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Abstract—We consider a combinatorial generalization of the
classical multi-armed bandit problem that is defined as follows.
There is a given bipartite graph of M users and N ≥ M
resources. For each user-resource pair (i, j), there is an associated
state that evolves as an aperiodic irreducible finite-state Markov
chain with unknown parameters, with transitions occurring each
time the particular user i is allocated resource j. The user i
receives a reward that depends on the corresponding state each
time it is allocated the resource j. The system objective is to
learn the best matching of users to resources so that the long-
term sum of the rewards received by all users is maximized.
This corresponds to minimizing regret, defined here as the gap
between the expected total reward that can be obtained by the
best-possible static matching and the expected total reward that
can be achieved by a given algorithm. We present a polynomial-
storage and polynomial-complexity-per-step matching-learning
algorithm for this problem. We show that this algorithm can
achieve a regret that is uniformly logarithmic in time and
polynomial in the number of users and resources, under certain
conditions on the component Markov chains. This formulation
is broadly applicable to scheduling and switching problems in
networks and significantly extends prior results in the area.

I. INTRODUCTION

Multi-armed bandit problems provide a fundamental ap-
proach to learning under stochastic rewards, and find rich
applications in a wide range of networking contexts, from
Internet advertising [1] to medium access in cognitive radio
networks [2]–[4]. In the simplest, classic non-Bayesian version
of the problem, studied by Lai and Robbins [5], there are K
independent arms, each generating stochastic rewards that are
i.i.d. over time. The player is unaware of the parameters for
each arm, and must use some policy to play the arms in such a
way as to maximize the cumulative expected reward over the
long term. The policy’s performance is measured in terms of
its “regret”, defined as the gap between the the expected reward
that could be obtained by an omniscient user that knows the
parameters for the stochastic rewards generated by each arm
and the expected cumulative reward of that policy. It is of
interest to characterize the growth of regret with respect to
time as well as with respect to the number of arms/players.
Intuitively, if the regret grows sublinearly over time, the time-
averaged regret tends to zero.
There is inherently a tradeoff between exploration and

exploitation in the learning process in a multi-armed bandit
problem: on the one hand all arms need to be sampled
periodically by the policy used, to ensure that the ”true” best
arm is found; on the other hand, the policy should play the arm
that is considered to be the best often enough to accumulate
rewards at a good pace.
In this paper, we formulate a novel combinatorial gener-

alization of the multi-armed bandit problem that allows for
Markovian rewards and propose an efficient policy for it.
In particular, there is a given bipartite graph of M users
and N ≥ M resources. For each user-resource pair (i, j),
there is an associated state that evolves as an aperiodic irre-
ducible finite-state Markov chain with unknown parameters,
with transitions occurring each time the particular user i
is allocated resource j. The user i receives a reward that
depends on the corresponding state each time it is allocated
the resource j. A key difference from most prior works is
that each user can potentially see a different reward process
for the same resource. If we therefore view each possible
matching of users to resources as an arm, then we have a
super-exponential number of arms with dependent rewards.
Thus, this new formulation is significantly more challenging
than the traditional multi-armed bandit problems.
Because our formulation allows for user-resource matching,

it is broadly applicable to many networking settings such
as switching in routers (where inputs need to be matched
to outputs), and frequency scheduling in wireless networks
(where nodes need to be allocated to channels). For instance,
our work can be applied directly to the channel allocation
problem in cognitive radio networks considered in [2] for the
case when the rewards for each user-channel pair come from
a discrete set.
Our main contribution in this work is the design of a

novel policy for this problem that we refer to Matching
Learning for Markovian Rewards (MLMR). Since we treat
each possible matching of users to resources as an arm, the
number of arms in our formulation grows super-exponentially.
However, MLMR uses only polynomial storage, and requires
only polynomial computation at each step. We analyze the
regret for this policy with respect to the best possible static
matching, and show that it is uniformly logarithmic over time
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and polynomial in the number of users and resources.
The rest of the paper is organized as follows. In section II we

present our work in the context of prior results on multi-armed
bandits. In section III we present the problem formulation. In
section IV we present a polynomial-storage polynomial-time-
per-step learning policy, which we refer to as MLMR. We
analyze the regret for this policy in section V and show that
it yields a bound on the regret that is uniformly logarithmic
over time and polynomial in the number of users and resources
under certain conditions on the Markov chains describing the
state evolution for the arms. We present some examples and
simulations in section VI, and conclude with some comments
and ideas for future work in section VII.

II. PRIOR WORK

The problem we consider in this paper is different from
prior work for two key reasons. We treat rewards that are
dependent across a super-exponential number of arms whose
states evolve in a non-i.i.d. Markovian fashion over time. We
summarize below prior work, which has treated a) independent
and temporally i.i.d. rewards, or b) independent and Markovian
state-based rewards, or c) non-independent arms with tempo-
rally i.i.d.

A. Independent arms with temporally i.i.d. rewards
The work by Lai and Robbins [5] assumes K independent

arms, each generating rewards that are i.i.d. over time from
a given family of distributions with an unknown real-valued
parameter. For this problem, they present a policy that provides
an expected regret that is O(K log n), i.e. linear in the number
of arms and asymptotically logarithmic in n. Anantharam et
al. extend this work to the case when M simultaneous plays
are allowed [6]. The work by Agrawal [7] presents easier
to compute policies based on the sample mean that also
has asymptotically logarithmic regret. The paper by Auer et
al. [8] that considers arms with non-negative rewards that are
i.i.d. over time with an arbitrary un-parameterized distribution
that has the only restriction that it have a finite support.
Further, they provide a simple policy (referred to as UCB1),
which achieves logarithmic regret uniformly over time, rather
than only asymptotically. Our work utilizes the Chernoff-
Hoeffding-bound-based approach to regret analysis pioneered
by Auer et al..
Some recent work has shown the design of distributed

multiuser policies providing asymptotically logarithmic regret,
for the context of cognitive radio networks [3], [4].

