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Abstract

In this paper, we develop an energy-aware hierarchical cell configuration framework that encompasses both

deployment and operation in downlink cellular networks. Specifically, we first formulate a general problem pertaining

to total energy consumption minimization while satisfying the requirement of area spectral efficiency (ASE), and

then decompose it into deployment problem at peak time and operation problem at off-peak time. For the deployment

problem, we start from an observation about various topologies including the real deployment of BSs that there is

a strong correlation between the area covered by an additional micro BS and the increment of ASE. Under such

an assumption, we prove the submodularity of the ASE function with respect to micro BS deployment. We also

show that the ASE increment achieved by an optimal placement with the same number of micro BSs as the greedy

algorithm cannot be more than a factor of e=(e � 1) from the ASE increment achieved by the greedy algorithm.

Although the greedy algorithm can be also applied as an offline centralized solution for the operation problem,

we further propose online distributed algorithms with low complexity and signaling overhead using Lagrangian

relaxation to have more practical solutions. Extensive simulations based on the acquired real BS topologies and

traffic profiles show that the proposed deployment and operation algorithms can dramatically reduce the total energy

consumption, which in turn will boost the revenue of wireless network operators.

Index Terms

Energy-aware, green cellular networks, hierarchical cell configuration, deployment, operation, area spectral

efficiency;

I. INTRODUCTION

Pushed by the explosive traffic demand from bandwidth-hungry multimedia and Internet-related services in

broadband cellular networks, communication engineers seek to maximally exploit the spectral resources in all

available dimensions. Hierarchical cell structure (HCS) [1], [2] where small cells such as micro, pico and femto are

used as a way of incrementally increasing capacity and coverage beyond the initial deployment of macro cells, has
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recently emerged as a promising solution, and is also being considered in many standardization bodies such as IEEE

802.16m (WiMax2) and 3GPP-LTE. Incrementally deploying micro base stations (BSs) is simpler than building

out complex cell towers and macro BSs, and it can also reduce both capital (e.g., hardware) and operating (e.g.,

electricity, backhaul and site lease) expenditures [1], which is especially attracted to wireless network operators.

In the meantime, there is a growing consensus on the need to develop more energy-efficient networks (referred

to as green networking) with the depletion of non-renewable resources and constraints on CO2 emissions. From

the perspective of wireless network operators, reducing electrical energy consumption is not only a matter of being

green and responsible, but also an economically important issue. It is estimated that the operators are spending more

than 10 billion dollars as of now globally with 60-80% of the total energy consumption being contributed by BS

infrastructure [3]. Since BSs are being deployed by the operator targeting peak traffic usage, they are under-utilized

most of the time. However, even when a site is experiencing little or no activity, the BS consumes more than 90%

of its peak energy (e.g., a typical BS consumes between 800-1500W and has an transmission power of 20-40W).

Beyond turning off only radio transceivers, dynamic approaches [4], [5] that allow the system to entirely switch

off some under-utilized BSs and transfer the corresponding load to neighboring cells during low traffic period can

substantially reduce the amount of wasted energy.

A. Our Objective and Contributions

In order to unburden wireless network operators from huge capital and operating expenditures (CAPEX &

OPEX) while meeting the quality of service requirement, this paper focuses on providing theoretical implications

and practical solutions for the following two key questions each of which is related to HCS deployment and

operation:� Where and how many micro BSs need to be deployed?� How to operate (i.e., switching on-off) macro and micro BSs for energy conservation during off-peak times?

First, in the deployment problem, we try to find a minimal deployment of micro BSs while satisfying the require-

ment of area spectral efficiency (ASE). We make an observation from various topologies that there is a monotone

relationship between coverage and ASE increment. Under such an assumption, we prove the submodularity of the

ASE function with respect to micro BS deployment and propose a greedy algorithm, which has a nice feature of

constant-factor approximation. Extensive simulations demonstrate that deploying micro BSs rather than conventional

macro BSs can bring about 75-80% reduction of total operational energy consumption.

Second, in the operation problem, we want to minimize energy consumption through dynamic BS operation.

