
Reliability Aware Exceptions for Software Directed Fault Handling

 Waleed Dweik*, Murali Annavaram, Michel Dubois

Department of Electrical Engineering

University of Southern California

Los Angeles, USA

{dweik, annavara}@usc.edu, dubois@paris.usc.edu

Abstract—Today reliability emerges as a first order design

constraint. Faults encountered in a chip can be classified into

three categories: transient, intermittent and permanent. Fault

classification allows a chip designer to provide the appropriate

corrective action for each fault type. However, fault classification

and correction are expensive mechanisms to implement in

hardware. In spite of their criticality faults are still relatively

rare; hence classification and recovery mechanisms should be

very low cost. In this paper, we present a new class of exceptions

called Reliability Aware Exceptions (RAE). RAE is a software

mechanism with minimal hardware cost which provides the

ability to classify the cause of a fault to one of the three

categories. Fault detection is done in hardware and once a fault

is detected the hardware raises an exception. Exceptions are

handled by software where classification and the resulting fault

handling algorithms run as specialized exception handling

routines. The exception handlers are equipped with the ability to

manipulate microarchitectural blocks to recover from all three

categories. For a transient fault recovery RAE leverages the

existing roll back mechanism provided for branch misprediction

to flush the pipeline and re-execute starting from the faulting

instruction. For an intermittent faults RAE exploits available

redundancy in the microarchitecture to de-configure the faulty

units temporarily, while for hard faults the unit can be

permanently de-configured. We present a detailed RAE

implementation and then evaluate the effectiveness of the RAE

approach to protect Reorder Buffer (ROB). Our results show that

ROB’s FIT (Failures in Time) rate can be decreased by a factor

of 2 using the RAE mechanism.

Keywords-Field De-configurable Unit (FDU); Failure in

Time (FIT); Reliability; Duty Cycle; Storage Structures

Submission Category- DCCS: The Dependable Computing

and Communications Symposium

Word Count- 10681

I. INTRODUCTION

Technology scaling has led to variations in device
characteristics resulting in a range of susceptibilities. Faults
encountered in a chip can be classified into three categories:
transient, intermittent and permanent. The most prominent
faults are: transient faults due to particle strikes, time
dependent dioxide breakdown (TDDB), electro-migration
(EM) and, Negative Bias Temperature Instability (NBTI)
[14][13][12][16]. As the gate oxide thickness is decreasing
with technology node, break down in oxide layer leads to
TDDB induced faults. The shrinking width of interconnects
and vias accelerates EM wear out effects. NBTI affects

PMOS devices that have an extended period of negative bias
stress. These are dominant factors limiting chip lifetime
[22]. Each of these fault categories has different severity
and different probability of occurrence depending on the
kind of stress condition exerted on a device.
Correspondingly, the effectiveness of error recovery
solutions can be improved if the recovery mechanisms are
cognizant of the fault type. Another salient characteristic of
these faults is that they occur slowly over time and in some
cases the device can recover from faults when the stress
condition is removed, such as NBTI. Hence, it is necessary
to develop very low cost solutions to classify and handle
various fault types.

In this paper we propose Reliability Aware Exceptions
(RAE), a special class of exceptions that enable software
directed fault handling, which can be used in conjunction
with low-cost hardware error detection mechanism to
improve chip life time. The novelty of the RAE mechanism
is the ability to classify the fault to one of the three main
categories: transient (soft), intermittent, and permanent
(hard) faults for different field de-configurable units
(FDUs). The occurrence of an error is associated with the
instruction that first encounters or triggers a fault. Once a
fault is detected, the ROB entry allocated to the instruction
that exercised the fault is updated with the exact location of
the faulty FDU (ALU, Multiplier, Entries of memory
structures ...etc). The faulty FDU is temporarily disabled
from further use by using mechanisms described in [3] and
[4]. Just as in a traditional exception handling mechanism an
exception is triggered only when the faulting instruction
reaches the top of re-order buffer for commit. Once an
exception is triggered the software handlers use the FDU
location information stored in the ROB to identify the faulty
FDU and mines the historical fault logs to determine the
most probable cause of the failure. This probably cause
essentially categorizes the fault. When a fault is categorized,
RAE helps in choosing the most appropriate handler that
gives best performance and cost trade off according to the
fault type. For instance, when a specific FDU exercises an
intermittent fault, we de-configure (turn OFF) the faulty
FDU temporarily. This is particularly useful for NBTI
induced faults, as the de-configuration will remove the
stress condition on the faulty FDU and partially recover to
the original device state. For EM or TDDB induced faults,
no recovery is possible. However, RAE increases the mean
time to failure (MTTF) by reducing the stress conditions.

This idea of disabling the faulty component is well
utilized in computing industry. It has been used to map out

bad sectors in disks [3], disable functional blocks that are
deemed to have encountered hard failures [10][15]. To our
knowledge, this work is the first to classify faults and
distinguish between transient, intermittent and permanent
faults. We enable various levels of de-configuration of
FDUs to mitigate the impact of faults.

While reading the rest of the paper it is important to
distinguish between the two terms: disable and de-
configure. Disabling a specific FDU means to prevent the
FDU from further use, but the FDU is not turned OFF. De-
configuring an FDU means to turn OFF the FDU by
disconnecting its voltage source. For non-storage structures
(ALU, Multiplier/Divider) the word FDU means the entire
structure. For storage structures (Queues, Caches), FDU
means the building block of that structure (Queue Entry,
Cache Line).

The rest of the paper is as follows. We explore RAE
design details, including the modifications necessary at the
microarchitecture level in section 2. Section 3 presents our
experimental infrastructure, fault injection approach and
simulation results. Section 4 reviews related work and we
conclude in section 5.

II. BUILDING BLOCKS FOR RAE DESIGN

In this section we describe the major design components
of the RAE mechanism. The RAE mechanism is composed
of three main components: fault detection, temporarily
disabling the faulty FDU from further use, and using RAE
handler to classify the fault and choose recovery action.

Fig. 1 gives a high level overview of the RAE
implementation. In particular, fig. 1 focuses on how RAE
can be used to protect the ROB. The ROB is protected with
a parity checker for error detection. When a fault is
detected, the RAE bit of that entry is set to indicate that
there is a reliability aware exception associated with that
entry. In addition, the location field “Loc” in faulty ROB
entry will be updated with the FDU identification number
(FDU_ID) which in this case is the entry number itself.
Then the faulty ROB entry is disabled by setting its “Busy”
bit to 1. The RAE mechanism does not trigger any
exception until the faulty ROB entry becomes the top
(oldest instruction). At that moment the processor is flushed
and the RAE handler starts execution. Handler will
categorize the fault type based on fault logs stored in the
system. After the handler completes, based on fault type we
take a corrective action, which may be as simple as
restarting the execution from the faulty instruction or could
be as complex as de-configuring the ROB entry
permanently.

