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Abstract—We investigate the following fundamental question - how fast can information be collected from a wireless sensor network
organized as tree? To address this, we explore and evaluate a number of different techniques using realistic simulation models under
the many-to-one communication paradigm known as convergecast. We first consider time scheduling on a single frequency channel
with the aim of minimizing the number of time slots required (schedule length) to complete a convergecast. Next, we combine scheduling
with transmission power control to mitigate the effects of interference, and show that while power control helps in reducing the schedule
length under a single frequency, scheduling transmissions using multiple frequencies is more efficient. We give lower bounds on the
schedule length when interference is completely eliminated, and propose algorithms that achieve these bounds. We also evaluate the
performance of various channel assignment methods and find empirically that for moderate size networks of about 100 nodes, the use
of multi-frequency scheduling can suffice to eliminate most of the interference. Then, the data collection rate no longer remains limited
by interference but by the topology of the routing tree. To this end, we construct degree-constrained spanning trees and capacitated
minimal spanning trees, and show significant improvement in scheduling performance over different deployment densities. Lastly, we
evaluate the impact of different interference and channel models on the schedule length.

Index Terms—Convergecast, TDMA scheduling, multiple channels, power-control, routing trees.
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1 INTRODUCTION

CONVERGECAST, namely the collection of data from
a set of sensors toward a common sink over a tree-

based routing topology, is a fundamental operation in
wireless sensor networks (WSN) [1]. In many applica-
tions, it is crucial to provide a guarantee on the delivery
time as well as increase the rate of such data collection.
For instance, in safety and mission-critical applications
where sensor nodes are deployed to detect oil/gas leak
or structural damage, the actuators and controllers need
to receive data from all the sensors within a specific
deadline [2], failure of which might lead to unpredictable
and catastrophic events. This falls under the category of
one-shot data collection. On the other hand, applications
such as permafrost monitoring [3] require periodic and
fast data delivery over long periods of time, which falls
under the category of continuous data collection.

In this paper, we consider such applications and focus
on the following fundamental question: “How fast can
data be streamed from a set of sensors to a sink over a tree-
based topology?” We study two types of data collection: (i)
aggregated convergecast where packets are aggregated at
each hop, and (ii) raw-data convergecast where packets are
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individually relayed toward the sink. Aggregated con-
vergecast is applicable when a strong spatial correlation
exists in the data, or the goal is to collect summarized
information such as the maximum sensor reading. Raw-
data convergecast, on the other hand, is applicable when
every sensor reading is equally important, or the cor-
relation is minimal. We study aggregated convergecast
in the context of continuous data collection, and raw-
data convergecast for one-shot data collection. These two
types correspond to two extreme cases of data collection.
In an earlier work [4], the problem of applying different
aggregation factors, i.e., data compression factors, was
studied, and the latency of data collection was shown to
be within the performance bounds of the two extreme
cases of no data compression (raw-data convergecast)
and full data compression (aggregated convergecast).

For periodic traffic, it is well known that contention-
free medium access control (MAC) protocols such as
TDMA (Time Division Multiple Access) are better fit
for fast data collection, since they can eliminate colli-
sions and retransmissions and provide guarantee on the
completion time as opposed to contention-based proto-
cols [1]. However, the problem of constructing conflict-
free (interference-free) TDMA schedules even under the
simple graph-based interference model has been proved
to be NP-complete. In this work, we consider a TDMA
framework and design polynomial-time heuristics to
minimize the schedule length for both types of con-
vergecast. We also find lower bounds on the achievable
schedule lengths and compare the performance of our
heuristics with these bounds.

We start by identifying the primary limiting factors
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of fast data collection, which are: (i) interference in the
wireless medium, (ii) half-duplex transceivers on the sen-
sor nodes, and (iii) topology of the network. Then, we
explore a number of different techniques that provide
a hierarchy of successive improvements, the simplest
among which is an interference-aware, minimum-length,
TDMA scheduling that enables spatial reuse. To achieve
further improvement, we combine transmission power
control with scheduling, and use multiple frequency
channels to enable more concurrent transmissions. We
show that once multiple frequencies are employed along
with spatial-reuse TDMA, the data collection rate often
no longer remains limited by interference but by the
topology of the network. Thus, in the final step, we
construct network topologies with specific properties
that help in further enhancing the rate. Our primary
conclusion is that, combining these different techniques
can provide an order of magnitude improvement for ag-
gregated convergecast, and a factor of two improvement
for raw-data convergecast, compared to single-channel
TDMA scheduling on minimum-hop routing trees.

Although the techniques of transmission power con-
trol and multi-channel scheduling have been well stud-
ied for eliminating interference in general wireless net-
works, their performances for bounding the completion
of data collection in WSNs have not been explored in
detail in the previous studies. The fundamental novelty
of our approach lies in the extensive exploration of
the efficiency of transmission power control and multi-
channel communication on achieving fast convergecast
operations in WSNs. Besides, we evaluate the impact
of routing trees on fast data collection and to the best
of our knowledge this has not been the topic of pre-
vious studies. As we will discuss in Section 2, some
of the existing work had the objective of minimizing
the completion time of convergecasts. However, none of
the previous work discussed the effect of multi-channel
scheduling together with the comparisons of different
channel assignment techniques and the impact of routing
trees and none considered the problems of aggregated
and raw convergecast, which represent two extreme
cases of data collection, together.

As the new concepts in this paper, we introduce
polynomial-time heuristics for TDMA scheduling for
both types of data collection, i.e., Algorithms 1 and 2,
and prove that they do achieve the lower bound of data
collection time once interference is eliminated. Besides,
we elaborate on the performance of our previous work,
a receiver-based channel assignment method, and com-
pare its efficiency with other channel assignment meth-
ods and introduce heuristics for constructing optimal
routing trees to further enhance data collection rate. The
following lists our key findings and contributions:

• Bounds on Convergecast Scheduling: We show that
if all interfering links are eliminated, the sched-
ule length for aggregated convergecast is lower
bounded by the maximum node degree in the
routing tree, and for raw-data convergecast by

max(2nk−1, N), where nk is the maximum number
of nodes on any branch in the tree, and N is the
number of source nodes. We then introduce optimal
time slot assignment schemes under this scenario
which achieve these lower bounds.

• Evaluation of Power Control under Realistic Set-
ting: It was shown recently [5] that under the ide-
alized setting of unlimited power and continuous
range, transmission power control can provide an
unbounded improvement in the asymptotic capac-
ity of aggregated convergecast. In this work, we
evaluate the behavior of an optimal power control
algorithm [6] under realistic settings considering the
limited discrete power levels available in today’s
radios. We find that for moderate size networks of
100 nodes power control can reduce the schedule
length by 15− 20%.

• Evaluation of Channel Assignment Methods: Us-
ing extensive simulations, we show that scheduling
transmissions on different frequency channels is
more effective in mitigating interference as com-
pared to transmission power control. We evaluate
the performance of three different channel assign-
ment methods: (i) Joint Frequency and Time Slot
Scheduling (JFTSS), (ii) Receiver-Based Channel As-
signment (RBCA) [7], and (iii) Tree-Based Channel
Assignment (TMCP) [8]. These methods consider the
channel assignment problem at different levels: the
link level, node level, or cluster level. We show that
for aggregated convergecast, TMCP performs better
than JFTSS and RBCA on minimum-hop routing
trees, while performs worse on degree-constrained
trees. For raw-data convergecast, RBCA and JFTSS
perform better than TMCP, since the latter suffers
from interference inside the branches due to con-
current transmissions on the same channel.

• Impact of Routing Trees: We investigate the effect of
network topology on the schedule length, and show
that for aggregated convergecast the performance
can be improved by up to 10 times on degree-
constrained trees using multiple frequencies as com-
pared to that on minimum-hop trees using a single
frequency. For raw-data convergecast, multi-channel
scheduling on capacitated minimal spanning trees
can reduce the schedule length by 50%.

• Impact of Channel Models and Interference: Un-
der the setting of multiple frequencies, one simpli-
fying assumption often made is that the frequencies
are orthogonal to each other. We evaluate this as-
sumption and show that the schedules generated
may not always eliminate interference, thus causing
considerable packet losses. We also evaluate and
compare the two most commonly used interference
models: (i) the graph-based protocol model, and (ii)
the SINR (Signal-to-Interference-plus-Noise Ratio)
based physical model.