Although the above greedy deployment algorithm can be also applied as a centralized offline solution for this

problem, we further propose two distributed online algorithms using Lagrangian relaxation to have more practical

solutions. Simulations based on traffic profiles from a real cellular system data trace show that the proposed
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algorithms not only can achieve the near performance of the centralized algorithm but also can significantly reduce

the energy consumption by 80-95%, compared to the case without the dynamic BS operation.

B. Related Work

Most of the research on HCS has focused on resource allocation, e.g., spectrum allocation [6]–[8], power control

[9], [10]; however, there has been relatively little work dealing with BS deployment in HCS. The studies in [11],

[12] showed the benefit of HCS deployment in hexagonal networks only by simulations. In the non-HCS setting (i.e.,

only one type of BS), several BS deployment problems [13], [14] have been theoretically investigated. Stamatelos

et al. [13] showed that an algorithm minimizing the overlapped coverage (i.e., the co-channel interference area) can

maximize spectral efficiency in omni-antenna case. Srinivas et al. [14] proposed an algorithm which jointly considers

both BS deployment and UE assignment in backbone base mobile ad-hoc networks for throughput optimization. Our

work differs from the previous works in that: (i) we present an analytical framework for optimal BS deployment in

HCS with the different types of BSs, and (ii) run extensive simulations based on BS topologies and traffic profiles

acquired from real cellular networks.

Green networking has recently received significant attention. In [3]–[5], [15], [16], the authors investigated

dynamic BS operation (i.e., switching-on/off BSs depending on the traffic profile) to save energy consumptions. In

addition, the concept of BS sharing, where different operators pool their BSs together to further conserve energy,

was introduced in [3], [17]. However, most of the previous works [3], [4], [15], [17] attempted to see how much

energy saving can be achieved rather than developing algorithms that can be implemented in practice. Although

several preliminary BS switching algorithms can be found in [5], [15], [16], they cannot capture the effect of

the signal strength degradation when traffic loads are transferred from the switched-off BS to neighboring BSs.

To reflect this effect, in this paper, (i) we consider a more sophisticated channel model based on SINR, and (ii)

propose practical and distributed algorithms for the dynamic BS operation.

The reminder of this paper is organized as follows. In Section II, we formally describe our system model and

general problem. In Section III and IV, we propose HCS deployment and operation algorithms, respectively. In

Section V, we demonstrate the performance of the proposed algorithms under various topologies and scenarios

including the real deployment of BSs and real traffic profiles. Finally, we conclude the paper in Section VI.

II. SYSTEM DESCRIPTION AND PROBLEM DEFINITION

A. System Description

1) Network Model: Consider a HCS broadband wireless network where the sets of macro and micro BSs, denoted

by BM and Bm, respectively, lie in the two-dimensional area A � R2 . Throughout the paper, subscript M is used

for macro BSs, and m is for micro BSs. We focus on two types of BSs, but all discussions in this paper can be
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readily extended to the general case where different types of BSs such as macro, micro, pico and even femto BSs

are expected to coexist in a complex manner. Let us denote by b 2 B = BM [Bm the index of BSs and by xb the

position of BS b, respectively. Our focus is on downlink communication as that is a primary usage mode for the

mobile Internet, i.e., from BSs to user equipments (UEs). Although we focus on downlink communication, some

aspects of our work can be applied to the uplink as well.

2) Link Model: The received signal strength from BS b to UE at location x can be expressed as Eb(x) = pb�gb(x),
where pb denotes the transmission power of BS b, gb(x) denotes the channel gain from BS b to location x, including

path loss attenuation, shadowing and other factors if any. Note, however, that fast fading is not considered here

because the time scale for measuring gb(x) is assumed to be much larger. Accordingly, the signal to interference

plus noise ratio (SINR) at location x can be written as:�(x;B) = Eb(x;B)(x)Pb2B; b6=b(x;B)Eb(x) + �2 ; (1)

where �2 is noise power and b(x;B) denotes the index of the BS at location x that provides the highest signal

strength1, i.e., b(x;B) = argmaxb2B Eb(x). Following Shannon’s formula, spectral efficiency at location x is given

by: C(x;B) = log2 (1 + �(x;B)) ; [bit/sec/Hz] (2)