A. Fault Detection

The first step in RAE mechanism is to detect the faults
as soon as they occur. As an instruction passes through
various pipeline stages it spends a significant fraction of
time waiting in various storage structures, such as
instruction fetch queue (IFQ), Reservation Station (RS),
ROB, load/store queue (LSQ). It may also access other
storage structures such branch history table (BHT), register
files, and register map table. Hence in this paper, we

Entry0
Entry1
Entry2
Entry3

Entry124
Entry125
Entry126
Entry127

Modified ROB

allocation/release

logic

Head pointer

Tail pointer

IFQ

Dispatch Logic

RAE Handling Module

RAE Handler

+

SLP_ST Instruction

Fault Location

P
ar

ity

R
A

E

B
us

y

Parity

Checker

VMM/Hardware Interface

R
O

B

E
nt

ry

RAE ROB

Commit

Logic

Lo
c

S
le

ep

Fault

Classification
Fault Correction

Timer Interrupt

+

Reconfiguration

Event Queue

Figure 1. RAE Implementation for ROB

primarily focus on the implementation of RAE mechanism
for protecting against failures in storage structures. To
detect a fault in these structures, we propose to use single
parity bit for every entry in each of the processor storage
structures; since parity has negligible area overhead. We
assume that no more than one fault occurs in any entry that
is protected by parity. Note that fault detection is a not a
novel component of our work; we simply use parity to
detect an error in storage structures. To detect timing and
computational errors in non storage structures, such as
ALUs, one could use partial redundant execution using
look-ahead circuits proposed in [8] or any of techniques
proposed in [20] when applying RAE to them. RAE is a
flexible mechanism and it does not matter which detection
mechanism one chooses provided that it detects faults and
flags the faulty instructions.

When a fault is detected in a specific FDU while
executing an instruction, the first thing to do is to set the
RAE bit in the instruction’s ROB entry to 1. This bit
indicates that there is a reliability exception associated with
this instruction and must be handled when the instruction
reaches the top of the ROB. The location of the fault
(FDU_ID) must be stored as well so that it can be used later
in RAE handling stage to help classifying the fault and de-
configuring the faulty FDU when needed. As shown in fig.
1, the ROB is augmented such that each ROB entry is
extended with a new field called “Loc” to the FDU_ID of
the faulty FDU. As mentioned earlier FDU_ID can be
simply the ID of the entire structure such as ALU, or it can
be finer grain identification information such as the entry
number within a storage structure. Notice that the FDU_ID
can be the ROB entry itself.

Consider the case of protecting ROB in an out-of-order
processor without a physical register file, where the ROB
stores the instruction result and updates architecture register
file during commit. Each ROB entry is first allocated and
updated with destination register tag and control information
during the instruction dispatch stage. The ROB entry is then
updated once again when the instruction completes
execution and writes the result to the ROB entry. At the
time of commit the ROB value is read and stored in the
architecture register. Hence, every instruction accesses the
ROB at least three times in the pipeline. Whenever the entry

is updated with new data, the new parity is computed and
saved. Every time the ROB entry is read parity is computed
and compared with the saved parity. If there is a match no
fault is detected, otherwise a fault is detected and the
FDU_ID (ROB ID + entry number) is stored in the location
field of the faulty ROB entry. In this simple illustration
ROB entry is continuously protected with parity from the
time it is allocated to the time it is released. The area
overhead of parity computation and comparison hardware
(represented by the parity checker block in fig. 1) is
negligible and parity computation can also be done off the
critical path in most cases.

B. Disabling the Faulty FDU

Once a fault is detected the faulty FDU is also
immediately disabled. Disabling the faulty FDU is
necessary to ensure that once a fault is detected no later
instructions should access the same FDU until the exception
handler deals with the fault. Immediately disabling the
faulty FDU also guarantees that when the RAE handler
executes its instruction they will not exercise the same fault
and hence guarantee forward progress. Hence; when a fault
is detected, the detection hardware will immediately disable
the faulty FDU.

Microarchitectural storage structures can be categorized
according to their access pattern into two groups: circular
buffer array structures (ROB, IFQ, and LSQ) and tabular
(i.e. directly addressed) array structures (BHT, RS, and

register file). In [3], Bower et al. propose to add one level of
indirection to the allocation/release logic of circular buffer
array structures in order to disable faulty entries. We
propose to use the same technique; each entry of every
buffer array structure is augmented with a busy bit as shown
in fig. 1. The faulty entry is disabled by simply setting its
busy bit to 1. The allocation/release logic of the buffer array
structure must also be modified by adding one level of
indirection to check the busy bit before allocating a new
entry to see if it is faulty or not. If the entry is faulty, the
allocation/release logic will skip that entry and check the
next for allocation. The selection of which entry is to be
allocated next happens off the critical path and hence does
not affect the read/write access times.

On the other hand, tabular array structures are randomly
accessed using an address. The allocation/release logic of
tabular array structures keeps track of which entries are in-
use and which are free. Hence, we can simply disable faulty
entries in tabular array structures by marking them in the
allocation/release logic as in-use [4]. Unlike circular buffer
array structures, there is no need to add a busy bit and a
level of indirection to the allocation/release logic for tabular
array structures. The same approach can be used when
implementing RAE for non-storage structures by simply
marking the faulty structure (ALU, Multiplier) as in-use.

Fig. 1 shows how ROB entries can be disabled. ROB
entries are augmented with busy bits that are assumed to be
fault free. In addition, the ROB allocation/release logic is
modified in order to check the busy bit before allocating a
new entry or before deciding which entry is the new top of
the ROB. Once a fault is detected in a specific ROB entry,

the fault detection hardware (parity checker) is responsible
for setting the busy bit of that ROB entry to 1. When the
fault is handled, none of the handler’s instructions will be
allocated to the faulty ROB entry because it is disabled and
hence will be skipped by the allocation/release ROB logic.

C. RAE Handler: Fault Classification

As is the case with traditional exceptions, RAE stays
silent until the faulty instruction is ready to commit. By the
time the instruction reaches the top of the ROB the faulty
FDU is disabled and all previous instructions have
committed their result. Hence, the processor pipeline is
flushed leveraging the same flush mechanism used for
branch misprediction and exception handling. The program
counter register (PC) is loaded with the address of the first
instruction of the RAE handler.

The RAE handler consists of two main parts: the first
part takes care of fault classification and the second part is
responsible for choosing the most appropriate recovery
action according to the class of the fault. RAE classifies a
fault into 3 categories: transient, intermittent, and
permanent. Classification relies on mining the fault history
logs. Fault history logs are disk-based files that record every
RAE event in a database. Each entry in the database
contains the following information: Timestamp (when the
last RAE was raised), FDU_ID (where the error was
detected), Last Fault Classification (what the handler
classified the error the last time it was encountered). Once
RAE is raised the fault handler access this disk based fault
log database and fetches all database records associated with
the FDU_ID by using the ID as the search key in the
database.

Accessing disk based databases for fault classification
and handling is a slow process. But under the assumption
that faults are still very rare events we can afford to handle
worst case scenarios using slow software handlers. What is
critical is to avoid Silent Data Corruption (SDC) errors
where an error goes undetected. By using just error
detection hardware we can translate SDCs into Detected but
Unrecoverable Errors (DUEs). Once a DUE is encountered
RAE handlers prevent machine from crashing, to the extent
possible, thereby increasing the MTTF. RAE handlers may
eventually run out of options to take any corrective action
leading to a machine crash. Furthermore, RAE handlers
can also provide early warning signs to system
administrators to replace failing components where possible
or the entire system. The RAE handlers that classify and
correct errors thus form the crux of our approach to improve
MTTF.