The rest of the paper is organized as follows: In



3

Section 2, we discuss related works. In Section 3, we
describe the problem formulation and state our assump-
tions. In Section 4, we analyze the lower bounds on the
schedule length for aggregated and raw convergecast,
and propose algorithms that achieve the corresponding
bounds. In Section 5, we focus on power control and
multi-channel scheduling as mechanisms to eliminate
interference. Section 6 explains the impact of routing
topologies, and Section 7 presents detailed evaluation
results. Finally, we draw our conclusions in Section 8.

2 RELATED WORK

Fast data collection with the goal to minimize the sched-
ule length for aggregated convergecast has been studied
by us in [7], [9], and also by others in [5], [10], [11]. In [7],
we experimentally investigated the impact of transmis-
sion power control and multiple frequency channels on
the schedule length, while the theoretical aspects were
discussed in [9], where we proposed constant factor
and logarithmic approximation algorithms on geomet-
ric networks (disk graphs). Raw-data convergecast has
been studied in [1], [12]–[14], where a distributed time
slot assignment scheme is proposed by Gandham et
al. [1] to minimize the TDMA schedule length for a
single channel. The problem of joint scheduling and
transmission power control is studied by Moscibroda [5]
for constant and uniform traffic demands. Our present
work is different from the above in that we evaluate
transmission power control under realistic settings and
compute lower bounds on the schedule length for tree
networks with algorithms to achieve these bounds. We
also compare the efficiency of different channel assign-
ment methods and interference models, and propose
schemes for constructing specific routing tree topologies
that enhance the data collection rate for both aggregated
and raw-data convergecast.

The use of orthogonal codes to eliminate interference
has been studied by Annamalai et al. [10], where nodes
are assigned time slots from the bottom of the tree to the
top such that a parent node does not transmit before it
receives all the packets from its children. This problem
and the one addressed by Chen et al. [11] are for one-shot
raw-data convergecast. In this work, since we construct
degree-constrained routing topologies to enhance the
data collection rate, it may not always lead to schedules
that have low latency, because the number of hops in
a tree goes up as its degree goes down. Therefore,
if minimizing latency is also a requirement, then fur-
ther optimization, such as constructing bounded-degree,
bounded-diameter trees, is needed. A study along this
line with the objective to minimize the maximum latency
is presented by Pan and Tseng [15], where they assign a
beacon period to each node in a Zigbee network during
which it can receive data from all its children.

For raw-data convergecast, Song et al. [12] presented
a time-optimal, energy-efficient, packet scheduling algo-
rithm with periodic traffic from all the nodes to the sink.

Once interference is eliminated, their algorithm achieves
the bound that we present here, however, they briefly
mention a 3-coloring channel assignment scheme, and it
is not clear whether the channels are frequencies, codes,
or any other method to eliminate interference. Moreover,
they assume a simple interference model where each
node has a circular transmission range and cumula-
tive interference from concurrent multiple senders is
avoided. Different from their work, we consider multiple
frequencies and evaluate the performance of three dif-
ferent channel assignment methods together with eval-
uating the effects of transmission power control using
realistic interference and channel models, i.e., physical
interference model and overlapping channels and con-
sidering the impact of routing topologies. Song et al. [12]
extended their work and proposed a TDMA based MAC
protocol for high data rate WSNs in [16]. TreeMAC
considers the differences in load at different levels of
a routing tree and assigns time slots according to the
depth, i.e. the hop count, of the nodes on the routing
tree, such that nodes closer to the sink are assigned more
slots than their children in order to mitigate congestion.
However, TreeMAC operates on a single channel and
achieves 1/3 of the maximum throughput similar to the
bounds presented by Gandham et al. [1] since the sink
can receive every 3 time slots.

The problem of minimizing the schedule length for
raw-data convergecast on single channel is shown to
be NP-complete on general graphs by Choi et al. [13].
Maximizing the throughput of convergecast by finding
a shortest-length, conflict-free schedule is studied by Lai
et al. [14], where a greedy graph coloring strategy as-
signs time slots to the senders and prevent interference.
They also discussed the impact of routing trees on the
schedule length and proposed a routing scheme called
disjoint strips to transmit data over different shortest
paths. However, since the sink remains as the bottleneck,
sending data over different paths does not reduce the
schedule length. As we will show in this paper, the
improvement due to the routing structure comes from
using capacitated minimal spanning trees for raw-data
convergecast, where the number of nodes in a subtree
is no more than half the total number of nodes in the
remaining subtrees.

The use of multiple frequencies has been studied ex-
tensively in both cellular and ad hoc networks, however,
in the domain of WSN, there exist a few studies that
utilize multiple channels [8], [17], [18]. To this end, we
evaluate the efficiency of three particular schemes that
treat the channel assignment at different levels.

3 MODELING AND PROBLEM FORMULATION

We model the multi-hop WSN as a graph G = (V, E),
where V is the set of nodes, E = {(i, j) | i, j ∈ V } is the
set of edges representing the wireless links. A designated
node s ∈ V denotes the sink. The Euclidean distance
between two nodes i and j is denoted by dij . All the
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nodes except s are sources, which generate packets and
transmit them over a routing tree to s. We denote the
spanning tree on G rooted at s by T = (V, ET ), where
ET ⊆ E represents the tree edges. Each node is assumed
to be equipped with a single half-duplex transceiver,
which prevents it from sending and receiving packets
simultaneously. We consider a TDMA protocol where
time is divided into slots, and consecutive slots are
grouped into equal sized non-overlapping frames.

We use two types of interference models for our eval-
uation: the graph-based protocol model and the SINR-
based physical model. In the protocol model, we assume
that the interference range of a node is equal to its
transmission range, i.e., two links cannot be scheduled
simultaneously if the receiver of at least one link is
within the range of the transmitter of the other link.
In the physical model, the successful reception of a
packet from i to j depends on the ratio between the
received signal strength at j and the cumulative interfer-
ence caused by all other concurrently transmitting nodes
and the ambient noise level. Thus, a packet is received
successfully at j if the signal-to-interference-plus-noise
ratio, SINRij , is greater than a certain threshold β, i.e.,

SINRij =
Pi · gij∑

k ̸=i Pk · gkj +N
(1)

where Pi is the transmitted signal power at node i, N
is the ambient noise level, and gij is the propagation
attenuation (link gain) between i and j. We use a simple
distance dependent path-loss model to calculate the link
gains as gij = d−α

ij , where the path-loss exponent α is a
constant between 2 and 6, whose exact value depends on
external conditions of the medium (humidity, obstacles,
etc.), as well as the sender-receiver distance. We assume
that the level of interference is static and does not change
over time. For simplicity and ease of illustration, we use
the protocol model in all the figures.

We study aggregated convergecast in the context of
periodic data collection where each source node gener-
ates a packet at the beginning of every frame, and raw-
data convegecast for one-shot data collection where each
node has only one packet to send. We assume that the
size of each packet is constant. Our goal is to deliver
these packets to the sink over the routing tree as fast as
possible. More specifically, we aim to schedule the edges
ET of T using a minimum number of time slots while
respecting the following two constraints:

• Adjacency Constraint: Two edges (i, j) ∈ ET and
(k, l) ∈ ET cannot be scheduled in the same
time slot if they are adjacent to each other, i.e., if
{i, j}

∩
{k, l} ̸= ϕ. This constraint is due to the half-

duplex transceiver on each node which prevents it
from simultaneous transmission and reception.

• Interfering Constraint: The interfering constraint de-
pends on the choice of the interference model. In
the protocol model, two edges (i, j) ∈ ET and
(k, l) ∈ ET cannot be scheduled simultaneously

if they are at two hop distance of each other. In
the physical model, an edge (i, j) ∈ ET cannot be
scheduled if the SINR at receiver j is not greater
than the threshold β.