3) Area Spectral Efficiency: We adopt the area spectral efficiency (ASE) firstly introduced in [18] as our

performance metric, which is is defined as the summation of the spectral efficiency over the reference area A:S(A;B) := Px2X C(x;B) � Pr(x)jAj ; [bit/sec/Hz/m2] (3)

where Pr(x) is the probability of the UE being at a specific location x and X is the set of locations included in

the area A satisfying Pr(x) > 0 for all x 2 X � A. For now, we assume the homogeneous user distribution such

that the discrete set X is a rectangular lattice with a small grid size and the probability of each location is the

same, e.g., Pr(x) = 1 for all x 2 X . But we will discuss the inhomogeneous case at the end of Section III.

4) Coverage: Let us denote by Ai<j the set of locations that have better SINR from BS i than j. We further

denote by Ai=j the set of boundaries having the same SINR from both BSs i and j. Then, the set of locations

covered by BS k (or simply, coverage) can be written as2:Ak(B) := fxjx 2 A s.t. b(x;B) = kg = \b2B; b6=kAk>b: (4)

1If there are more than one BSs providing the same highest signal strength, then any suitable tie-breaking rule is used, e.g., choosing

the lower indexed BS.
2For simplicity, we ignore the boundaries in the definition of coverage.
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B. General Problem Statement

Consider an area of interest A served by a wireless network operator whose access network consists of only

macro BSs BM . We assume that the daily traffic profile3 repeats periodically [17], [19], and that the required ASEStth over time t corresponding to the traffic profile is already known. Suppose that the maximum required ASE St�th
at the peak time t� = argmaxt Stth during a day t 2 [t0; t0+D) almost approaches to the one that can be provided

by turning on all the macro BSs BM , i.e., S(A;BM ) ' St�th. Thus, the operator wants to upgrade its access network

by micro BSs which are considered as the cost-effective way of incrementally increasing capacity inside the initial

macro cell deployment.

General problem: We want to minimize the total BS energy consumption during a day while providing � � 1 times

higher ASE than before the upgrade. We can mathematically formulate this problem as the following optimization

problem:

(P) minfBtg Z t0+Dt0 �PM � ���BtM ���+ Pm � ���Btm���� dt
s.t. S(A;Bt) � � � Stth; 8t 2 [t0; t0+D); (5)

where Bt denotes the set of BSs that are turned on at time t; PM and Pm are operational power consumptions of

macro and micro BSs, respectively.

Problem separation: The above general problem (P) can be separated into two subproblems: (P1) micro BSs

deployment problem considering the peak time t� and (P2) BSs operation problem during the off-peak period t 6= t�.

It is desirable for the operator to minimize the cost for expanding its infrastructures while guaranteeing the

required ASE. Therefore, The first problem is to find a minimal deployment of micro BSs which can support the

peak time ASE. Note that this deployment issue is an offline problem that can be handled in a network coordinator.

Once the micro BS deployment targeted at the peak time is done, the next problem is how to efficiently operate these

micro BSs along with the existing macro BSs for energy conservation during the off-peak period. The solutions

for the operation problem should be online distributed algorithms in order to be implemented in real systems. We

will deal with these two problems one by one in the following consecutive sections.

III. HCS DEPLOYMENT STRATEGY

First, we aim at finding a minimal deployment of micro BSs (i.e., minimizing the total power consumption)

while satisfying the raised ASE requirement at the peak time, t = t�:

(P1) minBm jBmj (6)

s.t. S(A;BM [ Bm) � � � St�th = � � S(A;BM ): (7)

3The traffic profile for weekdays may differ from that for weekends.
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(a) Contour plot of ASE increment (Korea-A)

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
−100

−80

−60

−40

−20

0

20

40

60

Coverage [km
2
]

A
S

E
 i
n

c
re

m
e

n
t 

[b
p

s
/k

m
2
]

(b) Scatter plot between coverage and ASE

increment (Korea-A)
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Fig. 1: Several interesting observations from various topologies including the real layout of macro BSs.