Since RAE handlers are written in software these are
highly flexible and a system manufacturer can change the
handlers based on long term reliability data obtained from
the fault logs. In this paper we use a classification algorithm
that relies on counters and probability of occurrence of a
fault type to categorize the fault. In particular, our
classification algorithm uses a constant: C =

(0.95)*(1(SER/sec)), where SER stands for soft error rate.
Typically SER is measured as probability of a transient fault
in a single clock cycle. By knowing the clock frequency we

translate SER into probability of a transient fault in one
second (SER/sec). C is thus 95% of the time interval (in
seconds) between two transient faults.

We will now describe our fault classification algorithm
using the example of ROB structure shown in fig. 1. When
the system is first built the fault log database is empty.
Assume during system operation a fault detected on entry#4
in the ROB at time T1. Immediately, the hardware disables
entry#4 by setting the busy bit to 1 and the FDU_ID
(ROB_4) is stored in the “loc” field of entry#4. When the
first RAE is raised (when entry#4 becomes top of the ROB)
the hardware takes two steps: First, the pipeline is flushed
by the hardware treating this fault as a branch misprediction.
Second, the RAE handler is invoked. The handler then
searches the fault log database using ROB_4 as the search
key. Since the log is empty no records are returned. The
handler simply classifies the current fault as transient. The
handler also enters the RAE record in the database. The
record will contain the information: <ROB_4, T1, Transient,
Transient_Action>. We will describe the Transient_Action
taken by the handler in the next section.

Now assume that at a future time T2 a new fault is
detected in ROB entry#4. As with the first fault, entry#4 is
disabled and FDU_ID is stored. Once entry#4 reaches top of
the ROB, the hardware flushes the processor and invokes
RAE handler. The handler accesses the database with
ROB_4 as the key. The database this time returns one record
indicating that one RAE has been recorded for ROB_4. If
the last fault type is transient, the handler computes the time
interval between T2 and T1 in seconds. If the interval (T2-
T1) is greater than or equal to C, then the current fault type
is again categorized as transient. The assumption is that if
the last failure occurred at least after C seconds then most
probably the new fault is also transient. If the interval is less
than C then the handler now categorizes this fault as
intermittent. Depending on the classification the handler
inserts a new fault record in the database with the
information <ROB_4, T2, Transient, Transient_Action> or
<ROB_4, T2, Intermittent, Intermittent_Action>. We will
describe the Intermittent_Action taken by the handler in the
next section.

Finally, assume at time T3 a fault was detected on
ROB_4. Then the handler will access the database and gets
two fault records, corresponding to T1 and T2 events. It
then takes the most recent event (T2) and computes the
interval between T3 and T2. If the interval is >= C, the
handler categories the event at T3 as transient again and
enters <ROB_4, T3, Transient, Transient_Action > record in
the database. If interval < C then the handler counts the
number of times ROB_4 was classified as Intermittent. If
the count is less than or equal Intermittent_Threshould, then
the fault event at T3 is still treated as intermittent. The
handler enters <ROB_4, T3, Intermittent,
Intermittent_Action> record in the database. If count >
Intermittent_Threshold then the handler categorizes the fault
as permanent. It then enters <ROB_4, T3, Permanent,
Permanent_Action> in the database. The value of
Intermittent_Threshold is specified by the system designer
taking into consideration process technology node and

expected operating environment of the system in field. It
can also be arbitrarily set to a large value. In the worst case
the handler will erroneously categorize a permanent fault as
intermittent fault thereby causing some performance
degradation and power overhead, as we will show later. We
will describe the Permanent_Action taken by the handler in
the next section.

D. RAE Handler: Fault Correction

Now we know the class of the fault, the appropriate
corrective action can be chosen to mitigate fault effects.
There are 3 actions:

1) Transient_Action: Transient faults persist only for
a single cycle; hence, no corrective action other than
restarting from the faulting instruction is needed. However,
the hardware has already disabled the faulty FDU. In our
example scenario, the hardware disabled ROB_4 by setting
the busy bit to 1. The RAE handler directs the hardware to
reset the busy bit to 0 in case of circular buffer array
structures or mark faulty FDU as free in case of tabular
array structures and non storage structure.

2) Intermittent_Action: Intermittent faults mainly
include TDDB, EM, and NBTI faults. The recovery action
is to keep the faulty FDU disabled for longer period of time
and when possible it is best to even de-configure the FDU.
Temporal de-configuration (turning OFF) of the faulty FDU
is very helpful especially in the case of NBTI. By de-
configuring the faulty FDU, we remove the negative bias
stress applied to PMOS transistors inside that FDU. This
helps the PMOS transistors to almost recover to their
original state and threshold voltage. To our knowledge there
is no easy recovery possible for TDDB and EM faults for
any arbitrary FDU; however, temporal de-configuration
increases the MTTF by reducing the stress conditions. In
our approach the length of the de-configuration period
follows exponential distribution based on the number of
consecutive occurrences of the intermittent fault. For
instance when the fault is first classified as intermittent fault
the FDU is turned OFF for 1 million cycles. On consecutive
intermittent faults the FDU is turned OFF for 2, 4, 8 …
million cycles until the number of faults reach the
Intermittent_Threshold value. Since the handler is
implemented in software, the de-configuration can even be
dynamically controlled over the FDU lifetime. During early
life stage of the systems, the de-configuration period can be
of order of 1000’s cycles since system may recover quickly
in the initial stages of its operational life. In later stages of
system lifetime, it will be useful to increase the de-
configuration period to billions of cycles for better recovery.
Once the de-configuration period of the faulty FDU expires,
the faulty FDU is reconfigured into the normal system
operation as we will explain shortly.

3) Permanent_Action: Permanent faults persist
forever and whenever the faulty FDU is used an error will
occur except in cases where the fault is logically masked.
Since masking effects cannot be easily measured at runtime,
for permanent faults we choose to keep the faulty FDU
disabled and permanently turn it OFF. The main advantage
is to avoid large number of flushes and re-executions for

each time the faulty FDU is used during computation.
Another side benefit is the power savings due to reduced
number of flushes.
After the handler completes its execution, we roll back and
start the execution from the instruction that exercised the
fault.

E. FDU De-configuration Approach

Next we describe our de-configuration mechanism. In
our description, we mainly focus on NBTI faults which
greatly benefit from the de-configuration. Most storage
structures, whether they are circular buffers or tabular arrays
are built using traditional 6-Transistor SRAM cells. Each
cell has two back-to-back inverters and two pass transistors
connected to the same word line. Only the two PMOS
transistors in every cell are susceptible to NBTI faults. One
important observation is that whether the value stored in the
cell is logic 0 or logic 1, one of the two PMOS transistors
will be stressed (negative gate-source voltage) while the
other will be recovering (zero gate-source voltage). The
problem occurs when the SRAM cell maintains its value for
a long time without flipping; in that case one of the PMOS
transistors will be stressed for a long time which will cause
its threshold voltage (VT) to shift and may introduce a fault
when the cell is read. The temporal de-configuration helps
us to overcome this problem by making sure both PMOS
transistors are recovering (turned OFF) during this period.