Since we consider data collection to be periodic in
aggregated convergecast, each of the edges in ET is
scheduled only once within each frame, and this sched-
ule is repeated over multiple frames. Thus, a pipeline
is established after a certain frame, and then onwards
the sink continues to receive aggregated packets from
all the source nodes once per frame. We explain further
details about the pipelining in the next section. On the
other hand, in one-shot data collection for raw-data con-
vergecast, the edges in ET may be scheduled multiple
times and no pipelining takes place. We use the terms
link scheduling and node scheduling interchangeably as
they are equivalent in our case. Note that the two other
scenarios, which we do not consider in this paper due to
space constraints, are one-shot aggregated convergecast
and periodic raw-data convergecast.

The key difference in terms of scheduling between
periodic and one-shot data collection is that a node in
the periodic case does not have to wait for data from its
children before being scheduled. This is because a link
is scheduled only once within each frame and each node
generates a packet in the beginning of every frame, so
a pipelining is eventually established. However, in the
case of one-shot data collection, a node needs to wait for
data from its children before being scheduled, which we
refer to as the causality constraint.

To summarize the steps in our design, we start with
tree construction and then continue with interference-
aware scheduling. If the nodes can control their trans-
mission power, scheduling phase is coupled with a
transmission power control algorithm. If the nodes can
change their operating frequency, channel scheduling
can be coupled with time slot scheduling as it is the case
with the JFTSS algorithm (Section 5.2.1) or first channels
are assigned and then time slot scheduling continues as
in the case of RBCA explained in Section 5.2.3. However,
the TMCP algorithm (Section 5.2.2), considers tree con-
struction and channel assignment jointly and then does
the scheduling of time slots.

4 TDMA SCHEDULING OF CONVERGECASTS
In this section, we first focus on periodic aggregated con-
vergecast and then on one-shot raw-data convergecast.
Our objective is to calculate the minimum achievable
schedule lengths using an interference-aware TDMA
protocol. We first consider the case where the nodes
communicate on the same channel using a constant
transmission power, and then discuss improvements us-
ing transmission power control and multiple frequencies
in the next section.

4.1 Periodic Aggregated Convergecast
In this section, we consider the scheduling problem
where packets are aggregated. Data aggregation is a
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(a)

Frame 1 Frame 2
S1 S2 S3 S4 S5 S6 S1 S2 S3 S4 S5 S6

s 1 2 3 - - - {1,4} {2,5,6} 3 - - -
1 - - - 4 - - - - - 4 - -
2 - - - - 5 6 - - - - 5 6

(b)

(c)

Fig. 1: Aggregated convergecast and pipelining: (a) Schedule length of 6 in the presence of interfering links. (b) Node ids from which
(aggregated) packets are received by their corresponding parents in each time slot over different frames. (c) Schedule length of 3 using BFS-
TIMESLOTASSIGNMENT when all the interfering links are eliminated.

commonly used technique in WSN that can eliminate
redundancy and minimize the number of transmissions,
thus saving energy and improving network lifetime [19].
Aggregation can be performed in many ways, such as by
suppressing duplicate messages; using data compression
and packet merging techniques; or taking advantage of
the correlation in the sensor readings.

We consider continuous monitoring applications
where perfect aggregation is possible, i.e., each node
is capable of aggregating all the packets received from
its children as well as that generated by itself into a
single packet before transmitting to its parent. The size
of aggregated data transmitted by each node is constant
and does not depend on the size of the raw sensor
readings. Typical examples of such aggregation functions
are MIN, MAX, MEDIAN, COUNT, AVERAGE, etc.

In Fig. 1(a) and 1(b), we illustrate the notion of pipelin-
ing in aggregated convergecast and that of a schedule
length on a network of 6 source nodes. The solid lines
represent tree edges, and the dotted lines represent inter-
fering links. The numbers beside the links represent the
time slots at which the links are scheduled to transmit,
and the numbers inside the circles denote node id’s. The
entries in the table list the nodes from which packets are
received by their corresponding receivers in each time
slot. We note that at the end of frame 1, the sink does
not have packets from nodes 5 and 6; however, as the
schedule is repeated, it receives aggregated packets from
2, 5, and 6 in slot 2 of the next frame. Similarly, the
sink also receives aggregated packets from nodes 1 and
4 starting from slot 1 of frame 2. The entries {1, 4} and
{2, 5, 6} in the table represent single packets comprising
aggregated data from nodes 1 and 4, and from nodes 2, 5,
and 6, respectively. Thus, a pipeline is established from
frame 2, and the sink continues to receive aggregated
packets from all the nodes once every 6 time slots. Thus,
the minimum schedule length is 6.

4.1.1 Lower Bound on Schedule Length

We first consider aggregated convergecast when all the
interfering links are eliminated by using transmission
power control or multiple frequencies. Although the
problem of minimizing the schedule length is NP-
complete on general graphs, we show in the following
that once interference is eliminated, the problem reduces
to one on a tree, and can be solved in polynomial time.
To this end, we first give a lower bound on the schedule
length, and then propose a time slot assignment scheme

that achieves the bound.
LEMMA 1: If all the interfering links are eliminated, the

schedule length for aggregated convergecast is lower bounded
by ∆(T ), where ∆(T ) is the maximum node degree in the
routing tree T .

Proof: If all the interfering links are eliminated, the
scheduling problem reduces to one on a tree. Now since
each of the tree edges needs to be scheduled only once
within each frame, it is equivalent to edge coloring on
a graph, which needs number of colors at least equal to
the maximum node degree.

Once all the interfering links are eliminated, concur-
rency is still limited by the adjacency constraint due to
the half-duplex transceivers, which prevents a parent
from transmitting when it is already receiving from its
children, or when its parent is transmitting.

4.1.2 Assignment of Timeslots

Given the lower bound ∆(T ) on the schedule length
in the absence of interfering links, we now present a
time slot assignment scheme in Algorithm 1, called BFS-
TIMESLOTASSIGNMENT, that achieves this bound.

In each iteration of BFS-TIMESLOTASSIGNMENT (lines
2-6), an edge e is chosen in the Breadth First Search
(BFS) order starting from any node, and is assigned the
minimum time slot that is different from all its adjacent
edges respecting interfering constraints. Note that, since
we evaluate the performance of this algorithm also for
the case when the interfering links are present, we check
for the corresponding constraint in line 4; however, when
interference is eliminated this check is redundant. The
algorithm runs in O(|ET |2) time and minimizes the
schedule length when there are no interfering links, as
proved in Theorem 1. To illustrate, we show the same
network of Fig. 1(a) in 1(c) with all the interfering links
removed, and so the network is scheduled in 3 time slots.

Algorithm 1 BFS-TIMESLOTASSIGNMENT

1. Input: T = (V, ET )
2. while ET ̸= ϕ do
3. e← next edge from ET in BFS order
4. Assign minimum time slot t to edge e respecting adjacency and

interfering constraints
5. ET ← ET \ {e}
6. end while

Although BFS-TIMESLOTASSIGNMENT may not be an
approximation to ideal scheduling under the physical
interference model, it is a heuristic that can achieve the
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lower bound if all the interfering links are eliminated.
Therefore, together with a method to eliminate interfer-
ence the algorithm can optimally schedule the network.

THEOREM 1: If all the interfering links are eliminated, the
schedule length for aggregated convergecast achieved by BFS-
TIMESLOTASSIGNMENT is the minimum, i.e., ∆(T ).

Proof: The proof is by induction on i. Let T i =
(V i, Ei

T ) denote the subtree of T in the ith iteration
constructed in the BFS order, where Ei

T comprises all
the edges that are assigned a slot, and V i comprises the
set of nodes on which the edges in Ei

T are incident. Note
that, |Ei

T | = i, because at every iteration exactly one edge
is assigned a slot. For i = 1, clearly the number of slots
used is 1, equal to ∆(T 1).