Note that (P1) can be also interpreted as a CAPEX minimization problem. The deployment problem (P1) is basically

a combinatorial problem, and that makes it very difficult to find an optimal solution, especially, if the number of

candidate locations is large. Therefore, in this paper, our goal is to develop a simple and efficient algorithm.

A. Key Observations

We shall start by presenting several observations from various topologies which help us to gain insight and

develop an efficient algorithm. To obtain more realistic observations, we acquired the real macro BS topologies in

the part of Korea [20] and Manchester, UK [3], [21] as well as typical hexagonal and random topologies. Listed

here is brief information about the number of macro BSs and the size of observation area in the topologies that

we used: (i) Korea-A: 7 BSs in 5 x 5 km2, (ii) Korea-B: 15 BSs in 4.5 x 4.5 km2, (iii) UK: 6 BSs in 2.5 x 2.5

km2, (iv) hexagonal: 7 BSs in 4 x 4 km2, and (v) random: 6 BSs in 5 x 5 km2. It is worth while mentioning that

we ran simulations in much larger area than the above observation area to avoid edge effects.

We focus on the deployment of one new micro BS in the area that is covered by the existing set of macro

BSs. The contour plot in Fig. 1(a) shows how much ASE a micro BS can improve according to the location of

deployment. Although this is a snapshot from the topology of Korea-A, similar trends could be observed in the

other topologies as well.

Observation 1: As long as the new micro BS is placed not to close to the one of existing macro BSs, ASE can

be expected to increase before the upgrade. Especially, the ASE increment becomes large as the distances from

macro BSs increase.

The wireless network operators are supposed to deploy a micro BS at the location where ASE can be improved.

Therefore, throughout the paper, we only consider the set of candidate locations for the micro BS deployment as

follows: 8k 2 K; S(B [ fkg) > S(B); (8)
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Now we examine how much area the micro BS can cover according to the location of deployment and investigate

the correlation with ASE increment. In Fig. 1(b), ASE increment has a distinct tendency to increase with coverage.

Interestingly, it becomes sharper as the coverage increases and this trend can be verified over the other topologies

as well in the quantile plots in Fig. 1(c). This is desirable because we are interested in the locations that give high

performance improvement. In such locations with small variance, we can almost surely assert that coverage and

ASE increment have a near-monotonic relationship. Results from monotone test4 (90.4�97.0% depending on the

topologies) also support the following observation.

Observation 2: The larger area can be covered by the new micro BS, the higher ASE increment is likely to be

expected.

Motivated by this observation, we assume that the following monotone relationship holds throughput the paper.jAk(B [ fkg)j � jAk0(B0 [ fk0g)j) S(B [ fkg) � S(B) � S(B0 [ fk0g)� S(B0); (9)

where k (or k0) is the index of the micro BS.

These two observations are intuitively understandable. Consider the area covered by the micro BS far from

existing macro BSs. Since the signals from the macro BSs are weak, the micro BS will provide the highest SINR

to a large extent area. In addition to this large coverage, the area originally had low spectral efficiency, resulting

in the high increment of ASE.

B. Constant-Factor Approximation Greedy Algorithm

Prior to introducing a natural greedy algorithm for (P1), we define a real-valued set function F : Bm ! R as

follows: F (Bm) := S(BM [ Bm)� S(BM ); (10)

which returns the ASE increment by additionally deploying the set of micro BSs Bm.

Greedy deployment algorithm

1: Initialize Bgreedym = ;
2: do while S(A;BM [ Bgreedym ) < � � St�th
3: k� = argmaxk2K F (Bgreedym [ fkg)� F (Bgreedym );
4: Bm  Bm [ fkg
5: end do

The greedy algorithm starts with the empty set Bgreedym = ;, and iteratively adds the micro BS location having

the highest increment among the set of candidate locations K until ASE reaches a target value, i.e., satisfying the

constraint (7).