The de-configuration is achieved through the use of
sleep transistor [17][18]. We chose to use header sleep
transistor implementation; which will isolate the voltage
source from the source nodes of PMOS transistors when the
sleep transistor is OFF. In addition to the sleep transistor,
we also add a weak NMOS transistor which helps in
discharging the source nodes of the two PMOS transistors to
zero during the de-configuration period. Applying zero
voltage at the source nodes of transistors will ensure that
both transistors will be in the recovery mode during the de-
configuration period.

De-configuration granularity is a design choice. For
instance, in our example in fig. 1 we chose to de-configure
any single ROB entry. Hence, we implemented sleep
transistors at the same granularity by having a single sleep
PMOS transistor and a single discharging NMOS transistor
for each ROB entry. In addition, ROB entry is augmented
with a sleep bit (SRAM cell). The sleep bit of each entry
drives both sleep and discharging transistors of that entry.
Initially, all sleep bits in all storage structures are initialized
to “0”, which means that the sleep transistor is ON
(connected to the voltage source) and the discharging
transistor is OFF. When a fault is classified as intermittent
or permanent, RAE handler sets the sleep bit to 1 thereby
cutting off power supply to the FDU.

We provide a single new instruction called SLP_SET
that is used by the RAE handler to de-configure or
reconfigure the FDU. SLP_SET takes FDU_ID and fault
type as source operands. This new instruction does not have
to be made available to high-level software. Only the fault
handler uses this instruction and the system designers write
this handler.

For transient faults, RAE handler needs to enable the
FDU by directing the hardware to reset the busy bit in case
of circular buffer array structures or mark FDU free in case
of tabular array structures and non storage structure. RAE
handler uses the SLP_SET instruction to achieve that. For
intermittent or permanent faults, RAE handler uses
SLP_SET instruction to set the sleep bit of the FDU to 1. If
fault type is permanent there is no need to do anything else
as the FDU will be turned OFF forever. If the fault type is
intermittent, RAE needs to schedule an event to reconfigure
the FDU when the de-configuration period expires. RAE
keeps a queue of reconfiguration events for all FDUs that
are currently de-configured because of an intermittent fault.
The queue is kept in sorted order with the reconfiguration
event that will occur earliest is at the head of the queue.
RAE handler uses a timer interrupt which iteratively polls
the register that contains the wall clock to check if the
reconfiguration event at the head of the queue is due. When
the top reconfiguration event is due, RAE uses SLP_SET
instruction to reconfigure and enable the FDU by directing
the hardware to set the sleep and busy bits to 0.

Fig. 1 shows RAE handler module with 3 sub modules
(Fault Classification, Fault Correction, and Timer Interrupt
with Reconfiguration Event Queue). Each ROB entry is
augmented with 4 more bits (parity, RAE, busy, sleep) and
16-bit FDU_ID field (loc). All the other circular buffer array
structures, such as LSQ and IFQ need to be augmented with
only 3 bits (parity, busy, sleep). They use parity to detect
faults, use busy bit to prevent any later instruction from
using the FDU, and use the sleep bit to completely turn OFF
the FDU. Since the occurrence of a fault is always
associated with the instruction that exercises the fault and
every in flight instruction is allocated to a specific ROB
entry, only ROB needs to be augmented with RAE bit (to
indicate that there is a reliability fault associated with this
instruction) and loc field (to hold the FDU_ID of the fault).
On the other hand, tabular array structures are augmented
with 2 bits (parity and sleep) because enabling/disabling the
entries of these structures is accomplished by marking them
as being free or in-use. In our simulated machine, we have
128-entry ROB, 128-entry RS, 64-entry LSQ, and 4-entry
IFQ. The total area overhead of implementing RAE
mechanism to protect these storage structures is (128*20) +
(68*3) + (128*2) = 3020 bit which is negligible compared
to reliability and performance improvement achieved as we
will show in section III part C.

The use of exceptions to handle complex functions in
software is a well established design tradition in most
modern systems to deal with rare events such as page faults,
TLB misses. In a sense, we are extending the exception
classes to include reliability aware exceptions to handle
faults which are also rare events. The main advantage of
using software functions in such complex events is that they
provide full resource exploitation and can be easily
modified and maintained in the field. On the other hand, it is
a known fact that software functions are much slower than
hardware functions and hence can incur higher performance
degradation. However, the rarity of fault events allows us to
benefit from the software flexibility to handle reliability

faults while incurring minimum performance degradation
compared to a machine with hardware based recovery
mechanism.

III. EVALUATION METHODOLOGY AND RESULTS

Now that we showed how RAE works, for the purpose
of demonstrating the impact of RAE classification and fault-
specific corrective actions we focus on how to protect one
storage structure, namely the ROB. In this section, we will
describe our experimental infrastructure, fault injection
approach, and simulation results from 8 benchmarks for
base machine (without RAE support) and RAE machine.

A. Experimental Setup

RAE mechanism is evaluated using execution-driven
simulations with a detailed processor model. The processor
model simulated is a 4 wide Out-of-Order processor with
128-entry ROB, 128-entry RS, 64-entry LSQ, 16KB L1
direct-mapped data cache, 4KB direct-mapped L1
instruction cache, 1MB 8-way associative L2 unified cache,
4 ALUs, 1 integer Multiplier/Divider, 1 floating point ALU,
and 1 floating point Multiplier/Divider. The processor
model stores the speculative results from instruction
execution in the ROB rather than in the physical register
file. When an instruction is committed these results are then
written to an architected register file. For our simulations,
we modified Simplescalar simulator [7] by integrating
Wattch [6] and HotSpot [9] to measure temperature at any
given block in a processor’s floor plan. We focus our
evaluations on the ROB which is a large on-chip SRAM
storage structure. We expect qualitatively similar results to
hold when the RAE mechanism is applied to protect other
storage structures like IFQ, LSQ, and RS. Every ROB entry
in our implementation is 40 bits wide: 32 bit data field for
storing the speculative result, 5 bit address field for the
architectural destination register address, and 3 control bits
that track when instruction execution is completed and
instruction type.

B. Fault Injection

Our simulation experiments involve injecting faults of
the 3 main categories (transient, intermittent, and
permanent) in the ROB of both base and RAE machines and
then compare their performance measured in instruction per
cycle (IPC) and reliability measured in FIT. The challenge
is to inject faults that mimic the physical phenomena of the
three fault categories, transient, intermittent and permanent.
In other words, we need a probability distribution of the 3
main fault types in order to know the likelihood of the
injected fault being of a certain type.

In [19], Shin et al presented an architectural-level
lifetime reliability modeling framework. The framework is
based on a new concept called the FIT of reference circuit
(FORC) which is relatively easy to model while allowing us
to compute the FIT rate due to TDDB, EM, and NBTI fault
mechanisms effectively. We propose to use these models to
compute the FIT value for TDDB, EM, and NBTI failure
mechanisms and then use those FIT values to compute the
relative likelihood of occurrence of a given fault type. The

relative likelihood computed is then used to generate the
probability distribution of three categories.