Now, assume that the number of slots N(i) needed
to schedule the edges in T i is ∆(T i). In the (i + 1)th

iteration, after assigning a slot to the next edge in BFS
order, the number of slots needed in T i+1 can either
remain the same as before, or increase by one. Thus,

N(i+ 1) = max {N(i), N(i) + 1} (2)

If it remains the same, N(i + 1) is still the maximum
degree of T i+1 at end of (i + 1)th iteration. Otherwise,
if it increases by one, the new edge must be incident
on a node v∗, common to both T i and T i+1, such that
the number of incident edges on v∗ that were already
assigned a time slot at the end of ith iteration was ∆(T i).
This is so because in the BFS traversal, all the edges
incident on a node are assigned a slot first before moving
on to the next node, and because the slot assigned to the
new edge is the minimum possible that is different from
all that already assigned to the edges incident on v∗ until
the ith iteration. Thus, at the end of (i + 1)th iteration,
the number of slots used N(i)+1 is equal to the number
of assigned edges incident on v∗ which, in turn, equals
∆(T i+1). This proves the inductive step. Therefore, it
holds at every iteration of the algorithm until the end
when i = |V | − 2, yielding a schedule length equal to
the maximum degree ∆(T ) = ∆(T |V |−1). Now, since
assigning different time slots to the adjacent edges of T
is equivalent to edge coloring T , which requires at least
∆(T ) colors, the schedule length is minimum.

4.2 One-Shot Raw-Data Convergecast
In this section, we consider one-shot data collection
where every sensor reading is equally important, and so
aggregation may not be desirable or even possible. Thus,
each of the packets has to be individually scheduled
at each hop en route to the sink. As before, we focus
on minimizing the schedule length. Unlike in the case
of periodic aggregated convergecast where a pipelining
takes place and each of the tree edges is scheduled
only once within each frame, here the edges could be
scheduled multiple times and there is no pipelining.

The problem of minimizing the scheduling length for
raw-data convergecast is proved to be NP-complete even
under the protocol interference model by a reduction

s

n
k
-1

n
k

Fig. 2: Raw-data convergecast: largest top-subtree with nk nodes.
from the well known Partition Problem [13]. Before get-
ting into the details, we first define the following terms:
a branch is defined as a subtree containing the sink as an
endpoint; a top-subtree is defined as a subtree that has a
child of the sink as its root. For instance, in Fig. 3, the
branches are {s, 1, 4}, {s, 2, 5, 6}, and {s, 3, 7}, while the
top-subtrees are {1, 4}, {2, 5, 6}, and {3, 7}.

4.2.1 Lower Bound on Schedule Length
As mentioned in Section 4.1.1, if all the interfering links
are eliminated using multiple frequencies, the only limit-
ing factor in minimizing the schedule length is the half-
duplex transceivers. In the following, we give a lower
bound on the schedule length under this scenario.

LEMMA 2: If all the interfering links are eliminated, the
schedule length for one-shot raw-data convergecast is lower
bounded by max(2nk − 1, N), where nk is the maximum
number of nodes in any top-subtree of the routing tree, and
N is the number of sources in the network.

Proof: Let ni denote the number of nodes in top-
subtree i. Order the top-subtrees in non-increasing order
of their sizes: nk ≥ nk−1 ≥ . . . ≥ n1. Consider the
routing tree shown in Fig. 2. Since the nodes cannot
receive multiple packets simultaneously, N is a trivial
lower bound to receive all the packets. Next, consider the
largest top-subtree k, the root of which has to transmit
nk packets to the sink, and the children of this root
have to forward nk − 1 packets in total. Because of
the half-duplex transceivers, time slots assigned to the
root of this top-subtree must be distinct from all those
assigned to its children. Thus, in total we need at least
nk + (nk − 1) = 2nk − 1 distinct time slots.

We note that this bound of max(2nk − 1, N), which
applies only when all the interfering links are removed,
is smaller than the lower bound of 3N for general
networks and that of max(3nk − 3, N) for tree networks,
as computed by Gandham et al. [1] for the 2-hop inter-
ference model. They proposed a time slot assignment
scheme for tree networks, which requires each node to
maintain a buffer that stores at most two packets and
minimizes the schedule length. In the following, we
describe a time slot assignment scheme that computes
a schedule of length exactly equal to the lower bound
when interference is eliminated and does not require to
store more than one packet in buffers at any time.

4.2.2 Assignment of Timeslots
We now describe a time slot assignment scheme in Al-
gorithm 2, called LOCAL-TIMESLOTASSIGNMENT, which
is run locally by each node at every time slot. The key
idea is to: (i) schedule transmissions in parallel along
multiple branches of the tree, and (ii) keep the sink busy
in receiving packets for as many time slots as possible.
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Because the sink can receive from the root of at most
one top-subtree in any time slot, we need to decide
which top-subtree should be made active. We assume
that the sink is aware of the number of nodes in each
top-subtree. Each source node maintains a buffer and
its associated state, which can be either full or empty
depending on whether it contains a packet or not. Our
algorithm does not require any of the nodes to store
more than one packet in their buffer at any time. We
initialize all the buffers as full, and assume that the sink’s
buffer is always full for the ease of explanation.

Algorithm 2 LOCAL-TIMESLOTASSIGNMENT

1. node.buffer = full
2. if {node is sink} then
3. Among the eligible top-subtrees, choose the one with the largest

number of total (remaining) packets, say top-subtree i
4. Schedule link (root(i), s) respecting interfering constraint
5. else
6. if {node.buffer == empty} then
7. Choose a random child c of node whose buffer is full
8. Schedule link (c, node) respecting interfering constraint
9. c.buffer = empty

10. node.buffer = full
11. end if
12. end if

The first block of the algorithm in lines 2-4 gives
the scheduling rules between the sink and the roots of
the top-subtrees. We define a top-subtree to be eligible
if its root has at least one packet to transmit. For a
given time slot, we schedule the root of an eligible top-
subtree which has the largest number of total (remaining)
packets. If none of the top-subtrees are eligible, the sink
does not receive any packet during that time slot.

Inside each top-subtree, nodes are scheduled accord-
ing to the rules in lines 5-12. We define a subtree to
be active if there are still packets left in the subtree
(excluding its root) to be relayed. If a node’s buffer is
empty and the subtree rooted at this node is active, we
schedule one of its children at random whose buffer
is not empty. Our algorithm guarantees (as proved in
Lemma 3) that in an active subtree there will always
be at least one child whose buffer is not empty, and
so whenever a node empties its buffer, it will receive a
packet in the next time slot, thus emptying buffers from
the bottom of the subtree to the top.

We run through an example shown in Fig. 3(a) to
explain the algorithm. In the first time slot, since the
eligible top-subtree containing the largest number of
remaining packets is {2, 5, 6}, we schedule the link (2, s),
and the sink receives a packet from node 2 in slot 1. In
the second time slot, the eligible top-subtrees are {1, 4}
and {3, 7}, both of which have 2 remaining packets. We
choose one of them at random, say {1, 4}, and schedule
the link (1, s). Also, in the same time slot since node
2’s buffer is empty, it chooses one of its children at
random, say node 5, and schedule the link (5, 2). In
the third time slot, the eligible top-subtrees are {2, 5, 6}
and {3, 7}, both of which have 2 remaining packets. We
choose the first one at random and schedule the link

(a) (b)
Fig. 3: Raw-data convergecast using algorithm LOCAL-
TIMESLOTASSIGNMENT: (a) Schedule length of 7 when all the
interfering links are removed. (b) Schedule length of 10 when the
interfering links are present.
(2, s), and so the sink receives node 5’s packet (relayed
by node 2). We also schedule the link (4, 1) in the third
time slot because node 1’s buffer is empty at this point.
This process continues until all the packets are delivered
to the sink, yielding an assignment that requires 7 time
slots. Note that, in this example, 2nk − 1 = 5, and so
max(2nk−1, N) = 7. In Fig. 3(b), we show an assignment
when all the interfering links are present, yielding a
schedule length of 10.

In the following, we prove that the algorithm requires
exactly max(2nk − 1, N ) slots when all the interfering
links are eliminated. Before giving the details of the
proof, we first highlight the two key insights of the
algorithm: (i) the sink is kept busy in receiving packets
for as many time slots as possible, and (ii) a node’s buffer
is not empty for 2 or more consecutive time slots so long
as the subtree rooted at this node is active. The first one
is evident from the scheduling rule between the sink
and the top-subtrees. We prove the second insight in the
following lemma.

LEMMA 3: In an active subtree, a node with an empty
buffer always has a child and a parent whose buffers are full.