4We randomly pick two points having positive ASE increments in Fig. 1(b) and check whether the slope between these points are

positive or not.
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Theorem 3.1: The ASE increment achieved by an optimal placement with the same number of micro BSs as

the greedy algorithm cannot be more than a factor of e=(e � 1) from the ASE increment achieved by the greedy

algorithm. maxjBmj=jBgreedym jF (Bm) � ee� 1F (Bgreedym ); (11)

where the constant e is base of the natural logarithm.

Proof: In order to prove this theorem, we first need to show that the ASE increment function satisfies the

following three properties: (i) F (;) = 0, (ii) F is increasing, and (iii) F is a submodular set function. F (;) = 0
is trivial and F is an increasing function by the assumption (8). To prove the submodularity, it is enough to check

that for all Bm � Bm0 � K and for an arbitrary chosen k 2 K=Bm0 , the following conditionF (Bm [ fkg) � F (Bm) � F (Bm0 [ fkg) � F (Bm0) (12)

holds. Since Bm is the subset of Bm0 and F is increasing, we have the following two inequalities:F (Bm) � F (Bm0) and (13)��Ak(BM [ Bm [ fkg)�� = ��� T b2BM[Bm Ak>b���� ��� T b2BM[Bm0 Ak>b���= ��Ak(BM [ Bm0 [ fkg)�� (14)

By the assumption (9) and the definition of F , the coverage inequality (14) can be converted into the ASE inequality:F (Bm [ fkg) = S(BM [ Bm [ fkg) � S(BM [ Bm)� S(BM [ Bm0 [ fkg)� S(BM [ Bm0)= F (Bm0 [ fkg): (15)

Combining (13) and (15) completes the submodularity condition (12).

Nemhauser et al. studied a maximization problem for a nondecreasing submodular set function with F (;) = 0,maxZ F (Z) s.t. jZj � K; (16)

and they obtained that

value of greedy approximation

value of optimal solution
� 1� �K � 1K �K : (17)

Since our ASE increment function F (�) is an increasing submodular function with F (;) = 0, the greedy algorithm

is guaranteed to find a constant-factor approximation solution Bgreedym , such thatF (Bgreedym )maxjBmj=jBgreedym j F (Bm) � 1�  jBgreedym j � 1jBgreedym j !jBgreedym j� 1� 1=e :
This completes the proof.
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Fig. 2: Submodularity under the inhomogeneous environment.

Remark 3.1: In order to further reduce the computational complexity of the greedy algorithm, we may only

check the locations near cell boundaries instead of all candidate locations. This is because the high ASE increment

is likely to be obtained at cell boundaries based on Observation 1.

Corollary 3.1: So far we have assumed that micro BSs have the same operational power Pm. However, the

above constant-factor approximation result can be extended to general cases [22], where each BS has a different

operational power (say, Pk = Pi for k 2 Bi). We only need to change the greedy algorithm as follows, i.e., finding

the location with highest ASE increment per unit power consumption:k� = argmaxk2K F (Bgreedym [ fkg) � F (Bgreedym )Pk : (18)

Remark 3.2: Theorem 3.1 could be derived form the submodularity of ASE increment function under inhomoge-

neous traffic distributions. Although we could not prove the submodularity under inhomogeneous traffic distributions

where Pr(x) is not the same over the area, we present some numerical results instead. For simulations, an inhomo-

geneous scenario having five randomly generated hot-spots (100 x 100 m2) in the Korea-A topology is considered.

We investigate the probability that the submodularity condition F (Bm [fkg)�F (Bm) � F (Bm0 [fkg)�F (Bm0)
for all Bm � Bm0 � K and for an arbitrary chosen k 2 K=Bm0 holds. Fig. 2 shows the CDF of the difference in

ASE increment and the inner figure shows the scatter plot for details. We lose the submodularity because about

19% of locations violates the inequality. However, ASE decrements in such cases are relatively small and most of

locations (> 80%) still satisfy the condition. Thus, we conjecture that the greedy deployment algorithm still works

well under inhomogeneous traffic distributions.
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IV. HCS OPERATION STRATEGY

Since BSs are deployed to support the peak time traffic, they will be under-utilized most of off-peak times,t 6= t�. If an appropriate dynamic BS operation algorithm is not employed, then a considerable amount of energy

will be wasted. Thus, our objective at the off-peak period is to find a dynamic operation of BSs that minimizes the

total operational power consumption while satisfying the raised ASE requirement5:

(P2) minBt PM � ���BtM ���+ Pm � ���Btm���
s.t. S(A;Bt) � � � Stth: (19)

The operation problem (P2) is a combinatorial optimization problem as well. Thus, in the following consecu-

tive subsection, we propose a suboptimal offline centralized algorithm and two online distributed BS switching

algorithms.