B. Independent arms with Markovian rewards
There has been relatively less work on multi-armed bandits

with Markovian rewards. Anantharam et al. [9] wrote one of
the earliest papers with such a setting. They proposed a policy
to pickm out of theN arms each time slot and prove the lower
bound and the upper bound on regret. However, the rewards
in their work are assumed to be generated by rested Markov
chains with transition probability matrices defined by a single

parameter θ with identical state spaces. Also, the result for the
upper bound is achieved only asymptotically.
For the case of single users and independent arms, a recent

work by Tekin and Liu [10] has extended the results in [9]
to the case with no requirement for a single parameter and
identical state spaces across arms. They propose to use UCB1
from [8] for the multi-armed bandit problem with Markovian
rewards and prove a logarithmic upper bound on the regret
under some conditions on the Markov chain. We use elements
of the proof from [10] in this work, which is however quite
different in its combinatorial matching formulation (which
allows for dependent arms).

C. Dependent arms with temporally i.i.d. rewards
The paper by Pandey et al. [1] divides arms into clusters

of dependent arms, each providing binary rewards, but they
do not present any theoretical analysis on the expected regret.
In [11], the reward from each arm is modeled as the sum
of a linear combination of a set of static random numbers
and a zero-mean random variable that is i.i.d. over time and
independent across arms. This is quite different from our
model of rewards.
Our work in this paper is closest to and builds on the recent

work which introduced combinatorial multi-armed bandits [2].
The formulation in [2] has the restriction that the reward pro-
cess must be i.i.d. over time. A polynomial storage matching
learning algorithm is presented in [2] that yields regret that is
polynomial in users and resources and uniformly logarithmic
in time for the case of i.i.d. rewards. Although i.i.d. rewards are
a special case of Markovian state-based rewards, one reason
this work is not a strict generalization of [2] is our assumption
that the number of possible states, and hence the support of the
reward distribution on each arm, is finite (whereas [2] allows
for continuous reward distributions with bounded support).

III. PROBLEM FORMULATION

We consider a bipartite graph with M users and N ≥ M
resources predefined by some application, e.g. a wireless
network with M transmitters and N channels. Time is slotted
and is indexed by n. At each decision period (also referred to
interchangeably as time slot), each of the M users is assigned
a resource with some policy.
For each user-resource pair (i, j), there is an associated state

that evolves as an aperiodic irreducible finite-state Markov
chain with unknown parameters. When user i is assigned
resource j, assuming there are no other conflicting users as-
signed this resource, i is able to receives a reward that depends
on the corresponding state each time it is allocated the resource
j. We denote the state space as Si,j = {z1, z2, . . . , z|Si,j|}.
The state of the Markov chain for each user-resource pair
(i, j) evolves only when resource j is allocated to user i. We
assume the Markov chains for different user-resource pairs are
mutually independent. The reward got by user i while allocated
resource j on state z ∈ Si,j is denoted as θi,j

z , which is also un-
known to the users. We denote Pi,j = {pi,j(za, zb)}za,zb∈Si,j
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as the transition probability matrix for the Markov chain (i, j).
Denote πi,j

z as the steady state distribution for state z. The
mean reward got by user i on resource j is denoted as µ i,j .
Then we have µi,j =

∑
z∈Si,j

θi,j
z πi,j

z . The set of all mean

rewards is denoted as µ = {µi,j}.
We denote Yi,j(n) as the actual reward obtained by a user i

if it is assigned resource j at time n. We assume that Yi,j(n) =
θz(n)

i,j , if user i is the only occupant of resource j at time
n where z(n) is the state of Markov chain associated with
(i, j) at time n. Else, if multiple users are allocated resource
j, then we assume that, due to interference, at most one of
the conflicting users j ′ gets reward Yi,j′ (n) = θz′(n)

i,j′ where
z′(n) is the state of Markov chain associated with (i, j ′) at
time n, while the other users on the resources j #= j ′ get
zero reward, i.e., Yi,j(n) = 0. This interference model covers
scenarios in many networking settings, such as the perfect
collision model in which none of the conflicting users derive
any benefit and CSMA with perfect sensing in which exactly
one of the conflicting user derives benefit from the channel.
A deterministic policy α(n) at each time is defined as a map

from the observation history {Ot}n−1
t=1 to a vector of resources

o(n) to be selected at period n, where Ot is the observation at
time t; the i-th element in o(n), oi(n), represents the resource
allocation for user i. Then the observation history {O t}n−1

t=1

in turn can be expressed as {oi(t), Yi,oi(t)(t)}1≤i≤M,1≤t<n.
Due to the fact that allocating more than one user to a re-

source is always worse than assigning each a different resource
in terms of sum-throughput, we will focus on collision-free
policies that assign all users distinct resources, which we will
refer to as a permutation or matching. There are P (N, M)
such permutations.
We formulate our problem as a combinatorial multi-armed

bandit, in which each arm corresponds to a matching of the
users to resources. We can represent the arm corresponding to
a permutation k (1 ≤ k ≤ P (N, M)) as the index set Ak =
{(i, j) : (i, j) is in permutation k}. The stochastic reward for
choosing arm k at time n under policy α is then given as

Yα(n)(n) =
∑

(i,j)∈Aα(n)

Yi,j(n) =
∑

(i,j)∈Aα(n)

θ
zα(n)
i,j .