Proof: We prove it by induction on time slot t. The
parent and grandparent of node i are denoted by p(i)
and gp(i); similarly a child and a grandchild of i are
denoted by c(i) and gc(i), respectively. Slightly abusing
notation, we also use these symbols to denote the state
of the buffers on the respective nodes.

At t = 1, the lemma is trivially true because all the
buffers are full. Suppose the lemma holds for t = k, i.e.,
every node whose buffer is empty has a child and a
parent whose buffers are full. At t = k + 1, each node
with an empty buffer schedules one of its children whose
buffer is full. The following two situations can occur:

• Node i is full, while p(i) and c(i) are both empty.
• Nodes i and p(i) are both full, while c(i) is empty.
For the first case, we need to show that both p(i) and

c(i) (since now they are empty) have a child and a parent
whose buffers are full. Clearly, p(i) has a child with a
full buffer because i is now full. Similarly, p(i) also has
a parent with a full buffer because a transmission took
place from p(i) to its parent at t = k + 1. For the latter,
c(i) has a parent with a full buffer because transmission
took place from c(i) to i at t = k+ 1. If the child of c(i),
i.e., gc(i), was empty at t = k, then gc(i) also had a child
with a full buffer because the lemma was true at t = k.
Therefore, at t = k + 1 the child of gc(i) transmits and
fills up its parent’s buffer. Otherwise, if gc(i) was full at
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t = k, then it also remains full at t = k + 1 because it
cannot transmit to its parent c(i), which was full at t.

For the second case, c(i) transmitted and p(i) did not.
For this to happen, gp(i) was full at t = k and either
empties or remains full at t = k + 1. If it empties, gp(i)
has a parent with a full buffer because it transmitted at
t = k+1, and also has a child with a full buffer because
p(i) did not transmit. If it remains full, at t = k+1 nodes
i, p(i), and gp(i) are full, c(i) is empty and gc(i) is full
as we showed in the first case. So, the lemma holds for
t = k + 1, and the proof follows.

THEOREM 2: If all the interfering links are eliminated, the
schedule length for raw-data convergecast achieved by algo-
rithm LOCAL-TIMESLOTASSIGNMENT is the minimum, i.e.,
max(2nk − 1, N).

Proof: Let ni be the number of nodes in top-subtree
i. Order the top-subtrees in non-increasing order of their
sizes: nk ≥ nk−1 ≥ . . . ≥ n1. Suppose nk >

∑k−1
i=1 ni; then

max(2nk−1, N) = 2nk−1. From Lemma 1, we know that
it takes at least 2nk − 1 slots to schedule all the packets
originated in top-subtree k. Out of these, the sink can use
at most nk−1 slots to receive packets from the other top-
subtrees, which have a total of at most nk − 1 packets.
Also, when nk >

∑k−1
i=1 ni, the root of the largest top-

subtree k gets scheduled once in every two time slots.
Therefore, the schedule length is at most 2nk − 1.

Now suppose nk ≤
∑k−1

i=1 ni; then max(2nk − 1, N) =
N . We need to show that there always exists an eligible
top-subtree to complement for the largest one when it
is not eligible. In this case, the sink will receive packets
in every slot, because otherwise it remains idle during
some time slots and the first condition nk >

∑k−1
i=1 ni will

be met. Thus, we will prove that the algorithm keeps the
inequality nk ≤

∑k−1
i=1 ni as an invariant.

In any given time slot t, the algorithm schedules
an eligible top-subtree that has the largest number of
remaining packets. At slot t + 1, therefore, we have
nk = nk − 1, and the following three cases might arise:

• Top-subtree k still has the largest number of remain-
ing packets with nk ≥ nk−1 ≥ . . . ≥ n1. Then, the
root of k is again chosen to transmit at t + 1, and
the inequality still holds as nk − 1 ≤

∑k−1
i=1 ni.

• Top-subtree k and at least another one, say j, have
an equal number of remaining packets. Then, the
root of j is chosen, and the inequality still holds
because nj − 1 ≤

∑k−1
i=1 ni − 1 (since nj = nk − 1).

• Top-subtree k does not have the largest number of
remaining packets, implying that there were other
top-subtrees with an equal number of packets left
as k in slot t. Then, the root of a new largest top-
subtree j is chosen, and the inequality holds since
nj − 1 ≤

∑k−1
i=1 ni − 1 (since nj = nk).

Thus, the algorithm keeps the inequality as an invari-
ant, and there always exists a top-subtree that can be
alternately scheduled with the largest top-subtree. When
nk = 1,

∑k−1
i=1 ni − 1 = 1, which means that there are

2 packets left at two different top-subtrees that can be

scheduled in alternate slots. Since this inequality holds
for all the N steps, the sink always finds a top-subtree
to receive packets from, and therefore it takes N slots.
Moreover, Lemma 1 implies that a top-subtree becomes
eligible after a transmission because its root is filled up
in the next slot. Therefore, the theorem follows.

5 IMPACT OF INTERFERENCE

So far, we have focused on computing spatial-reuse
TDMA schedules where transmissions take place on the
same frequency at a constant transmission power. In this
section, we focus on different methods to mitigate the
effects of interference on the schedule length. First, we
discuss the benefits of using transmission power control
and explain the basics of a possible algorithm. Then we
discuss the advantages of using multiple channels by
considering 3 different channel assignment schemes.

5.1 Transmission Power Control

In wireless networks, excessive interference can be elim-
inated by using transmission power control [6], [20],
i.e., by transmitting signals with just enough power
instead of maximum power. To this end, we evaluate
the impact of transmission power control on fast data
collection using discrete power levels, as opposed to
a continuous range where an unbounded improvement
in the asymptotic capacity can be achieved by using a
non-linear power assignment [5]. We first explain the
basics of one particular algorithm that we use in our
evaluations in Section 7.

The algorithm proposed by El Batt et al. [6] is a cross
layer method for joint scheduling and power control and
it is an optimal distributed algorithm to improve the
throughput capacity of wireless networks. The goal is to
find a TDMA schedule that can support as many trans-
missions as possible in every time slot. It has two phases:
(i) scheduling and (ii) power control that are executed at
every time slot. First the scheduling phase searches for
a valid transmission schedule, i.e., largest subset of nodes,
where no node is to transmit and receive simultaneously,
or to receive from multiple nodes simultaneously. Then,
in the given valid schedule the power control phase
iteratively searches for an admissible schedule with power
levels chosen to satisfy all the interfering constraints. In
each iteration, the scheduler adjusts the power levels
depending on the current RSSI at the receiver and the
SINR threshold according to the iterative rule: Pnew =

β
SINR ·Pcurrent. According to this rule, if a node transmits
with a power level higher than what is required by the
threshold value, it should decrease its power and if it is
below the threshold it should increase its transmission
power, within the available range of power levels on the
radio. If all the nodes meet the interfering constraint,
the algorithm proceeds with the schedule calculation for
the next time slot. On the other hand, if the maximum
number of iterations is reached and there are nodes
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which cannot meet the interfering constraint, the algo-
rithm excludes the link with minimum SINR from the
schedule and restarts the iterations with the new subset
of nodes. The power control phase is repeated until an
admissible transmission scenario is found.

5.2 Multi-Channel Scheduling
Multi-channel communication is an efficient method to
eliminate interference by enabling concurrent transmis-
sions over different frequencies [21]. Although typical
WSN radios operate on a limited bandwidth, their op-
erating frequencies can be adjusted, thus allowing more
concurrent transmissions and faster data delivery. Here,
we consider fixed-bandwidth channels, which are typ-
ical of WSN radios, as opposed to the possibility of
improving link bandwidth by consolidating frequencies.
In this section, we explain three channel assignment
methods that consider the problem at different levels
allowing us to study their pros and cons for both types
of convergecast. These methods consider the channel
assignment problem at different levels: the link level
(JFTSS), node level (RBCA), or cluster level (TMCP).

