508 9 9 4,526 9 

0.4 272 1.04 x 107 60 220 3.57 x 105 155 106 1.21 x 105 866 92 2,816 3,724 33 104 8,537 33 

0.5 297 1.12 x 107 61 251 4.48 x 105 186 126 1.58 x 105 1,194 117 3,722 4,435 43 177 9,223 43 

S953 

0.3 486 8.52 x 1012 206 310 3.10 x 1010 4,054 267 1.11 x 1010 6,255 182 11,114 1.06 x 105 3 65 1.12 x 104 3 

0.4 1,040 1.70 x 1013 279 941 9.46 x 1010 9,366 709 3.71 x 1010 14,862 534 1.40 x 106 1.62 x 105 7 133 7.81 x 104 7 

0.5 1,398 2.20 x 1013 362 1,099 1.21 x 1011 12,352 977 4.74 x 1010 19,128 853 1.60 x 106 2.05 x 105 47 29,914 1.67 x 105 47 

S1196 

0.3 973 2.48 x 1016 354 587 5.87 x 1013 8,839 419 3.83 x 1013 13,785 258 1.41 x 107 2.83 x 105 12 44 1.49 x 105 12 

0.4 1,895 2.91 x 1016 561 1,123 1.07 x 1014 9,514 738 4.63 x 1013 28,003 468 8.54 x 107 5.63 x 105 46 103,908 3.89 x 105 46 

0.5 2,739 3.48 x 1016 751 1,809 1.91 x 1014 26,975 1407 8.25 x 1013 43,681 864 6.07 x 1010 9.61 x 105 80 291,719 7.03 x 105 80 

S713 

0.3 32,638 1.07 x 1020 6,840 254 2.96 x 1014 46,202 138 1.01 x 1014 42,842 65 8.87 x 1010 2.83 x 105 7 65,535 3.91 x 105 7 

0.4 37,429 1.22 x 1020 7,073 713 1.34 x 1015 55,289 462 3.84 x 1014 55,678 271 1.21 x 1012 2.22 x 105 51 7.95 x 106 1.11 x 106 51 

0.5 38,840 1.33 x 1020 7,469 910 2.91 x 1015 55,347 760 7.09 x 1014 55,986 481 1.59 x 1012 3.19 x 105 95 1.80 x 107 8.43 x 106 95 

Table X: Analysis on ISCAS Benchmark circuits: Full global process variations in gate delay model, ∆ values 

capture other model variations 

 

 Δ 

Phase 1 Phase 2 Phase 3 Phase 4, 5 After justification Final 

vector 

spaces 
Paths Vectors 

CPU 

clocks 
Paths Vectors 

CPU 

clocks 
Paths Vectors 

CPU 

clocks 
Paths Vectors 

CPU 

clocks 
Paths Vectors 

CPU 

clocks 

S298 
0.01 142 7.39 x 106 55 100 182,392 85 44 57,656 383 40 4,967 2,987 2 64 4,179 2 

0.02 142 7.39 x 106 55 100 182,392 85 44 57,656 383 40 4,967 2,987 2 64 4,179 2 

S953 
0.01 366 7.15 x 1012 163 366 4.90 x 1010 669 193 1.04 x 1010 4,417 150 604,219 60,819 2 2 79,376 2 

0.02 400 7.38 x 1012 165 400 5.67 x 1010 729 216 1.25 x 1010 4,763 168 620,235 61,115 2 2 83,467 2 

S1196 
0.01 837 1.71 x 1016 305 608 2.83 x 1013 1,543 233 3.84 x 1012 9,035 169 1.03 x 106 1.8 x 105 13 71 2.13 x 105 13 

0.02 947 2.34 x 1016 355 696 7.91 x 1013 1,726 317 1.39 x 1013 11,233 232 5.78 x 106 1.9 x 105 18 936 3.07 x 105 18 

S713 
0.01 29,856 1.04 x 1020 5,668 2,258 2.27 x 1014 22,668 419 7.17 x 1013 35,433 303 5.7 x 1010 2.7 x 105 11 132,256 3.37 x 105 11 