Note that different from most prior work on multi-armed
bandits, this combinatorial formulation results in dependence
across arms that share common components.
A key metric of interest in evaluating a given policy for this

problem is regret, which is defined as the difference between
the expected reward that could be obtained by the best-possible
static matching, and that obtained by the given policy. It can
be expressed as:

Rα(n) = nµ∗ − Eα[
n∑

t=1

Yα(t)(t)]

= nµ∗ − Eα[
n∑

t=1

∑

(i,j)∈Aα(t)

θ
zα(t)
i,j ],

(1)

where µ∗ = max
k

∑
(i,j)∈Ak

µi,j , the expected reward of the

optimal arm, is the expected sum-weight of the maximum
weight matching of users to resources with µi,j as the weight.
We are interested in designing policies for this combinato-

rial multi-armed bandit problem with Markovian rewards that
perform well with respect to regret. Intuitively, we would like
the regret Rα(n) to be as small as possible. If it is sub-linear
with respect to time n, the time-averaged regret will tend to
zero.

IV. MATCHING LEARNING FOR MARKOVIAN REWARDS
A straightforward idea for the combinatorial multi-armed

bandit problem with Markovian rewards is to treat each
matching as an arm, apply UCB1 policy (given by Auer et
al. [8]) directly, and ignores the dependencies across the
different arms. For each arm k, two variables are stored and
updated: the time average of all the observation values of arm
k and the number of times that arm k has been played up to
the current time slot. The UCB1 policy makes decisions based
on this information alone.
However, there are several problems for applying UCB1

directly in the above setting. We note that UCB1 requires both
the storage and computation time that are linear in the number
of arms. Since the number of arms in this formulation grows as
P (N, M), it is highly unsatisfactory. Also, the upper-bound of
regret given in [10] will not work anymore since the rewards
across arms are not independent anymore and the states of
an arm may involve even when this arm is not played. No
analysis result on the upper-bound of regret can be applied
directly in this setting to our best knowledge.
So we are motivated to propose a policy which more effi-

ciently stores observations from correlated arms and exploits
the correlations to make better decisions. Our key idea is to
use two M by N matrices, (θ̂i,j)M×N and (ni,j)M×N , to
store the information for each user-resource pair, rather than
for each arm as a whole. θ̂i,j is the average (sample mean)
of all the observed values of resource j by user i up to the
current time slot (obtained through potentially different sets
of arms over time). ni,j is the number of times that resource
j has been assigned to user i up to the current time slot.
At each time slot n, after an arm k is played, we get the

observation of Yi,j(n) for all (i, j) ∈ Ak . Then (θ̂i,j)M×N

and (ni,j)M×N (both initialized to 0 at time 0) are updated
as follows:

θ̂i,j(n) =

{
θ̂i,j(n−1)ni,j(n−1)+Yi,j(n)

ni,j(n−1)+1 , if (i, j) ∈ Ak

θ̂i,j(n − 1) , else
(2)

ni,j(n) =
{

ni,j(n − 1) + 1 , if (i, j) ∈ Ak

ni,j(n − 1) , else (3)

Note that while we indicate the time index in the above
updates for notational clarity, it is not necessary to store the
matrices from previous time steps while running the algorithm.
Our proposed policy, which we refer to as Matching Learn-

ing for Markovian Rewards, is shown in Algorithm 1.
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Algorithm 1 Matching Learning for Markovian Rewards
(MLMR)
1: // INITIALIZATION
2: for p = 1 to M do
3: for q = 1 to N do
4: n = (M − 1)p + q;
5: Play any permutation k such that (p, q) ∈ Ak;
6: Update (θ̂i,j)M×N , (ni,j)M×N accordingly.
7: end for
8: end for
9: // MAIN LOOP
10: while 1 do
11: n = n + 1;
12: Solve the Maximum Weight Matching problem (e.g.,

using the Hungarian algorithm [12]) on the bipar-
tite graph of users and resources with edge weights(
θ̂i,j +

√
L ln n
ni,j

)

M×N
to play arm k that maximizes

∑

(i,j)∈Ak

(
θ̂i,j +

√
L lnn

ni,j

)
(4)

where L is a positive constant.
13: Update (θ̂i,j)M×N , (ni,j)M×N accordingly.
14: end while

V. ANALYSIS OF REGRET
We summarizes some notation we use in the description and

analysis of our MLMR policy in Table I.
The regret of a policy for a multi-armed bandit problem is

traditionally upper-bounded by analyzing the expected number
of times that each non-optimal arm is played and then taking
the summation over of this expectation times the reward
difference between an the optimal arm and a non-optimal arm
all non-optimal arms. Although we could use this approach
to analyze the MLMR policy, we notice that the upper-bound
for regret consequently obtained is quite loose, which is linear
in the number of arms, P (N, M). Instead, we present here a
novel analysis for a tighter analysis of the MLMR policy. Our
analysis shows an upper bound of the regret that is polynomial
in M and N , and uniformly logarithmic over time.
Following lemmas are needed for our main results in

Theorem 1:
Lemma 1: (Lemma 2.1 from [9]) {Xn, n = 1, 2, . . .} is

an irreducible aperiodic Markov chain with state space S,
transition matrix P , a stationary distribution πz , ∀z ∈ S, and
an initial distribution q. Denote Ft as the σ-algebra generated
by X1, X2, . . . , Xt. Let G be a σ-algebra independent of
F = ∨t≥1Ft. Let τ be a stopping time with respect to the
increasing family of σ-algebra G ∨ Ft, t ≥ 1. Define N(z, τ)
such that N(z, τ) =