5.2.1 Joint Frequency Time Slot Scheduling (JFTSS)
JFTSS offers a greedy joint solution for constructing
a maximal schedule, such that a schedule is said to
be maximal if it meets the adjacency and interfering
constraints, and no more links can be scheduled for
concurrent transmissions on any time slot and chan-
nel without violating the constraints. Approximation
bounds on JFTSS for single-channel systems and its
comparison with multi-channel systems are discussed
in [22] and [23], respectively.

JFTSS schedules a network starting from the link
that has the highest number of packets (load) to be
transmitted. When the link loads are equal, such as
in aggregated convergecast, the most constrained link
is considered first, i.e., the link for which the number
of other links violating the interfering and adjacency
constraints when scheduled simultaneously is the maxi-
mum. The algorithm starts with an empty schedule and
first sorts the links according to the loads or constraints.
The most loaded or constrained link in the first available
slot-channel pair is scheduled first and added to the
schedule. All the links that have an adjacency constraint
with the scheduled link are excluded from the list of the
links to be scheduled at a given slot. The links that do
not have an interfering constraint with the scheduled
link can be scheduled in the same slot and channel
whereas the links that have an interfering constraint
should be scheduled on different channels, if possible.
The algorithm continues to schedule the links according
to the most loaded (or most constrained) metric. When
no more links can be scheduled for a given slot, the
scheduler continues with scheduling in the next slot.
Fig. 4(a) shows the same tree given in Fig. 1(a) which
is scheduled according to JFTSS where aggregated data

(a) (b) (c)
Fig. 4: Scheduling with multi-channels for aggregated convergecast:
(a) Schedule generated with JFTSS. (b) Schedule generated with TMCP.
(c) Schedule generated with RBCA. (b) Schedule generated with RBCA.

is collected. JFTSS starts with link (2, sink) on frequency
1 and then schedules link (4, 1) next on the first slot
on frequency 2. Then, links (5, 2) on frequency 1 and
(1, sink) on frequency 2 are scheduled on the second slot
and links (6, 2) on frequency 1 and (3, sink) on frequency
2 are scheduled on the last slot.

An advantage of JFTSS is that it is easy to incorporate
the physical interference model, however, it is hard to
have a distributed solution since the interference rela-
tionship between all the links must be known.

5.2.2 Tree-Based Multi-Channel Protocol (TMCP)
TMCP is a greedy, tree-based, multi-channel protocol
for data collection applications [8]. It partitions the net-
work into multiple subtrees and minimizes the intra-
tree interference by assigning different channels to the
nodes residing on different branches starting from the
top to the bottom of the tree. Figure 4(b) shows the same
tree given in Fig. 1(a) which is scheduled according to
TMCP for aggregated data collection. Here, the nodes
on the leftmost branch is assigned frequency F1, second
branch is assigned frequency F2 and the last branch
is assigned frequency F3 and after the channel assign-
ments, time slots are assigned to the nodes with the BFS-
TimeSlotAssignment algorithm. The advantage of TMCP
is that it is designed to support convergecast traffic and
does not require channel switching. However, contention
inside the branches is not resolved since all the nodes on
the same branch communicate on the same channel.

5.2.3 Receiver-Based Channel Assignment (RBCA)
In our previous work [7], we proposed a channel assign-
ment method called RBCA where we statically assigned
the channels to the receivers (parents) so as to remove
as many interfering links as possible. In RBCA, the
children of a common parent transmit on the same
channel. Every node in the tree, therefore, operates on at
most two channels, thus avoiding pair-wise, per-packet,
channel negotiation overheads. The algorithm initially
assigns the same channel to all the receivers. Then,
for each receiver, it creates a set of interfering parents
based on SINR thresholds and iteratively assigns the
next available channel starting from the most interfered
parent (the parent with the highest number of interfering
links). However, due to adjacent channel overlaps, SINR
values at the receivers may not always be high enough
to tolerate interference, in which case the channels are
assigned according to the ability of the transceivers to
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reject interference. We proved approximation factors for
RBCA when used with greedy scheduling in [9]. Fig-
ure 4(c) shows the same tree given in Fig. 1(a) scheduled
with RBCA for aggregated convergecast. Initially all
nodes are on frequency F1. RBCA starts with the most
interfered parent, node 2 in this example, and assigns F2.
Then it continues to assign F3 to node 3 as the second
most interfered parent. Since all interfering parents are
assigned different frequencies sink can receive on F1.

6 IMPACT OF ROUTING TREES

Besides transmission power control and multiple chan-
nels, the network topology and the degree of connectiv-
ity also affect the scheduling performance. In this section,
we describe schemes to construct topologies with specific
properties that help to reduce the schedule length.

6.1 Aggregated Data Collection

We first construct balanced trees and compare their per-
formance with unbalanced trees. We observe that in both
cases the sink often creates a high-degree bottleneck. To
overcome this, we then propose a heuristic, as described
in Algorithm 3, by modifying Dijkstra’s shortest path
algorithmto construct degree-constrained treesNote that
constructing such a degree-constrained tree is NP-hard.
Each source node i in our heuristic keeps track of the
number of its children, C(i), which is initialized to 0,
and a hop count to the sink, HC(i), which is initialized
to ∞. The algorithm starts with the sink node, and adds a
node i′ ̸∈ T at every iteration to the tree such that HC(i′)
is minimized. It stops when |T | = |V |, or when no more
nodes can be added to the tree because the neighbors
of all these new nodes have reached the limit on their
maximum degree. Consequently, in this latter situation,
the heuristic might not always generate a spanning tree.
In our evaluation presented in Section 7.3, we consider
only those instances of the topologies where spanning
trees with the specified degree constraint are produced.

To illustrate the gains of degree-constrained trees,
consider the case when all the N nodes are in range of

Algorithm 3 DEGREE-CONSTRAINED TREES

1. Input: G(V,E), s, max degree
2. T ← {s}
3. for all i ∈ V do
4. C(i)← 0; HC(i)←∞
5. end for
6. HC(s)← 0
7. while |T | ̸= |V | do
8. Choose i′ /∈ T such that:
9. (a) (i, i′) ∈ E, for some i ∈ T with C(i) < max degree− 1

10. (b) HC(i′) is minimized
11. T ← T ∪ {i′}
12. HC(i′) = HC(i) + 1
13. C(i)← C(i) + 1
14. if ∀i ∈ V , C(i) = max degree then
15. break
16. end if
17. end while

each other and that of the sink. If the nodes select their
parents according to minimum-hop without a degree
constraint, then all of them will select the sink, and this
will give a schedule length of N . However, if we limit the
number of children per node to 2, then this will result in
two subtrees rooted at the sink, and if there are enough
frequencies to eliminate interference, the network can be
scheduled using only 2 time slots, thus achieving a factor
of N/2 reduction in the schedule length.

6.2 Raw Data Collection
As emphasized in [13], routing trees that allow more
parallel transmissions do not necessarily result in small
schedule lengths. For instance, the schedule length is N
for a network connected as a star topology, whereas it
is (2N − 1) for a line topology once interference is elim-
inated. Theorem 1 suggests that the routing tree should
be constructed such that all the branches have a balanced
number of nodes and the constraint nk < (N + 1)/2
holds. In this section, we construct such routing trees.

A balanced tree satisfying the above constraint is a
variant of a capacitated minimal spanning tree (CMST) [24].
The CMST problem, which is known to be NP-complete,
is to determine a minimum-hop spanning tree in a
vertex weighted graph such that the weight of every
subtree linked to the root does not exceed a prescribed
capacity. In our case, the weight of each link is 1, and
the prescribed capacity is (N + 1)/2. Here, we propose
a heuristic, as described in Algorithm 4, based on the
greedy scheme presented by Dai et al. [25], which solves
a variant of the CMST problem by searching for routing
trees with an equal number of nodes on each branch. We
augment their scheme with a new set of rules and grow
the tree hop by hop outwards from the sink. We assume
that the nodes know their minimum-hop counts to sink.

Rule 1: Nodes with single potential parents are con-
nected first.

Rule 2: For nodes with multiple potential parents,
we first construct their growth sets (GS) and choose the
one with the largest cardinality for further processing,
breaking ties based on the smallest id. We define the
growth set of a node as the set of neighbors (potential
children) that are not yet connected to the tree and have
larger hop counts.