In our simulation, we treat TDDB and EM faults as
permanent faults as there is no easy recovery process for
such faults. NBTI faults are recoverable; hence, they count
for all intermittent faults in our simulation. Soft error strikes
count for transient faults. The probability of each fault
category is computed as follows: PTransient =
FITTransient/FITTotal, PIntermittent = FITNBTI/FITTotal and PPermanent
= (FITTDDB + FITEM)/FITTotal. Where FITTotal = FITTransient +
FITNBTI + FITTDDB + FITEM. FITTransient is the number of
transient faults in billion hours and it is constant throughout
the simulations. According to ITRS 2007 report [17], one
Mega Byte of SRAM in 65nm process technology is
projected to have transient FIT rate of 1150, also referred to
as intrinsic FIT. Using the same projection for our ROB
structure with 5120 bits (128 x 40), the ROB transient FIT
value (FITTransient-ROB) is 1. So, one transient fault is likely to
occur in ROB every one billion hours.

Next, we present the FORC and FIT equations which we
used for TDDB, NBTI, and EM faults respectively. The
FORC and FIT equations of TDDB faults are derived in
 [19] and are show below:

 (1)

 (2)

where ATDDB, a, b, X, Y and Z are fitting parameters derived
empirically [21]. T is the temperature of the FDU in Kelvin
and k is Boltzmann’s constant. So, first we compute the
failure in time value of the reference circuit for TDDB faults
(FORCTDDB) using (1). After that, we use (2) to compute the
FITTDDB value of the ROB. Each SRAM cell has 6 field
effect transistors (FET); we find the sum across the 6 FETs.
The duty cycle and the number of effective devices (ED) for
all the 6 FETs are given in [19].

The FORC and FIT equations of NBTI faults are derived
in [19] and are show below:

 (3)

 (4)

where ΔVT_ref is the maximum allowable shift in VT of the
reference circuit, ΔVc is the maximum allowable shift in VT
in the circuit that contains the pFET device (ROB), and n is
a function of the duty cycle. The equation to compute
parameter K is given in [19]. First, we compute the failure in
time (FIT) value of the reference circuit for NBTI faults
(FORCNBTI) using (3). Second we use (4) to compute the
FIT value of a single PMOS device for NBTI faults
(FITNBTI-per-PFET). Finally, we multiply the result of (4) by the
total number of PMOS devices in ROB (128*40*2 = 10240)

to get the FIT value of the entire ROB for NBTI faults
(FITNBTI-ROB).

In [2], Black presented a model to calculate MTTF due
to EM failure mechanism. Based on Black’s equation, Shin
et al proposed the following equations to compute the
FORC and FIT of EM faults [19]:

 (5)

 (6)

where AEM and n are empirical constants, Eα_EM is the
activation energy for EM, k is Boltzmann’s constant, T is
absolute temperature in Kelvin, t is the clock period, Cref is
capacitance of reference circuit, Cbitline is capacitance of the
bitline in the array structure under test (ROB), Ncells is
number of SRAM cells in the ROB (5120 = 128*40), Nports
is number of read/write ports in our ROB, Nrows is total
number of ROB entries (128), Nreads and Nwrites is total
number of read and write operations from/to the ROB, and γ
is the duty cycle to pull up transistors in the cells. P0 and P1
are the probabilities of having logic 0 or logic 1 in a cell,
and Pflip is the probability of flipping a bit. Just as before we
need to compute the failure in time value of the reference
circuit for EM faults (FORCEM) using (5) and then use that
to compute the FIT value of ROB for EM faults (FITEM-ROB)
using (6).

As can be seen from the above description, TDDB,
NBTI, and EM faults depend on the operational condition.
In our fault injection model we mimic the physical
phenomena by accurately measuring the various
environmental conditions (such as temperature) and stress
conditions (such as P0, P1) to measure the FIT rate of each
fault type. We then compute the relative probability of
occurrence of each fault type during runtime. We keep track
of the ROB average temperature using Hotspot [9]. Hotspot
requires a chip floor plan, so we created a microprocessor
chip floor plan similar to Intel P4 floor plan given in [11]
using QUILT (Quick Utility for Integrated circuit Layout
and Temperature modeling) [5]. Stress conditions, such as
P0, P1, and Pflip are measured using performance counters
added to the simulator. The above activity and thermal
information is used to calculate FITTDDB-ROB, FITNBTI-ROB,
and FITEM-ROB dynamically every 5 million cycles using (1),
(2), (3), (4), (5), and (6). FITTransient-ROB is constant (= 1)
during the entire simulation. As mentioned at the beginning
of this section, the above FIT values of the 4 fault
mechanisms are added together to get the total ROB FIT
(FITTotal-ROB). Then we can compute the probability of each
fault category (PTransient, PIntermittent, and PPermanent). Now the
FITTotal-ROB value specifies the rate at which faults are
injected in the ROB, and the 3 probabilities are used to
determine the probability of occurrence of each fault type.

While FITTotal-ROB is the most accurate way to determine
when to inject a fault, these values are usually small and
occur exceedingly rarely compared to processor clock
period. The only escape is to accelerate our simulations, so
we select to inject a fault in the ROB using a uniform
random variable with a mean of 10 million cycles. In other
words, in every cycle during our simulation the probability
of a fault being injected in the ROB is 10

-7
. We also selected

the ROB entry which will be allocated next to inject the
fault. By this approach the ROB entry number selected is
also randomly selected. Once we decide to inject a fault we
use the relative probability of occurrence of the three fault
types (computed as described earlier) to decide which fault
type to inject.

The last aspect in fault injection is to decide how long a
fault will persist (i.e. fault period). The fault period depends
on fault type. If the fault injected is transient then it will
disappear after the RAE handler completes its execution and
enables the faulty entry. If the fault injected is permanent, it
will persist for the entire simulation. Injecting intermittent
faults (i.e. NBTI faults) require computing the length of
time the fault persists. In our simulation we use bit flipping
frequency, number of times a bit has flipped from 1 to 0 or
vice-versa, inside a ROB entry to determine the fault period.
If bits flip quite often then NBTI severity is low else it
grows. If flipping frequency is greater than 75% of total
simulation cycles since last fault in the same ROB entry,
level 1 intermittent fault is injected with a fault period of 1
million cycles. If flipping frequency is between 50-75% of
total simulation cycles since last fault in the same ROB
entry, level 2 intermittent fault is injected. Level 2 fault
period is 2 million cycles. Level 3 intermittent fault is
injected when flipping frequency is between 25-50% of total
simulation cycles since last fault in the same ROB entry.
The fault period is 4 million cycles. In case flipping
frequency is extremely low (less than 25% of total
simulation cycles since last fault in the same ROB entry),
level 4 intermittent fault is injected. Level 4 fault is treated
as permanent. In essence in our simulation experiments
level 1, level 2, and level 3 intermittent faults injected in
ROB will disappear after the faulty ROB entry is de-
configured for at least 1, 2, and 4 million cycles,
respectively.

C. Simulation Results

For our simulation experiments, we chose 8 SPEC
CPU2000 benchmarks, 4 Integer benchmarks: Bzip2,
Crafty, Gzip, and Parser and 4 floating point benchmarks:
Apsi, Mgrid, Swim, and Wupwise. We used single SimPoint
to determine the simulation point to start detailed simulation
for 3 billion committed instructions. We present our results
in 2 subsections: First, we compare the reliability of base
and RAE machines using the FIT values for TDDB, NBTI,
and EM fault mechanisms. Second, we discuss the
performance impact of the RAE mechanism.