τ∑
t=1

I(Xt = z). Then,

|E[N(z, τ) − πzE[τ ]]| ≤ CP , (5)

for all q and all τ such that E[τ ] < ∞. CP is a constant that

N : number of resources.
M : number of users, M ≤ N .
k : index of a parameter used for an arm,

1 ≤ k ≤ P (N, M).
i, j : index of a parameter used for user i, resource j.
Ak : {(i, j) : (i, j) is in permutation k}
Ki,j : {Ak : (i, j) ∈ Ak}
∗ : index indicating that a parameter is for the

optimal arm.
ni,j : number of times that resource j has been

matched with user i up to the current time slot.
θ̂i,j : average (sample mean) of all observed values

of resource j by user i up to current time slot.
nk

i : ni,j such that (i, j) ∈ Ak at current time slot.
Si,j : state space of the Markov chain for

user-resource pair (i, j).
Pi,j : transition matrix of the Markov chain

associated with user-resource pair (i, j).
πi,j

z : steady state distribution for state z of the
Markov chain associated with (i, j).

θi,j
z : reward got by user i while access resource j on

state z ∈ Si,j

µi,j :
∑

z∈Si

θi,j
z πi,j

z , the mean reward for user i using

resource j
µk:

∑
(i,j)∈Ak

µi,j

µ∗: max
k

∑
(i,j)∈Ak

µi,j

∆k: µ∗ − µk .
∆min: min

k
∆k.

∆max: max
k

∆k.
πmin: min

1≤i≤M,1≤j≤N,z∈Si,j

πi,j
z .

smax: max
1≤i≤M,1≤j≤N

|Si,j |.

smin: min
1≤i≤M,1≤j≤N

|Si,j |.

θmax: max
1≤i≤M,1≤j≤N,z∈Si,j

θi,j
z .

θmin: min
1≤i≤M,1≤j≤N,z∈Si,j

θi,j
z .

εi,j : eigenvalue gap, defined as 1 − λ2, where λ2

is the second largest eigenvalue gap of Pi,j .
εmax: max

1≤i≤M,1≤j≤N
εi,j .

εmin: min
1≤i≤M,1≤j≤N

εi,j .

Tk(n): number of times arm k has been played by
MLMR in the first n time slots.

θ̂k(n):
∑

(i,j)∈Ak

θ̂i,j(n). It is the summation of all the

average observation values in arm k at time n.
θ̂k

i,nk
i
: θ̂i,j(n) such that (i, j) ∈ Ak and ni,j(n) = nk

i .

θ̂k,nk
1 ,...,nk

M
:

M∑
i=1

θ̂k,nk
i
.

TABLE I
NOTATION
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depends on P .
Lemma 2: (Corollary 1 from [10]) Let πmin be the mini-

mum value among the stationary distribution, which is defined
as πmin = min

z∈S
πz . Then CP ≤ 1/πmin.

Lemma 3: For user-resource matching, if the state of re-
ward associated with each user-resource pair (i, j) is given
by a Markov chain, denoted {X i,j

1 , X i,j
2 , . . .}, satisfying the

properties of Lemma 1, then the regret under policy α is
bounded by:

Rα(n) ≤
P (N,M)∑

k=1

(µ∗ − µk)Eα[Tα
k (n)] + CS,P,Θ, (6)

where CS,P,Θ is a constant that depends on all the
state spaces {Si,j}1≤i≤M,1≤i≤N , transition probability ma-
trices {Pi,j}1≤i≤M,1≤i≤N and the rewards set {θz

i,j , z ∈
Si,j}1≤i≤M,1≤i≤N .

Proof:
∀1 ≤ i ≤ M , 1 ≤ j ≤ N , define Gi,j = ∨k (=i,l (=jFk,l

where Fk,l = ∨t≥1F
i,j
t , which applies to the Markove chain

{X i,j
1 , X i,j

2 , . . .}. We note that the Markove chains of different
user-resource pairs are mutually independent, so ∀i, j, G i,j is
independent of Fi,j . Fi,j satisfies the conditions in Lemma 1.
Note that T α

i,j(n) is a stopping time with respect to {Gi,j ∨
F i,j

n , n > 1}.
Since the state of a Markove chain evolves only when it is

observed, X i,j
1 , . . . , X i,j

T α
i,j(n) represents the successive states

of the Markov chain up to n when assigning resource j to
user i.Then the total reward obtained under policy α up to
time n is given by:

n∑

t=1

Yα(t)(t) =
N∑

j=1

M∑

i=1

T α
i,j(n)∑

l=1

∑

z∈Si,j

θi,j
z I(X i,j

l = z). (7)

Note that ∀i = 1, . . . , M , T α
k (n) = Tα(n),i

k where T α(n),i
k is

the number of times up to n that the i-th component has been
observed while playing arm k, and there exist one resource
index j such that (i, j) ∈ Ak. So, we have:

P (N,M)∑

k=1

µkEα[Tα
k (n)]

=
P (N,M)∑

k=1

M∑

i=1

µk
i Eα[Tα

k (n)]

=
P (N,M)∑

k=1

M∑

i=1

µk
i Eα[Tα,i

k (n)]

=
N∑

j=1

M∑

i=1

µi,j

∑

Ak∈Ki,j

Eα[Tα,i
k (n)]

=
N∑

j=1

M∑

i=1

µi,jEα[Tα
i,j(n)]

=
N∑

j=1

M∑

i=1

∑

z∈Si,j

θi,j
z πi,j

z Eα[Tα
i,j(n)]