0.02 29,856 1.04 x 1020 5,668 2,258 2.27 x 1014 22,668 419 7.17 x 1013 35,433 303 5.7 x 1010 2.7 x 105 11 132,256 3.37 x 105 11 

 

Table IX also shows the total number of fully specified vectors (actually each is a two vector sequence) 

generated for each of the four circuits to guarantee invocation of the worst-case delay (Note that the total 

number of vectors reported here is obtained by simple addition for all the target paths). Also, out of 481 

such timing critical paths, we could generate maximum delay tests for only 95 of them. (Note the ATPG 
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has a backtrack limit of 50). The results show that for a circuit like s713 and ∆ = 0.50 with our systematic 

approach the number of fully specified patterns needed for validation concentrating on delay marginalities 

can be reduced by a factor of 10
13

, compared to baseline case of cone-exhaustive. We report the test 

generation time in CPU clocks and the final vector-spaces (to be used for efficient tester memory 

management) for each case as well. 

In our second set of experiments, we characterize the delay for each gate using full global level of 

variability for the 65nm process (using a sufficiently larger number of Monte Carlo simulations). In these 

experiments, since the variations are incorporated in the delay models, we can use much smaller values of 

∆ as it must now capture only modeling errors. 

The results for the four benchmarks are shown in Table X. For each circuit the trend with respect to 

increasing ∆ values is as expected. More importantly, for all these circuits the number of vectors required 

to guarantee the invocation of the worst-case delay for the post-silicon validation of a design fabricated in 

a process with very high level of variability is very practical indeed. This is true because post-silicon 

validation is performed for a small sample of chips selected from first-silicon batch (unlike delay testing, 

which must be performed on every fabricated chip copy). Note that the test vector spaces generated by 

our approach can be further refined using test compaction methods.    

Table XI: Robust V/s resilient 

 Robust test vectors Our resilient test vectors Improvement (%) 

S298 0.546 ns 0.626 ns 14.65% 

S953 1.033 ns 1.132 ns 9.58% 

S1196 2.19 ns 2.362 ns 7.85% 

S713 4.197 ns 4.462 ns 6.31% 

 

We have validated the resilient delay model along with the associated timing analysis framework 

against circuit level simulator (Spectre) using extensive simulations and Monte Carlo simulations. We 

used the same framework to calculate the delay for the most timing critical paths (∆ = 30%) for each 

benchmark using both robust test set and our test set (resilient vector-spaces) (Table XI). Table XI shows 

clearly that our resilient vector-spaces generate much higher delay than the classical robust tests. By cone-
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exhaustive simulation for a small benchmark (as cone-exhaustive for larger circuits is impractical) such as 

s298, we validated that our resilient-vector space does contain the maximum delay sensitization vector 

(that invokes the delay of 0.626 ns). 

Finally, let us consider how the vectors we generate can be used for our other intended post-silicon task, 

namely speed binning. Clearly, since speed binning is performed for every copy of the chip fabricated 

during high-volume manufacturing, it is impossible to apply such large number of vectors. We propose 

two approaches to remedy this situation. First, we can undertake more detailed quantitative version of the 

analysis we used to derive the partially-ordered graphs in Section III to order the delay invoked by 

alternative side-input values more precisely. This information can then be used to more precisely rank-

order the vectors generated by our above approach and to select only the handful of vectors that excite the 

highest delays. Second, we can score the vectors applied during post-silicon validation in terms of their 

ability to invoke high delay values and select only those that invoke high delays. (We are in the process of 

undertaking experiments on actual silicon to illustrate this.) 

VI. CONCLUSION    

Experimental results show that our proposed framework along with timing dependent conditions can be 

used efficiently to guarantee detection of delay marginalities. The non inferior test vector-spaces 

generated by our algorithm further fortify our proposal for using MV to compensate for lack of exact 

knowledge and inaccuracies in delay parameters. We are currently working towards incorporating the 

effects of process variations in our approach. We will then be concentrating on approaches to exploit chip 

sampling using the knowledge of chip to chip vs on-chip variability to reduce the number of vectors for 

validation.   
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