In the base machine, there is no handling mechanism
available for RAEs. Hence, whenever a fault is detected in
one of the ROB entries in the base machine, we flush the
processor and start executing from the faulty instruction by

allocating it to the ROB entry next to the faulty one to
ensure forward progress. This is done for all types of faults.
As one would expect, on an intermittent fault the machine
encounters multiple pipeline flushes, once every time the
entry is used. On the other hand, the RAE machine uses the
RAE handling mechanism to use the appropriate solution
based on fault category.

1) Reliability Evaluation: In this subsection, we
compare the reliability of the base and RAE machines using
the FIT values of TDDB, NBTI, and EM fault mechanisms.
Fig. 2 shows the FIT values for different benchmarks at
different time instances. There are 8 graphs (one for each
benchmark). In all graphs, the X-axis is the simulation time
and the units are 10

10
cycles (10 Billion cycles). The Y-axis

is FIT values. In each graph there are 6 curves that are
labelled with two characters separated with an underscore.
The first character indicates the machine type: “R” stands
for RAE machine and “B” for base machine. The second
character represents the fault mechanism: “T” stands for
TDDB, “N” for NBTI, and “E” for EM. For example “R_T”
is the RAE machine’s TDDB FIT. Each curve runs for
different simulation cycle lengths. In the base machine when
all ROB entries have either an intermittent or permanent
fault the simulation cannot proceed any further. Hence, the
machine simply crashes at that time. This scenario can also
occur in the RAE machine when the number of disabled/de-
configured entries equal to ROB size. However, the
likelihood of this event is small. RAE machine recovers
faster from intermittent faults since turning OFF a ROB
entry increases the chance of its recovery. Hence, in our
simulations the base machine fails to complete the execution
of 4 benchmarks for 3 Billion committed instructions. On
the other hand the RAE machine completed the simulation
in all cases, except for Gzip where it failed after executing
2.8 Billion instructions after it ran out of ROB entries. The
exact numbers of instructions committed per each
benchmark are shown in fig. 3. What is interesting to note
from the graphs is that base machine executed for much
longer simulation cycles even when fewer number of
instructions is committed. Not surprisingly, the base
machine suffers from severe pipeline flush penalties as it
uses pipeline flush as the only corrective action to deal with
faults. Hence, even though base machine committed fewer
instructions before a crash it takes far more cycles to
execute them. The RAE machine on the other hand commits
the specified 3 Billion instructions and it executes them
much faster than the base machine.

a) TDDB: The primary observation we note is that the
FITTDDB-ROB values are less than FITNBTI-ROB and FITEM-ROB
values especially on the base machine. Referring to FIT
models which were discussed earlier, TDDB FIT depends
on the ROB activity per cycle which stays almost stable
throughout the simulations for all benchmarks on both
machines. NBTI and EM FIT models depend on the
cumulative ROB activity which always grows with time.
Hence, TDDB FIT does not change much with time in our
simulations.

b) NBTI: Fig. 2 shows that for all benchmarks except
for Gzip, the FITNBTI-ROB on base machine increases with
time as the average ROB temperature increases then
stabilizes to some value as the average ROB temperature
reaches a steady state value. The FITNBTI-ROB is mostly
affected by the change in average ROB temperature due to
the exponential relationship between parameter K in (3) and
the average ROB temperature. So, when comparing RAE
and base machine we see that the RAE machine FITNBTI-ROB
is less than the base machine for all benchmarks except
Gzip. For the 7 benchmarks, the total ROB activity on base
machine is always higher than RAE machine, as shown with
ROB activity values of Apsi benchmark in fig. 4. Each
curve in fig. 4 is labelled by the machine type (RAE or
Base) followed by a character: “T” for true ROB activity,
“M” for mispredicted ROB activity, and “W” for wasted
ROB activity. Since the base machine has no corrective
actions for NBTI faults, the number of ROB flushes due to
reliability faults (i.e. wasted ROB activity) will be much
higher compared to RAE machine. Higher ROB activity
leads to higher average ROB temperature and hence makes
the ROB more susceptible to NBTI faults. On the other
hand, RAE machine deploys FDU de-configuration
mechanism to reverse the effects of NBTI faults which
reduce the wasted ROB activity and hence make ROB more
resilient to NBTI faults. The Gzip behaviour is explained
exactly the same as in TDDB discussion.

Gzip exhibits vastly different behaviour in the initial
phase of simulation, up until 2 Billion simulation cycles.
During the initial phases of Gzip simulation RAE machine
experiences higher true ROB activity as it deals with fewer
pipeline flushes compared to base machine. As we will
show in the next section, the IPC on RAE machine is much
higher during the early phase of simulation than the base
machine. Higher IPC results in higher true ROB activity.
Even though base machine suffers more flushes the increase
in wasted ROB activity on base machine is not enough to
offset the increase in the true ROB activity on RAE
machine. As a result the total ROB activity on RAE
machine becomes higher than base machine for about 2
billion simulation cycles, which causes higher average ROB
temperature and consequently higher FITTDDB-ROB values. As
the simulation of the Gzip progresses, the true ROB activity
on RAE machine starts to decrease as the number of de-
configured ROB entries increases. At that point, the increase
in the wasted ROB activity on base machine offsets the
increase in true ROB activity on RAE machine and causes
the total ROB activity, average ROB temperature, and
FITTDDB-ROB values of base machine to higher. The ROB
activity numbers for Gzip benchmark are given in fig. 4.

c) EM: Two main points can be observed from EM
curves in fig. 2. The first point is that for all benchmarks on
both RAE and base machines, the FITEM-ROB increases with
time. For Bzip, Crafty, Gzip, Parser, Swim, and Wupwise
benchmarks the FITEM-ROB increases from 0 to almost 0.35
on base machine. For Apsi and Mgrid benchmarks, the
FITEM-ROB increases from 0 to almost 0.85 on base machine.

Figure 2. FIT values of TDDB, NBTI, and EM

Figure 3. Total Number of Committed Instruction

Figure 4. ROB Activity

Figure 5. IPC values

From (6), FITEM-ROB has a quadratic relationship with the
cumulative number of reads and writes operations in the
ROB (from the beginning of the simulation and up to the
specific point where FITEM-ROB is computed, i.e. total ROB
activity). For all benchmarks on both machines the total
ROB activity increases with time; hence FITEM-ROB simply
increases with the amount of time the machine is
operational. As execution time on base machine is greater
than execution time on RAE machine for all benchmarks,
we expect the FITEM-ROB to reach much higher values in
base machine.

The second point is that for all benchmarks except Gzip,
the FITEM-ROB values on base machine are greater than
FITEM-ROB values on RAE machine. This point is the same
as the second observation in NBTI discussion. As we
introduce more faults in the ROB, the base machine starts to
suffer from higher wasted ROB activity due to the lack of
any corrective action. The total ROB activity becomes
higher on base machine compared to RAE machine which
also causes the average ROB temperature to increase as
well. The compound result of higher ROB activity and
higher average ROB temperature on base machine results in
higher FITEM-ROB values. The different behaviour of Gzip
can be traced back to the same discussion that we provided
in analyzing NBTI results.