Hence,

|Rα(n) −
P (N,M)∑

k=1

(µ∗ − µk)Eα[Tα
k (n)]|

=

∣∣∣∣∣∣
Rα(n) − (nµ∗ −

P (N,M)∑

k=1

µkEα[Tα
k (n)])

∣∣∣∣∣∣

=

∣∣∣∣∣(nµ∗ − Eα[
n∑

t=1

Yα(t)(t)])

−(nµ∗ −
P (N,M)∑

k=1

µkEα[Tα
k (n)])

∣∣∣∣∣∣

=

∣∣∣∣∣∣
Eα[

n∑

t=1

Yα(t)(t)] −
P (N,M)∑

k=1

µkEα[Tα
k (n)]

∣∣∣∣∣∣

=

∣∣∣∣∣∣
Eα[

N∑

j=1

M∑

i=1

T α
i,j(n)∑

l=1

∑

z∈Si,j

θi,j
z I(X i,j

l = z)]

−
N∑

j=1

M∑

i=1

∑

z∈Si,j

θi,j
z πi,j

z Eα[Tα
i,j(n)]

∣∣∣∣∣∣

≤
N∑

j=1

M∑

i=1

∑

z∈Si,j

|Eα[
T α

i,j(n)∑

l=1

θi,j
z I(X i,j

l = z)].

− θi,j
z πi,j

z Eα[Tα
i,j(n)]|

=
N∑

j=1

M∑

i=1

∑

z∈Si,j

θi,j
z |Eα[

T α
i,j(n)∑

l=1

I(X i,j
l = z)]

− πi,j
z Eα[Tα

i,j(n)]|

=
N∑

j=1

M∑

i=1

∑

z∈Si,j

θi,j
z

∣∣Eα[N(z, Tα
i,j(n))] − πi,j

z Eπ [Tα
i,j(n)]

∣∣

≤
N∑

j=1

M∑

i=1

∑

z∈Si,j

θi,j
z CPi,j = CS,P,Θ (8)

The inequality in (8) follows from Lemma 1.
Lemma 4: (Theorem 2.1 from [13]) Let {Xn, n =

1, 2, . . .} be an irreducible aperiodic Markov chain with finite
state space S, transition matrix P, a stationary distribution πz ,
∀z ∈ S, and an an initial distribution q. Let Nq = ||( qz

πz
), z ∈

S||2. The eigenvalue gap ε is defined as ε = 1 − λ2, where
λ2 is the second largest eigenvalue of the matrix P. ∀A ⊂ S,
define tA(n) as the total number of times that all states in the
set A are visited up to time n. Then ∀γ ≥ 0,

P (tA(n) − nπA ≥ γ) ≤ (1 +
γε

10n
Nqe−γ2ε/20n), (9)

where πA =
∑

z∈A
πz .

Our main results on the regret of MLMR policy are shown
in Theorem 1. We show that with using a constant L which
is bigger than a value determined by the minimum eigenvalue
gap of the transition matrix, maximum value of the number of
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states, and maximum value of the rewards, our MLMR policy
is guaranteed to achieve a regret that is uniformly logarithmic
in time, and polynomial in the number of users and resources.
Theorem 1: When using any constant L ≥

(50+40M)θ2
maxs2

max
εmin

, the expected regret under the MLMR
policy specified in Algorithm 1 is at most

[
4M3NL lnn

(∆min)2
+ MN+

M2N
smax

πmin

(
1 +

εmax

√
L

10sminθmin

)
π

3

]
∆max + CS,P,Θ,

(10)

where ∆min, ∆max, πmin, smax, smin, θmax, θmin, εmax, εmin

follow the definition in Table I; CS,P,Θ follows the definition
in Lemma 3.

Proof:
Denote Ct,n as

√
L ln n

n . Denote Ct,nAk
=

∑
(i,j)∈Ak

√
L ln n
ni,j

=
M∑
i=1

√
L ln n

nk
i

=
M∑
i=1

Ct,nk
i
. It is also

denoted as Ct,(nk
1 ,...,nk

M ) sometimes for a clear explanation in
this proof.
We introduce T̃i,j(n) as a counter after the initialization

period. It is updated in the following way:
At each time slot after the initialization period, one of the

two cases must happen: (1) an optimal arm is played; (2) a
non-optimal arm is played. In the first case, (T̃i,j(n))M×N

won’t be updated. When an non-optimal arm k(n) is picked
at time n, there must be at least one (i, j) ∈ Ak such that
ni,j(n) = min

(i,j)∈Ak

ni,j . If there is only one such arm, T̃i,j(n)

is increased by 1. If there are multiple such arms, we arbitrarily
pick one, say (i′, j′), and increment T̃i′j′ by 1.
Each time when a non-optimal arm is picked, exactly one

element in (T̃i,j(n))M×N is incremented by 1. This implies
that the total number that we have played the non-optimal arms
is equal to the summation of all counters in (T̃i,j(n))M×N .
Therefore, we have:

∑

k:µk<µ∗
E[Tk(n)] =

M∑

i=1

N∑

j=1

E[T̃i,j(n)] (11)

Also note for T̃i,j(n), the following inequality holds:

T̃i,j(n) ≤ ni,j(n), ∀1 ≤ i ≤ M, 1 ≤ j ≤ N. (12)

Denote by Ĩi,j(n) the indicator function which is equal to
1 if T̃i,j(n) is added by one at time n. Let l be an arbitrary
positive integer. Then:

T̃i,j(n) =
n∑

t=MN+1

{Ĩi,j(t)}

≤ l +
n∑

t=MN+1

{Ĩi,j(t), T̃i,j(t − 1) ≥ l}

When Ĩi,j(t) = 1, there exists some arm such that a non-
optimal arm is picked for which ni,j is the minimum in this

arm. We denote this arm as k(t) since at each time that
Ĩi,j(t) = 1, we may get different arms. Then,