Rule 3: Once a node is chosen based on the growth
sets according to Rule 2, we construct search sets (SS) to
decide which potential branch the node should be added
to. A search set is thus branch-specific and includes the
nodes that are not yet connected to the tree and are
neighbors of a node that are at a higher hop count. In
particular, if the chosen node has access to branch b, and
has a neighbor that can connect to only branch b if b is
selected, then this neighbor and its potential children are
included in the search set for b. However, if the neighbor
has access to at least one other branch even after b is
selected, then it is not included in the search set.

The search sets guarantee that the choices for the
nodes at longer hops to join a particular branch are
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Algorithm 4 CAPACITATED-MINIMALSPANNINGTREE

1. Input: G(V,E), s
2. Initialize:
3. B ← roots of top subtrees // the branches
4. T ← {s} ∪B
5. ∀i ∈ V , GS(i)← unconnected neighbors of i at further hops
6. ∀b ∈ B, W (b)← 1
7. h← 2
8. while h ̸= max hop count do
9. Nh ← unconnected nodes at hop distance h

10. Connect nodes N ′
h that have a single potential parent: T ←

T
∪

N ′
h

11. Update Nh ← Nh \N ′
h

12. Sort Nh in non-increasing order of |GS|
13. for all i ∈ Nh do
14. for all b ∈ B to which i can connect do
15. Construct SS(i, b)
16. end for
17. Connect i to b for which W (b) + |SS(i, b)| is minimum
18. Update GS(i) and W (b)
19. T ← T

∪
{i}

∪
SS(i, b)

20. end for
21. h← h+ 1
22. end while

1 2

3 4 5 6 7

8

9 10

chosen link

Fig. 5: Balanced tree construction: Node 4 is attached to b2 based on
the search sets; load on both b1 and b2 is 5.

not limited by the decision of the joining node. This
balances out the number of nodes on different branches
and prevents one to grow faster than others. Once the
search sets are constructed, we choose the branch for
which the sum of its load (W ) and the size of the search
set is minimum.

To illustrate the merit of search sets, consider the
situation shown in Fig. 5. Dotted lines represent potential
communication links and solid lines represent already
included tree edges. At this point, node 4 is being
processed, and the loads on branches b1 and b2 are 2
and 4, respectively, where bi denote the branch rooted
at node i. The search set SS(4, b1) is {8, 9, 10}, because
the neighbor node 8 has access to only b1 if b1 is selected
by node 4. However, the search set SS(4, b2) is empty,
because the neighbor node 8 has access to another branch
b1 (via node 3). Therefore, the sum of the load and the
size of the search set for b1 is 5, and that for b2 is 4. So
we attach node 4 to b2, and in the next step attach node
8 to b1. This balances out the number of nodes over the
two branches.

7 EVALUATION

In this section, we evaluate the impact of transmission
power control, multiple channels, and routing trees on
the scheduling performance for both aggregated and
raw-data convergecast.

We deploy nodes randomly in a region whose dimen-
sions are varied between 20 × 20 m2 and 300 × 300 m2
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Fig. 6: Scheduling on minimum-hop trees with and without power
control: (a) Aggregated convergecast. (b) Raw-data convergecast.

to simulate different levels of density. The number of
nodes is kept fixed at 100. For different parameters, we
average each point over 1000 runs. We use an expo-
nential path-loss model for signal propagation with the
path-loss exponent α varying between 3 and 4, which is
typical for indoor environments. We also use the physical
interference model and simulate the behavior of CC2420
radios that are used on Telosb and TmoteSky motes
and are capable of operating on 16 different frequencies.
The transmission power can be adjusted between −24
dBm and 0 dBm over 8 different levels, and the SINR
threshold is set to β = −3 dB1. We first evaluate the
schedule length for single-channel TDMA, and then its
improvement using transmission power control, multi-
ple channels, and routing trees.

7.1 Impact of Transmission Power Control
We investigate two cases: (i) when nodes transmit at
maximum power, and (ii) when nodes adjust their trans-
mission power according to the algorithm described in
Section 5.1. In both cases, nodes communicate on the
same channel and use minimum-hop routing trees. In
the first case, time slots are assigned according to BFS-
TIMESLOTASSIGNMENT for aggregated data, and accord-
ing to LOCAL-TIMESLOTASSIGNMENT for raw data. In
the second case, we follow the scheduling rules in [6].

7.1.1 Aggregated Convergecast
Fig. 6(a) shows the variation of schedule length with
density for different values of α on minimum-hop trees.
We observe that the schedule length decreases as the
deployment gets sparser. This happens because at low
densities the interference is less, and so more concurrent
transmissions can take place. In the densest deployment
(L = 20) when all the nodes are within the range of
each other, the sink is the only parent, and the network
is scheduled in 99 time slots regardless of power control.
However, in sparser scenarios, using power control the
network can be scheduled with fewer time slots as the
level of interference goes down. We achieve a 10− 20%
reduction in schedule length for the best case.

1. Due to variation in signal strength, a fading margin can be
included such that some of the packets can still be captured if the RSSI
is slightly lower than the threshold. Such a model [26] can easily be
incorporated in our experiments, in which case retransmissions of lost
packets should also be considered in calculating the schedule length.
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Fig. 7: Scheduling on minimum-hop trees with multiple channels: (a)
Aggregated convergecast. (b) Raw-data convergecast.

We also observe that power control is more effective
in reducing the schedule length for denser deployments
than in sparser ones where the results tend to be similar.
This is due to the discrete power levels and limited
power range. Moreover, due to the −95 dBm threshold
for the transceivers to be able to decode a signal success-
fully, further power reduction is limited.

7.1.2 Raw Data Convergecast

For raw-data convergecast, we observe in Fig. 6(b) that
the schedule length increases as the network gets sparser
on minimum-hop trees. This is counter intuitive because
in sparse networks the reuse of slots should be higher
which would reduce the schedule length. However, as
the network gets sparser, the number of nodes that can
directly reach the sink decreases and packets have to
be relayed over more hops. Thus, more packets need
to be scheduled than in a single-hop. We see that the
number of packets to be scheduled increases faster than
the reuse ratio. In the densest setting where all the nodes
can directly reach the sink, the schedule length is 99,
which is equal to the number of sources.

With power control, we observe a reduction in the
schedule length in Fig. 6(b) as some of the interfering
links are eliminated, thus increasing slot re-usability.
When α = 3.0, most of the interference can be eliminated
by power control, and beyond which the structure of
the routing tree, especially the number of nodes nk on
the largest branch with (2nk − 1) > N , becomes the
bottleneck. However, for α ≥ 3.5, power control cannot
always eliminate interference as networks gets sparser
and nodes tend to transmit at their maximum power.

7.2 Impact of Multi-Channel Scheduling

In this section, we analyze the performance of the
channel assignment methods discussed in Section 5.2.
We use CC2420 radios that have 16 channels in the
2.4 GHz range, with adjacent channels overlapping ac-
cording to the rejection and blocking values given in
the data sheet. We assume that the nodes transmit at
maximum power and use minimum-hop trees. In TMCP
and RBCA, time slots are assigned according to BFS-
TIMESLOTASSIGNMENT for aggregated convergecast and
LOCAL-TIMESLOTASSIGNMENT for raw data converge-
cast. The path loss exponent is taken as 3.5.

7.2.1 Aggregated Convergecast

Comparing the plots in Fig. 7(a) and Fig. 6(a), we
observe that the channel assignment methods achieve
schedule lengths that are shorter than those achieved
by power control. While it’s true that power control
helps in reducing the effects of interference, this gain
is limited due to the discrete levels and limited range
of transmission power (e.g., CC2420 has 8 different
power levels between 0 dBm and −24 dBm). In sparse
deployments, nodes cannot reduce their transmit power
below a certain threshold because a transceiver cannot
decode signals below the sensitivity level (−95dBm). As
shown in Fig. 6(a), for L ? 200, the schedule lengths
are similar when nodes transmit at maximum power
or when they adjust their power levels. Moreover, in
mid-sparse deployments(60 ≤ L ≤ 180, Fig. 6(a)) the
limited range and discrete power levels restrict the
nodes to adjust their transmit powers. On the other
hand, multi-channel communication even with just two
frequencies (Fig. 7(a)), can eliminate the interference
limitations, and beyond this, the performance gains are
limited by the connectivity structure. By transmitting on
different channels, interference is eliminated by the high
adjacent/alternate channel rejection values of the C2420
radio, and the channels behave like orthogonal.