A. Centralized BS Switching Algorithm

Since there is a similarity between the deployment and operation problems, we may use the generalized deploy-

ment algorithm in (18) as a centralized algorithm for the operation problem as follows:k� = argmaxk2B F (Bt [ fkg) � F (Bt)Pk : (20)

This centralized switching algorithm has a nice feature of the constant-factor approximation; however, the algorithm

not only requires many feedbacks from all BSs to the network coordinator but also should be started from the empty

set (i.e., turning off all BSs), which makes it difficult for the centralized algorithm to be implemented in practice.

In order to overcome such difficulties, we propose simple and distributed online algorithms in the next subsection.

B. Distributed BS Switching Algorithm

Using the Lagrangian relaxation with a multiplier �, the BS operation problem (P2) can be separated by the

summation of the switching problem at each BS as follows.L(Bt; �) = Xb2Bt Pb + � �� � Stth � S(A;Bt)�= Xb2Bt �Pbat(b) + �jAj�� � jAjjBj Stth � Xx2XbC(x;Bt)��= Xb2Bt Lb(at(b); �);
where at(b) denotes the indicator of BS status, i.e., at(b) = 1 when the BS b is on at time t, and 0 otherwise; Xb
denotes the set of locations included in the serving area of BS b, andLb(at(b); �)

5Note that since the traffic profiles are usually to remain stationary at timescales beyond an hour [19], the original problem (P) only

needs to be solved at several discrete times.



11= 8>>>><>>>>: �jAj�� � jAjjBj Stth�Xx2XbC(x;Bt�fbg)�; if at(b) = 0, (21a)�jAj�� � jAjjBj Stth�Xx2XbC(x;Bt)�+ Pb; if at(b) = 1. (21b)

To minimize the relaxation gap, the network coordinator updates the Lagrangian multiplier using gradient descent

iterative method with a small step size � > 0, i.e.,� �+ � h� � Stth � S(A;Bt)i ; (22)

where S(A;Bt) can be calculated by collecting local ASE in each BS as follows:S(A;Bt) = 1jAj Xb2Bt jAbj � S(Ab;Bt): (23)

For any given �, the BS b needs to be turned off for energy saving if the difference between (21a) and (21b) is

less than or equal to zero, i.e., Lb(0; �) � Lb(1; �) � 0, jAbj � �S(Ab;Bt)� S(Ab;Bt � fbg)	Pb � jAj� : (24)

This condition (24) can be interpreted as follows: (i) The less difference in spectral efficiency (i.e., small impact

on QoS) the BS has and/or (ii) the larger operational power (i.e., large energy saving) the BS consumes, the more

likely the BS is switched off.

With help of the switching off condition, we propose a BS switching algorithm (S-OFF1) in the following. Please

see Fig. 3 for a pictorial description.

(S-OFF1) SINR-based distributed switching algorithm

At each time t, each BS b reports current local information jAbj � S(Ab;Bt) to the network coordinator, and

receives the Lagrangian multiplier �. If the performance decrement in spectral efficiency per unit operational power

is less than a certain threshold, then the BS b will be switched off.jAbj � �S(Ab;Bt)� S(Ab;Bt � fbg)	Pb � jAj� : (25)

The BS switching-on procedure can be accomplished by the reverse way of the switching-off procedure. Without

any additional calculation in off-state, the BS b is switched on when the target ASE reaches the same value that

the BS was originally switched off.