T̃i,j(n)≤ l +
n∑

t=MN+1
{θ̂∗(t − 1) + Ct−1,n∗(t−1)

≤θ̂k(t−1)(t − 1) + Ct−1,nAk(t−1) (t−1), T̃i,j(t − 1) ≥ l}

= l +
n∑

t=MN
{θ̂∗(t) + Ct,n∗(t)

≤ θ̂k(t)(t) + Ct,nAk(t) (t)
, T̃i,j(t) ≥ l}

Based on (12), l ≤ T̃i,j(t) implies,

l ≤ T̃i,j(t) ≤ ni,j(t) = nk(t)
i = min

j
nk(t)

j .

So,
∀1 ≤ i ≤ M, nk(t)

i ≥ l.

Then we could bound T̃i,j(n) as,

T̃i,j(n)≤ l +
n∑

t=MN
{ min
0<n∗

1 ,...,n∗
M≤t

θ̂∗n∗
1 ,...,n∗

M

+Ct,(n∗
1 ,...,n∗

M) ≤ max
l≤nk(t)

1 ,...,nk(t)
M ≤t

θ̂
k(t),n

k(t)
1 ,...,n

k(t)
M

+C
t,(n

k(t)
1 ,...,n

k(t)
M )

}

≤ l +
∞∑

t=1
[

t∑
n∗

1=1
· · ·

t∑
n∗

M=1

t∑

nk(t)
1 =l

· · ·
t∑

nk(t)
M =l

(θ̂∗n∗
1,...,n∗

M

+Ct,(n∗
1 ,...,n∗

M) ≤ θ̂
k(t),nk(t)

1 ,...,nk(t)
M

+C
t,(n

k(t)
1 ,...,n

k(t)
M )

)]

θ̂∗n∗
1 ,...,n∗

M
+ Ct,(n∗

1 ,...,n∗
M) ≤ θ̂

k(t),nk(t)
1 ,...,nk(t)

M
+

C
t,(n

k(t)
1 ,...,n

k(t)
M )

means that at least one of the following
must be true:

θ̂∗n∗
1 ,...,n∗

M
≤ µ∗ − Ct,(n∗

1 ,...,n∗
M ) (13)

θ̂
k(t),n

k(t)
1 ,...,n

k(t)
M

≥ µk(t) + C
t,(n

k(t)
1 ,...,n

k(t)
M )

(14)

µ∗ < µk(t) + 2C
t,(nk(t)

1 ,...,nk(t)
M )

(15)

Here we first find the upper bound for Pr{ θ̂∗n∗
1,...,n∗

M
≤

µ∗ − Ct,(n∗
1 ,...,n∗

M )}:

Pr{θ̂∗n∗
1,...,n∗

M
≤ µ∗ − Ct,(n∗

1 ,...,n∗
M )}

= Pr{
M∑
i=1

θ̂∗i,n∗
i
≤

M∑
i=1

µ∗
i −

M∑
i=1

Ct,n∗
i
}

≤ Pr{At least one of the following must hold:
θ̂∗1,n∗

1
≤ µ∗

1 − Ct,n∗
1
,

θ̂∗2,n∗
2
≤ µ∗

2 − Ct,n∗
2
,

...
θ̂∗M,n∗

M
≤ µ∗

M − Ct,n∗
M
}

≤
M∑
i=1

Pr{θ̂∗i,n∗
i
≤ µ∗

i − Ct,n∗
i
}
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∀1 ≤ i ≤ M ,

Pr{θ̂i,n∗
i
≤ µ∗

i − Ct,n∗
i
}

= Pr{
|S∗

i |∑

z=1

θ∗i (z)(z)n∗
i (z)

n∗
i

≤
|S∗

i |∑

z=1

θ∗i (z)π∗
i (z) − Ct,n∗

i
}

= Pr{
|S∗

i |∑

z=1

(θ∗i (z)n∗
i (z) − n∗

i θ
∗
i (z)π∗

i (z)) ≤ −n∗
i Ct,n∗

i
}

≤ Pr{At least one of the following must hold:

θ∗i (1)n∗
i (1) − n∗

i θ
∗
i (1)π∗

i (1) ≤ − n∗
i

|S∗
i |

Ct,n∗
i
,

...

θ∗i (|S∗
i |)n∗

i (|S∗
i |) − n∗

i θ
∗
i (|S∗

i |)π∗
i (|S∗

i |) ≤ − n∗
i

|S∗
i |

Ct,n∗
i
},

≤
|S∗

i |∑

z=1

Pr{θ∗i (z)n∗
i (z) − n∗

i θ
∗
i (z)π∗

i (z) ≤ − n∗
i

|S∗
i |

Ct,n∗
i
}

=
|S∗

i |∑

z=1

Pr{n∗
i (z) − n∗

i π
∗
i (z) ≤ − n∗

i

|S∗
i |θ∗i (z)

Ct,n∗
i
}

=
|S∗

i |∑

z=1

Pr{(n∗
i −

∑

l (=z

n∗
i (l)) − n∗

i (1 −
∑

l (=z

π∗
i (z))

≤ − n∗
i

|S∗
i |θ∗i (z)

Ct,n∗
i
}

=
|S∗

i |∑

z=1

Pr{
∑

l (=z

n∗
i (l) − n∗

i

∑

l (=z

π∗
i (z) ≥ n∗

i

|S∗
i |θ∗i (z)

Ct,n∗
i
}

(16)