In Fig 7(a), sparser deployments (L > 140) with
multi-channel communication show a 40% reduction in
schedule length as compared to transmitting on a single
channel with maximum power. However, in denser de-
ployments, multiple channels do not help much due to
increased connectivity, with the sink as a bottleneck in
the densest setting. From Fig 7(a), we observe that JFTSS
and RBCA can optimally schedule the network using 16
channels, i.e., they achieve the lower bound, as shown by
the line “Lower Bound-MHST”. The advantage of RBCA
over JFTSS is that it takes into account the topological
characteristics: a parent node receives data on the same
channel from its children, and does not have to switch
channels in every slot. In dense deployments, TMCP
performs better due to the different routing trees con-
structed, i.e., when L = 20, RBCA and JFTSS construct a
star-topology, whereas TMCP constructs a 2-branch tree
with 2 channels, a 16-branch tree with 16 channels.

7.2.2 Raw Data Convergecast

In Fig. 7(b), we observe that none of the methods can
eliminate interference completely with 2 channels, how-
ever, JFTSS and RBCA can do so with 6 or more channels
at different densities (plots are not shown due to lack
of space). We also see that TMCP needs 16 channels to
reach a performance similar to that achieved by RBCA
and JFTSS with only 2 channels. This is because in
JFTSS and RBCA, when a node is receiving from its
children, its parent can transmit simultaneously on a
different channel, which is not possible due to intra-
branch interference in TMCP. The results also verify that
JFTSS and RBCA can achieve a schedule length which is
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Fig. 8: (a) Bounds on the number of frequencies. (b) Percentage of
incorrectly scheduled links.

bounded by max(2nk − 1, N), shown as “Lower Bound-
MHST”, so long as the number of available channels is
sufficient to eliminate interference. Compared to the re-
sults on a single channel in sparser scenarios, we achieve
a reduction of up to 40% on the schedule length. In
very dense scenarios, the improvement is small because
most of the nodes can directly reach the sink, and so the
limiting factor becomes the half-duplex transceiver.

7.2.3 Required Number of Channels
In this section, for the different channel assignment
methods, we evaluate the required number of channels
to completely eliminate interference as a function of
deployment density. In our simulation results, as shown
in Fig. 8(a), we assume that the number of available
channels is unlimited so as to show the upper bounds.

With RBCA and JFTSS, the number of channels re-
quired is low for dense networks as the number of
receivers is low. In particular, when L = 20, all the
nodes can directly connect to the sink, and so only one
frequency is needed. As the network gets sparser, the
number of receivers increases, and thus more frequen-
cies are required to support concurrent transmissions.
However, for L ≥ 80, the number of nodes that are being
connected to the same parent slowly dominates the effect
of the number of receivers, and since the network gets
very sparse, the number of channels required further
goes down as the level of interference decreases.

The trends of both RBCA and JFTSS are quite similar,
and the number of channels required is no more than
the number of available channels on CC2420 radios (16
channels). On the other hand, TMCP requires many
more channels as each branch is on a different channel.
This is expensive for deployments where a lot of nodes
can directly connect to the sink, and thus are assigned
different channels because they form different branches.
Thus, one needs to optimize the channel usage.

7.2.4 Interference Models and Orthogonal Channels
We now evaluate the impact of interference and channel
models on the schedules, in particular, the idealistic
assumption of the protocol model and the orthogonal-
ity assumption of multiple channels. We examine the
feasibility of the schedules based on the adjacent and
alternate channel rejection values of the transceivers and
the SINR threshold.
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Fig. 9: (a) Scheduling on degree-constrained minimum-hop trees. (b)
Scheduling on CMST.

Fig. 8(b) shows the results for JFTSS in terms of
the percentage of nodes that are incorrectly scheduled
(henceforth, referred to as errors). The top two lines
show the errors for 2 and 16 channels with both the
assumptions, whereas the bottom line shows the errors
only for the orthogonality assumption. We observe that
the errors are much higher in sparser deployments, be-
cause although the interference created by an individual
sender is not high enough to jam concurrent transmis-
sions, the cumulative effect from multiple senders is
very high, which is not captured in the protocol model.
On the other hand, in dense deployments, a single
transmitter can jam another one because of smaller inter-
node distances and higher level of interference. In such
cases, some of the nodes might select the next available
channels for concurrent transmissions, however, inter-
ference can still be high because the channels in reality
are not perfectly orthogonal. After the peak, the network
gets sparser and interference reduces. We note that, our
simulations corroborate previous results [27] that the
protocol model may result in serious interference, and
adjacent channel interference cannot always be ignored.

7.3 Impact of Routing Trees
In the preceding sections, we observed that although
interference can be substantially eliminated by using
power control and multiple channels, connectivity of the
tree still limits the performance. In the following, we
discuss the improvements with routing tress.

7.3.1 Aggregated Convergecast on Degree-
Constrained Trees
Fig. 9(a) shows the variation of schedule length with
density when the maximum tree degree is 3 (in sparser
scenarios, with a maximum degree of 2, it was not
always possible to construct connected topologies). The
top two lines are for nodes transmitting at maximum
power, and nodes using power control. The bottom two
lines are for JFTSS and RBCA. When nodes transmit
with maximum power, we observe a reduction in the
schedule length in dense deployments as compared to
non-degree constrained trees shown in Fig. 6(a). We
also notice further improvement with power control in
denser deployments than in sparser ones.

When nodes are assigned channels using RBCA, we
see a factor of more than 2 reduction in the schedule
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length in dense deployments (L < 120), as compared to
that using RBCA on minimum-hop spanning trees. We
also observe that the schedule lengths are much larger
than the maximum degree in the routing tree for dense
deployments, as compared to those in sparse scenarios
(L ≥ 120). Considering deployments at different den-
sities, routing over minimum-hop degree-constrained
spanning trees together with RBCA achieves an order of
magnitude improvement than routing over minimum-
hop spanning trees while transmitting at maximum
power. When we use JFTSS, the schedule length is close
or equal to the maximum degree since it can handle
interference using multiple channels more effectively by
reusing and assigning them to the links instead of the
receivers.

7.3.2 Raw Data Convergecast on CMST

Fig. 9(b) shows the variation of schedule length on
CMST. The impact of such routing trees is more promi-
nent in sparser networks (L ≥ 200) than routing over
minimum-hop spanning trees (Fig. 7(b)). When L < 200,
the length is bounded by N . Beyond this point, it is
almost always not possible to construct trees where the
constraint 2nk−1 < N holds. In such cases, the schedule
length is limited by 2nk − 1. These results indicate that
RBCA and JFTSS combined with a suitable tree construc-
tion mechanism can achieve a reduction of up to 50%
in the schedule length as compared to single-channel
communication on minimum-hop spanning trees.

8 CONCLUSIONS

In this paper, we studied fast convergecast in WSN
where nodes communicate using a TDMA protocol to
minimize the schedule length. We addressed the funda-
mental limitations due to interference and half-duplex
transceivers on the nodes and explored techniques to
overcome the same. We found that while transmission
power control helps in reducing the schedule length,
multiple channels are more effective. We also observed
that node-based (RBCA) and link-based (JFTSS) channel
assignment schemes are more efficient in terms of elim-
inating interference as compared to assigning different
channels on different branches of the tree (TMCP).

Once interference is completely eliminated, we proved
that with half-duplex radios the achievable schedule
length is lower-bounded by the maximum degree in
the routing tree for aggregated convergecast, and by
max(2nk − 1, N) for raw-data convergecast. Using op-
timal convergecast scheduling algorithms, we showed
that the lower bounds are achievable once a suitable
routing scheme is used. Through extensive simulations,
we demonstrated up to an order of magnitude reduction
in the schedule length for aggregated, and a 50% reduc-
tion for raw-data convergecast. In future, we will explore
scenarios with variable amounts of data and implement
and evaluate the combination of the schemes considered.
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