2) Performance Evaluation: We initially thought that
RAE mechanism will cause some performance degradation
due to the de-configuration process which reduces the
number of active ROB entries; hence, less in-flight
instruction and less IPC. However, the performance results
show that RAE machine has better performance than base
machine. The execution time reduction factor ranges from
1.5 for Swim benchmark to 5 for Bzip benchmark. As we
inject more faults in the ROB of both the base and RAE
machine, the temporal and permanent de-configuration of
ROB entries in RAE machine causes the IPC to drop but at
a rate much less rate than the rate at which IPC of base
machine drops due to the increase in wasted ROB activity.
In other words, having fewer active ROB entries in RAE
machine does not necessarily mean lower IPC. In fact,

without temporal de-configuration most of the work done on
base machine is wasted as more ROB entries are faulty.

Fig. 5 shows the IPC values of both base and RAE
machines for all benchmarks throughout the simulation
measured at the granularity of 5 million cycles. Fig. 5 has
four graphs with two benchmarks in each graph. Each
benchmark is appended with _B to represent IPC on the
base machine. We use _R to represent IPC on the RAE
machine. The X-axis is the simulation time in 10 Billion

cycles and the Y-axis is IPC values. For all benchmarks, the
IPC values of RAE machine are greater than the IPC values
of base machine, nearly for the entire simulation duration.
IPC values of base machine for all benchmarks decrease
with simulation time which is expected due to the increase
in the number of faulty ROB entries and the lack of any
corrective actions. The effectiveness of the RAE approach
can be best seen in Bzip and Apsi benchmarks. For these
benchmarks the IPC values of RAE machine increase with
time during the early stages of the simulation then start to
toggle between increase and decrease to the end of the
simulation. The toggling of IPC in these benchmarks during
simulation is the result of RAE actions. When ROB entries
are temporarily de-configured in response to an intermittent
fault the IPC drops. But as these entries are reconfigured
after recovery phase completes IPC increases. For Gzip the
base machine IPC suffers right from the start. Further
analysis showed that this benchmark has plenty of
instruction level parallelism at the beginning of the selected
simulation point. The base machine’s repeated pipeline
flush however caused the net IPC to drop. In the RAE
machine the instruction level parallelism is well exploited
during the beginning of simulation. But as the RAE machine
continued to operate more ROB entries were either
temporarily or permanently de-configured. Hence, IPC was
impacted by the shrinking ROB size.

In conclusion, we showed that using RAE mechanism
help increase the reliability of the ROB against TDDB,
NBTI, and EM fault mechanisms. The permanent de-
configuration of ROB entries that exercise permanent fault
makes the ROB more resilient to permanent faults by
isolating the faulty entry to avoid excessive flushes. At the
same time we achieve a speed up that ranges between 1.5

and 5 for different benchmarks. Although in our
experimental design we only applied RAE to the ROB, we
expect to get the same benefits when applying RAE to other
circular buffer array structures (LSQ, IFQ), tabular array
structures (RS), and non storage structures.

IV. RELATED WORK

There has been considerable research that focuses on
tolerating transient and permanent faults. SWAT uses
anomalous software behavior to indicate the presence of
hardware faults [10]. There are many advantages for this
high level detection mechanism: Low detection overhead
and ignoring masked faults. However, the latency from the
time the architectural state is corrupted to the time the fault
is detected is in the range of microseconds for GHz
processors; so the checkpointed state information must be
kept long after the instruction commits which increases the
memory overhead of the checkpointing mechanism. RAE
share the same advantages as SWAT through using low cost
detection mechanisms which require minimum hardware
such as parity for storage structure and partial redundant
execution using look-ahead circuits to detect faults in data
and control intensive logical blocks (ALUs, Instruction
schedulers,…etc). In addition, RAE minimizes the memory
overhead associated with rolling back the execution by
handling reliability faults when instructions commit. SWAT
can only detect transient and permanent faults by re-
executing the faulty portion of the program on the expected
faulty hardware and a fault-free hardware and compare the
two results. Solely depending on the re-execution
mechanism described above is too aggressive as many
intermittent faults which persist for long periods will be
interpreted as permanent faults. RAE uses history based
classification to differentiate between transient, intermittent,
and permanent faults. Hence, RAE gives a range of different
actions from simply leverage the existing roll back
mechanisms in case of transient faults to full isolation of the
faulty FDU in case of permanent faults. In case of
intermittent faults, RAE allows us to de-configure the faulty
FDU temporarily. Turning OFF faulty FDUs may help
reverse the bad effects of some intermittent faults such as
NBTI faults. For intermittent faults such as EM and TDDB
faults, turning OFF faulty FDUs may help improve their life
time by avoiding continuous stress conditions.

In [3], Bower et al proposed Self-Repairing Array
Structures (SRAS): a light weight hardware based
mechanism to tolerate hard errors in microprocessor array
structures. SRAS is implemented in conjunction with the
DIVA core [1]. DIVA core is a special checker processor
attached at the commit stage of a more aggressive
microprocessor. DIVA is responsible for detecting and
correcting computation and communication faults by re-
executing every retired instruction and instantiating the
recovery action (flushing the aggressive main
microprocessor) every time a fault is exercised. SRAS is
used to map out entries of array structures that exercise a
hard fault, hence removing continuous flushing due to such
faults. SRAS uses a handful of check rows to detect faults in
each array structure. Every write operation to a row in a

certain array structure is duplicated to a check row, and then
data is read from both rows and compared –off the critical
path- to detect errors. As the number of faults detected from
a specific row reaches a pre-defined threshold value, the
row is believed to have a permanent fault and is
permanently mapped out. Otherwise, the fault is assumed to
be transient. This detection mechanism is expensive in terms
of both area and power consumption. On the other hand,
RAE uses cost effective fault detection mechanism for array
structures represented by the use of a single parity bit for
every single row which saves a lot of area compared to
SRAS. In addition, RAE does not require a duplicated write
or a comparison operation, hence saving power
consumption. Another major limitation of using check rows
is that they may become faulty themselves; as all check
rows exercise hard faults, the detection mechanism goes
down.

Bower et al proposed an online diagnosis mechanism of
hard faults in microprocessors [4]. They implement a
mechanism to diagnose hard faults at the field de-
configurable unit (FDU) granularity. As before, Bower et al
depends on DIVA checker to provide error detection and
correction. RAE depends on previously known, simple and
reliable detection mechanisms applied for each FDU. The
online diagnoses mechanism uses small hardware saturated
counters for every FDU. During instruction execution, the
instruction occupancy of the core structures is tracked using
a stream of bits. When the DIVA checker detects a fault in
an instruction, all counters of the core structures that the
instruction used are incremented by 1. When a specific FDU
counter reaches a pre-defined threshold value, a permanent
fault is detected in that FDU and it is permanently mapped
out. Otherwise, the fault is assumed to be transient. One
major limitation of the online diagnosis mechanism is the
assumption of independent resources usage. Without this
assumption, we could end up mapping out fault-free FDU if
two resources happen to be used together most of the time.
Despite the modifications in the resource scheduling
algorithms that Bower et al suggested, it remains impossible
to prevent such false mapping out. RAE does not suffer
from this drawback, because faults are detected at the output
of each FDU that the instruction uses.