In (S-OFF1), each BS requires SINR estimations before and after turning-off from UEs in its coverage. To

reduce the signal processing overhead of UEs, we propose (S-OFF2) based on SNR estimations.

(S-OFF2) SNR-based distributed switching algorithmjAbj � �S�2(Ab;Bt)� S�2(Ab;Bt � fbg)	Pb � jAj� : (26)



12

!"#$%&'()%%&*+,-#%&(

./( ./(

! Update λ

" Feedback 

" 
! 

# 
# BS switching 

  ⋯

  ⋯ a
i

t
b( )

A
b
⋅ S A

b
,B

t( )

Fig. 3: Flow of distributed BS switching algorithm

where S�2(A;B) = 1jAjPx2X log2(1 +Eb(x;B)(x)=�2).
Lemma 4.1: The ASE differences of SINR-based and SNR-based distributed algorithms satisfy the following:S(Ab;Bt)� S(Ab;Bt � fbg) � S�2(Ab;Bt)� S�2 : (27)

Accordingly, (S-OFF1) turns off more BSs than (S-OFF2), resulting in more energy saving.

Proof: Denote the indexes of BSs that offeres the best and the second best signal strength by k1 = b(x;Bt)
and k2 = b(x;Bt � fk1g), respectively. The difference in spectral efficiency based on SINR at location x can be

expressed as C(x;Bt)� C(x;Bt � fbg)= log2 �1 + Ek1(x)Ek2(x) + Ix + �2�� log2 �1 + Ek2(x)Ix + �2�� log2 �1 + Ek1(x)Ix + �2�� log2 �1 + Ek2(x)Ix + �2�= log2(Ix + �2 +Ek1(x)Ix + �2 +Ek2(x))� log2(�2 +Ek1(x)�2 +Ek2(x))= C�2(x;Bt)� C�2(x;Bt � fbg)
(28)

where Ix = I(x;B � fk1g). Note that the last inequality holds because log2 � z+Ek1(x)z+Ek2(x)� is a monotone decreasing

convex function of z when Ek1(x) > Ek2(x) [23]. By the definition of ASE and (28), we can have the condition

(27).

V. NUMERICAL RESULTS

We consider the deployment of macro BSs as shown in Fig. 4 for our simulation. There are 10 macro BSs in8 � 8km2. In order to avoid edge effects, we only observe the area of 5 � 5km2. Typical transmission and total

operational powers for macro and micro BSs are summarized in Table I [24], [25]. In modeling the propagation

environment, the modified COST 231 Hata path loss model with macro BS height h = 32m and micro BS height
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Fig. 4: Snapshot of BS deployment (Micro 2W).

TABLE I: Typical BS energy consumption.

Macro BS pM 10W 20W 40WPM 638W 865W 1317W

Micro BS pm 500mW 1W 2WPm 35W 38W 43Wh = 12:5 is used. The other parameters for the simulations follow the suggestions in the IEEE 802.16m evaluation

methodology document [26].

A. Base Station Deployment

On top of the deployment of macro BSs, we consider the deployment of micro BSs to further increase ASE

in the area of interest. The proposed greedy deployment algorithm in Section III shown to be a constant-factor

approximation of optimal deployment is evaluated. Fig. 4 show the snapshots of the greedy algorithm after 5 and

10 micro BSs additionally deployed. As expected, the micro BSs tend to be placed in the boundaries of the cell

because this makes each micro BS cover larger area, resulting in more ASE increment.

In Fig. 5, we investigate the performance improvement according to the additional deployment of BSs having

different transmission powers. Four types of BSs are considered: the macro BS with transmit power of 20W

and the micro BSs with transmit power of 0.5W, 1W and 2W, respectively. There are diminishing returns on the

normalized ASE increment. This is not only because the coverage of newly deployed BS will shrink but the amount

of interference in the network increase as the number of BSs increases.

To meet the target ASE increment of 10%, while only five additional macro BSs are needed, 15, 22 or 30 micro

BSs (three to six times more then macro BSs) are needed depending on their transmission powers. Nevertheless,
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TABLE II: Additional total power consumption required for the target ASE increment.