∀1 ≤ z ≤ |S∗
i |, applying Lemma 4, we could find the upper

bound of each probablilty in (16) as,

Pr{θ̂i,n∗
i
≤ µ∗

i − Ct,n∗
i
}

≤
|S∗

i |∑

z=1

(
1 +

εi,j

10|S∗
i |θ∗i (z)

) √
L ln t

n∗
i

Nqi,je
− n∗

i L ln tεi,j

20|S∗
i |2θ∗i (z)2n∗

i

≤
|S∗

i |∑

z=1

(
1 +

εmax

√
Lt

10sminθmin

)
Nqi,je

− L ln tεmin
20s2

maxθ2
max

≤ smax

πmin

√
t

(
1 +

εmax

√
L

10sminθmin

)
t
− Lεmin

20s2
maxθ2

max (17)

=
smax

πmin

(
1 +

εmax

√
L

10sminθmin

)
t
−Lεmin−10s2

maxθ2
max

20s2
maxθ2

max

where (17) holds since for any qi,j ,

Nqi,j =
∥∥∥∥

qi,j
z

πi,j
z

, z ∈ Si,j

∥∥∥∥
2

≤
|Si,j |∑

z=1

∥∥∥∥
qi,j
z

πi,j
z

∥∥∥∥
2

≤
|Si,j|∑

z=1

∥∥qi,j
z

∥∥
2

πmin
=

1
πmin

.

Thus,

Pr{θ̂∗n∗
1,...,n∗

M
≤ θ∗ − Ct,(n∗

1,...,n∗
M )}

≤ Msmax

πmin

(
1 +

εmax

√
L

10sminθmin

)
t
−Lεmin−10s2

maxθ2
max

20s2
maxθ2

max .
(18)

With the similar calculation, we can also get the upper
bound of the probability for (14):

Pr{θ̂
k(t),nk(t)

1 ,...,nk(t)
M

≥ µk + C
t,(nk(t)

1 ,...,nk(t)
M )

}

≤
M∑

i=1

Pr{θ̂k
i,nk

i
≥ µk

i + Ct,nk
i
}

=
M∑

i=1

Pr{
|Sk

i |∑

z=1

θk
i (z)nk

i (z)
nk

i

≥
|Sk

i |∑

z=1

θk
i (z)πk

i (z) + Ct,nk
i
}

≤
M∑

i=1

|Sk
i |∑

z=1

Pr{θk
i (z)nk

i (z) − nk
i θ

k
i (z)πk

i (z) ≥ nk
i

|S∗
i |

Ct,nk
i
}

=
M∑

i=1

|Sk
i |∑

z=1

Pr{nk
i (z) − nk

i π
k
i (z) ≥ nk

i

|Sk
i |θk

i (z)
Ct,nk

i
}

≤
M∑

i=1

smax

πmin

(
1 +

εmax

√
L

10sminθmin

)
t
−Lεmin−10s2

maxθ2
max

20s2
maxθ2

max

≤ Msmax

πmin

(
1 +

εmax

√
L

10sminθmin

)
t
−Lεmin−10s2

maxθ2
max

20s2
maxθ2

max .

(19)

Note that for l ≥




4L lnn(
∆k(t)

M

)2




,

µ∗ − µk(t) − 2C
t,(nk(t)

1 ,...,nk(t)
M )

= µ∗ − µk(t) − 2
M∑

i=1

√
L ln t

nk(t)
i

≥ µ∗ − µk(t) − M

√
4L lnn

4L lnn

(
∆k(t)

M

)2

= µ∗ − µk(t) − ∆k(t) = 0.

(20)

(20) implies that condition (15) is false when l =


4L lnn(
∆k(t)

M

)2




. If we let l =




4L ln n(
∆i,j

min
M

)2




, then (15) is false

for all k(t), 1 ≤ t ≤ ∞ where

∆i,j
min = min

k
{∆k : (i, j) ∈ Ak}. (21)
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Therefore,

E[T̃i,j(n)]

≤





4L lnn
(

∆i,j
min
M

)2




+

∞∑

t=1




t∑

n∗
1=1

· · ·
t∑

n∗
1=M

t∑

nk
1=1

· · ·
t∑

nk
1=M

2M
smax

πmin

(
1 +

εmax

√
L

10sminθmin

)
t
−Lεmin−10s2

maxθ2
max

20s2
maxθ2

max

)

≤ 4M2L lnn
(
∆i,j

min

)2 + 1

+ M
smax

πmin

(
1 +

εmax

√
L

10sminθmin

) ∞∑

t=1

2t
−Lεmin−(40M+10)s2

maxθ2
max

20s2
maxθ2

max

≤ 4M2L lnn
(
∆i,j

min

)2 + 1 + M
smax

πmin

(
1 +

εmax

√
L

10sminθmin

) ∞∑

t=1

2t−2

(22)

=
4M2L lnn
(
∆i,j

min

)2 + 1 + M
smax

πmin

(
1 +

εmax

√
L

10sminθmin

)
π

3

where (22) holds since L ≥ (50+40M)θ2
maxs2

max
εmin

.
So under our MLMR policy,

Rπ(n) ≤
P (N,M)∑

k=1

(µ∗ − µk)Eπ [T k
π (n)] + CS,P,Θ

=
∑

k:θk<θ∗
∆kE[Tk(n)] + CS,P,Θ

≤ ∆max

∑

k:θk<θ∗
E[Tk(n)] + CS,P,Θ

= ∆max

M∑

i=1

N∑

j=1

E[T̃i,j(n)] + CS,P,Θ

≤




M∑

i=1

N∑

j=1

4M2L lnn
(
∆i,j

min

)2 + 1

+M
smax

πmin

(
1 +

εmax

√
L

10sminθmin

)
π

3

]
∆max + CS,P,Θ

≤
[

4M3NL lnn

(∆min)2
+ MN

+M2N
smax

πmin

(
1 +

εmax

√
L

10sminθmin

)
π

3

]
∆max + CS,P,Θ

(23)