 RAE uses the same mapping out mechanism for circular
buffer arrays proposed by SRAS [3]. Also RAE uses the
same mapping out mechanism for tabular array structures
and non storage structures proposed by the online diagnosis
mechanism [4]. In addition to the differences discussed
above between SRAS and RAE, and online diagnosis
mechanism and RAE, There is one more thing worth
mentioning, both SRAS and the online diagnosis
mechanism classify the faults as either permanent or
transient faults based on counter values. On the other hand,
RAE classifies the fault as transient, intermittent or
permanent based on the history of the faulty FDU. This may
cause some intermittent faults in SRAS and online diagnosis
mechanism to be falsely classified as permanent faults and
hence result in the faulty FDU being mapped out
permanently.

V. CONCLUSION

In this paper we propose reliability aware exceptions
(RAE), a new class of exceptions that run entirely in
software and require minimal hardware cost. RAE has the
ability to classify the fault into one of the 3 categories
(transient, intermittent, and permanent) and then choose the
optimal corrective action which helps reverse or slow down
the impact of the fault. RAE fault classification algorithm
uses fault history logs which maintain records of previous
detected faults indexed by a unique FDU identification
number (FDU_ID). Corrective actions range from simple
flushing and re-execution in case of transient faults to
permanent de-configuration of the faulty FDU in case of
permanent faults.

In addition, we present a new fault injection approach to
mimic the physical phenomena of the three fault
mechanisms: TDDB, NBTI and EM. We measure the
environmental and stress conditions continuously during
simulation. These measurements are used to compute
FITTDDB, FITNBTI, and FITEM values which can then be used
to get the probability distribution of each fault mechanism.

In this paper we focused on RAE implementation to
protect the ROB structure. However, we have shown that
the implementation can be easily extended to protect other
storage and non storage structures incurring negligible area
overhead compared to reliability and performance
improvements.

REFERENCES

[1] T. M. Austin. DIVA: A Reliable Substrate for Deep

Submicron Microarchitecture Design. In Proc. of the 32nd

International Symposium on Microarchitecture, pages 196–

207, Nov. 1999.

[2] J. R. Black. Electromigration-A Brief Survey and Some
Recent Results. Electron Devices, pages 338 – 347, Apr 1969.

[3] F. A. Bower, P. G. Shealy, S. Ozev, and D. J. Sorin.

Tolerating Hard Faults in Microprocessor Array Structures.

In Proceedings of International Conference on Dependable
Systems and Networks, p.51, June 28-July 01, 2004.

[4] F. A. Bower, D. J. Sorin, and S. Ozev. A Mechanism for

Online Diagnosis of Hard Faults in Microprocessors.

In Proceedings of the 38th International Symposium on
Microarchitecture, pages 197-208, Nov 2005.

[5] G. J. Briggs, E. J. Tan, N. A. Nelson and D. H. Albonesi.

QUILT: A GUI-based Integrated Circuit Floorplanning

Environment for Computer Architecture Research and

Education. In Workshop on Computer Architecture
Education, pp. 26-31, Jun 2005.

[6] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: a

framework for architectural-level power analysis and

optimizations. In Proceedings of the 27th Annual international

Symposium on Computer Architecture, pages 83-94, 2000.

[7] D. Burger and T. M. Austin. The SimpleScalar tool set,

Computer Architecture News, v.25 n.3, p.13-25, June 1997.

[8] M. Choudhury and K. Mohanram. Timing-driven

optimization using lookahead logic circuits. In Proceedings of
46th Design Automation Conference, Sept 2009.

[9] W. Huang, K. Sankaranarayanan, K. Skadron, R. J. Ribando,

and M. R. Stan. Accurate, Pre-RTL Temperature-Aware

Design Using a Parameterized, Geometric Thermal

Model. IEEE Trans. Comput. 57, 9 (Sep. 2008), 1277-1288.

[10] M. Li, P. Ramachandran, S. K. Sahoo, S. V. Adve S. V., and

Y. Zhou. Understanding the propagation of hard errors to

software and implications for resilient system design.
Computer Architecture News, v.36, n.1, 265-276. March 2008

[11] U. Raju, A. Kaisare, D. Agonafer, A. Haji-sheikh, G. Chry

sler, R. Mahajan. Multi-Objective optimization entailing

computer architecture and thermal design for non-uniformly

powered microprocessors. Thermal and Thermomechanical
Phenomena in Electronic Systems, pages 432 – 440, 2008.

[12] K. P. Rodbell, A. J. Castellano and R. I. Kaufman. AC

electromigration (10MHz–1GHz) in Al metallization.

Proceedings of the fourth workshop on stress induced
phenomena in metallization, pp. 212-223, January 1998.

[13] R. Rodriguez et al. The impact of gate-oxide breakdown on

SRAM stability. IEEE Electron Device Letters, Vol. 23, No.
9, pp. 559-561, September 2000.

[14] G. P. Saggese, N. J. Wang, Z. T. Kalbarczyk, S. J. Patel, and

R. K. Iyer. An Experimental Study of Soft Errors in

Microprocessors. IEEE Micro, v.25 n.6, p.30-39, 2005.

[15] S. K. Sastry Hari, M. Li, P. Ramachandran, B. Choi, and S.V.

Adve. mSWAT: low-cost hardware fault detection and

diagnosis for multicore systems. In Proceedings of the 42nd

International Symposium on Microarchitecture, pages 122-

132, 2009.

[16] D. K. Schroder and J. A. Babcock. Negative bias temperature

instability: Road to cross in deep submicron silicon

semiconductor manufacturing. Journal of Applied Physics,
Vol. 94, No. 1, July 2003.

[17] International Technology Roadmap for Semiconductors,
2007. http://www.itrs.net.

[18] K. Shi, D. Howard. Sleep Transistor Design and

Implementation Simple Concepts yet Challenges to Be

Optimum. VLSI Design, Automation and Test, 2006
International Symposium, pages 1–4.

[19] J. Shin, V. Zyuban, Z. Hu, J. A. Rivers, and P. Bose. A

Framework for Architecture-Level Lifetime

Reliability Modeling. pp.534-543, 37th Intl. Conference on

Dependable Systems and Networks, 2007.

[20] S. Shyam, K. Constantinides, S. Phadke, V. Bertacco, and T.

Austin. Ultra low-cost defect protection for microprocessor

pipelines. In Proceedings of the 12th International Conference

on Architectural Support for Programming Languages
and Operating Systems, pages 73–82, Oct 2006.

[21] J. Srinivasan, S. V. Adve, P. Bose and J. A. Rivers. The case

for lifetime reliability-aware microprocessors. In Proceedings

of International Symposium on Computer Architecture, pp.
276-287, June 2004.

[22] R. Vattikonda, W. Wang, and Y. Cao. Modeling and

Minimization of PMOS NBTI effect for Robust Nanometer

Design. In Proceedings of the 43rd annual conference on
Design automation, pages 1047–1052, July 2006.

http://portal.acm.org/citation.cfm?id=268810&CFID=391228&CFTOKEN=74292796
http://portal.acm.org/citation.cfm?id=268810&CFID=391228&CFTOKEN=74292796
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4538254
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4538254
http://portal.acm.org/citation.cfm?id=1108288&CFID=110914869&CFTOKEN=43590808
http://portal.acm.org/citation.cfm?id=1108288&CFID=110914869&CFTOKEN=43590808
http://portal.acm.org/citation.cfm?id=1108288&CFID=110914869&CFTOKEN=43590808