Macro Micro Micro Micro

20W 2W 1W 0.5W

Target ASE 10% 4325W 645W 836W 1050W

increment 15% 9515W 1476W 1672W 2240W

the transmission power consumptions (pM and pm) of additional micro BSs are much less than that of additional

macro BSs. For example, while 100W is consumed by the macro BSs, only 30W, 22W, or 15W is consumed by

the micro BSs.

When we reflect the total power consumptions (PM and Pm) in Table I, the advantage of micro BSs becomes

more clear. Table II shows the required the additional total power consumptions for different target ASE increment.

Compared to the case of macro BSs, deploying micro BSs can reduce more than 3kW and 6kW for the target ASE

increment 10% and 15%, respectively. This corresponds to almost 75-80% savings in the total power consumptions.

B. Base Station Operation

We now examine the performance of the proposed BS switching algorithms in Section IV. Fig. 6 shows the

percentage of additional power consumption for different algorithms by varying the normalized required ASEStth=St�th compared to the result of an optimal exhaustive search. First of all, it is worthwhile mentioning that such

simple distributed algorithms can closely approximate the complex centralized algorithm. When the normalized

required ASE is less than 0.4, the centralized and two distributed algorithms consume the same amount of energy

with the optimal solution. However, as the normalized required ASE increases over 0.4, performance gaps begin
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Fig. 7: Normalized traffic profile during one week from a real cellular data trace.

to arise. For example, additional 5.0%, 6.7% and 7.2% energies are used (at Stth=Stht� = 0:7) in the centralized

and two distributed algorithms, respectively.

To obtain more realistic results, we further consider traffic profiles in a metropolitan urban area during one week

as shown in Fig. 7 that is recorded by an anonymous wireless network operator. The low traffic period (less than

0.4 of the maximum value) is about 65% of time assuming two weekend days in a typical week. This implies that

our distributed algorithms can obtain the same performance as the optimal solution during 65% of time and can

still be within about 7% from the optimal solution during the rest of time.

Fig. 8 illustrates the energy consumption ratio during one day compared to the case without the dynamic BS
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TABLE III: Energy saving ratio during one day (macro 20W & the target ASE increment of 15%).

Micro 2W Micro 1W Micro 0:5W
Cent. 81.1% 80.9% 82.9%

Weekday S-OFF1 80.9% 80.6% 82.0%

S-OFF2 79.6% 80.5% 81.6%

Cent. 96.7% 96.6% 97.2%

Weekend S-OFF1 95.3% 95.4% 96.1%

S-OFF2 95.3% 95.3% 96.1%

operation. It is shown that most of BSs can be turned off at night time, and the energy consumption is reduced by less

than half during most of day time. Note that we used the BS topology for this simulation which is obtained from the

proposed deployment algorithm in the previous subsection V-A. Table III summarizes the total energy saving ratio

for different algorithms during weekday and weekend. It is expected that 80% and 95% of energy consumption can

be saved during weekday and weekend, respectively. Given that OPEX of wireless network operators for electricity

is more than 10 billion dollars globally [3], this could translate to huge economic benefit to the operators.

VI. CONCLUSION

Hierarchical cell structure, consisting of cells with different sizes and ranging from macro to micro cells, will

play a pivotal role in next-generation wireless networks. It can increase not only spectral efficiency but also

cost-effectiveness and power-efficiency. In this paper, we proposed an energy-aware hierarchical cell configuration
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framework that has theoretical results as well as practical guidelines on how wireless network operators manage their

BSs. We specifically focused on a problem pertaining to total energy consumption minimization while satisfying

the requirement of ASE, and decomposed it into deployment problem at peak time and operation problem at off-

peak time. For the deployment problem, we proposed a constant-factor approximation greedy algorithm. Since

there is a similarity between the deployment and operation problems, the greedy algorithm can be applied as a

centralized offline solution for the operation problem. We further propose two distributed online switching algorithms

using Lagrangian relaxation to have more practical solutions. Extensive simulations based on the acquired real BS

topologies and traffic profiles show that the proposed deployment and operation algorithms can dramatically save

the total energy consumption.
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