VI. EXAMPLES AND SIMULATION RESULTS
We consider a system that consists of M = 2 users and

N = 4 resources. The state of each resource evolves as an
irreducible, aperiodic Markov chain with two states “0” and
“1”. For all the tables in this section, the element in the i-th

rom and j-th column represents the value for the user-resource
pair (i, j). The transition probabilities are shown in the tables
below:

0.5 0.4 0.7 0.3
0.2 0.9 0.9 0.7

p01

0.6 0.7 0.8 0.9
0.9 0.5 0.4 0.4

p10

The rewards on each states are:
0.6 0.5 0.2 0.4
0.3 0.7 0.8 0.3

θ0

0.8 0.2 0.7 0.5
0.5 0.3 0.6 0.6

θ1

For 1 ≤ i ≤ M , 1 ≤ j ≤ N , the stationary distribution
of user-resource pair (i, j) on state “0” is calculated as

pi,j
10

pi,j
01 +pi,j

10
; the stationary distribution on state “1” is calculated

as pi,j
01

pi,j
01 +pi,j

10
. The eigenvalue gap is εi,j = pi,j

01 + pi,j
10 . The

expected reward µi,j for all the pairs can be calculated as:

0.6909 0.3909 0.4333 0.425
0.3363 0.4429 0.6615 0.4909

µ

We can see that the arm {(1, 1), (2, 3)} is the optimal arm
with greatest expected reward µ∗ = 0.6909+0.6615 = 1.3524.
∆min = 0.1706.

0 1 2 3 4 5 6 7 8 9 10
x 105

100

101

102

103

104

105

106

Time

R
eg
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t/L

og
(t)

 

 

L = 2
L = 303
Theoretical Upper Bound

Fig. 1. Simulation Results of Example 1 with ∆min = 0.1706

Figure 1 shows the simulation result of the regret (normal-
ized with respect to the logarithm of time) for our MLMR
policy for the above system with different choices of L.
We also show the theoretical upper bound for comparison.
The value of L to satisfy the condition in Theorem 1 is
L ≥ (50+40M)R2s2

max
εmin

= 303, so we picked L = 303 in the
simulation.
Note that in the proof of Theorem 1, when L <

(50+40M)R2s2
max

εmin
, −Lεmin−(40M+10)s2

maxθ
2
max

20s2
maxθ

2
max

> −2. This im-

plies
∞∑

t=1
2t

−Lεmin−(40M+10)s2
maxθ2

max
20s2

maxθ2
max does not converge any-

more and thus we could not bound E[ T̃i,j(n)] any more.
Empirically, however, in 1 the case when L = 2 also seems
to yield logarithmic regret over time and the performance is
in fact better than L = 303, since the ”bad” arms (arms
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which are not optimal) are picked less when L is smaller.
However, this may possibly be due to the fact that the cases
when T̃i,j(n) grows faster than log(t) only happens with very
small probability when L = 2.
Table II shows the number of times that resource j has been

matched with user i up to time n = 107.

999470 153 185 196
136 293 999155 420

ni,j(107), L = 2
892477 30685 39410 37432
26813 50341 850265 72585

ni,j(107), L = 303
TABLE II
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Fig. 2. Simulation Results of Example 2 with ∆min = 0.0091

Figure 2 shows another example with the same transition
probabilities as in the previous example and different rewards
on states as below:

0.7 0.3 0.5 0.5
0.65 0.7 0.8 0.4

θ0

0.4 0.6 0.7 0.45
0.5 0.5 0.6 0.55

θ1

The expected reward µi,j for all the pairs can be calculated
as:

0.5636 0.4091 0.5933 0.4875
0.6227 0.5714 0.6615 0.4954

µ

{(1, 1), (2, 3)} is still the optimal arm. However, compared
with the previous example, we can see that the expected
reward of three other arms {(1, 3), (2, 1)}, {(1, 3), (2, 2)},
{(1, 1), (2, 2)} are all very close to the expected reward of
the optimal arm. For this example, ∆min = 0.0091, which
is much smaller compared with the previous example. In this
case, we can see from Figure 2 that the non-optimal arms
are picked much more compared with the previous example.
This is because we have several arms of which the expected
rewards are very close to µ∗, so the policy has to spend a lot
more time to explore on those non-optimal arms to make sure
those are non-optimal arms. This fact can be seen clearly in
Table III, which presents the number of times that resource j

has been matched with user i up to time n = 107 under both
cases when L = 2 and L = 303.

817529 544 179832 2099
175583 3610 820097 714

ni,j(107), L = 2
346395 60031 472346 121232
301491 146317 482545 69651

ni,j(107), L = 303
TABLE III

VII. CONCLUSION
We have presented the MLMR policy for the problem of

learning combinatorial matchings of users to resources when
the reward process is Markovian. We showed that this policy
requires only polynomial storage and computation per step,
and yields a regret that grows uniformly logarithmically over
time and only polynomially with the number of users and
resources.
In future work, we would like to consider the case when the

rewards evolve not just when a user-resource pair is selected,
but rather at each discrete time. Further, we would like to
investigate if it is possible to analyze regret with respect to the
best non-static policy. Finally, exploring distributed schemes
is also of interest, though likely to be highly challenging in
case of limited information exchange between users.
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