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ABSTRACT

Wireless Body Area Networks (WBANs) promise to revo-
lutionize health care in the near future. By integrating bio-
sensors with a mobile phone it is possible to monitor an in-
dividual’s health and related behaviors. Monitoring is done
by analyzing the sensor data either on a mobile phone or
on a remote server by relaying this information over a wire-
less network continuously and in real time. However, the
“wireless” aspect of WBAN is being limited by the battery
life of the mobile phone. A WBAN designer has a range
of options to trade-off limited battery with many important
metrics. From the choice of programming languages to dy-
namically choosing between computation versus communi-
cation under varying signal strengths, there are several non-
obvious choices that can have dramatic impact on battery
life. In this research we use an in-field deployed WBAN
called KNOWME to present a comprehensive quantification
of a mobile phone’s energy consumption. We quantify the
energy impact of different programming paradigms, sensing
modalities, data storage, and conflicting computation and
communication demands. Based on the knowledge gained
from the measurement studies, we propose an Active En-
ergy Profiling strategy that uses short profiling periods to au-
tomatically determine the most energy efficient choices for
running a WBAN.

Categories and Subject Descriptors

C.4 [Performance of Systems]: Design studies
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1. INTRODUCTION

Wireless Body Area Network (WBAN) is an exciting
technology that promises to bring health care to a new
level of personalization. The size of a transistor contin-
ues to shrink following Moore’s law, which in turn is al-
lowing miniaturization of sensor nodes. Miniaturization
is particularly attractive in the health domain as these
sensors can be worn on the body and they can non-
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Figure 1: An Example 3-Tier WBAN System

intrusively monitor a person’s physiological state. Mul-
tiple sensors communicate with an external data collec-
tion node using wireless interfaces forming a WBAN.
WBANS enable monitoring an individual’s health con-
tinuously in free living conditions, where the individ-
ual is free to conduct his/her daily activity. Recently
WBANSs are employing mobile phones to collect health
data from sensors, store and even partially process data
locally, and transmit the health data over wireless links
to a back-end processing server.

A typical mobile phone based WBAN consists of three
layers as shown in Figure 1. The first component is
the sensor layer which measures physiological and even
emotional signals and transmits this data wirelessly.
The second layer is a mobile phone which acts as a data
collection hub and receives the external sensor data. It
may further enrich the sensor data with GPS , audio and
video tags to get an accurate state of a person’s health
and environmental conditions. The mobile phone may
also process data locally. The last layer is a back-end
server that processes and stores the data. As WBANs
operate continuously, the primary bottleneck to data
collection and analysis is the limited battery life of mo-
bile phones. For instance, in [34] the authors report
that a Nokia N95 phone battery has nearly 200 hours
of standby time, but when it is used in a WBAN setup,
the battery drains in 4 hours using S60 Python. For
WBANS to be used pervasively, it is necessary to first
understand where the energy is spent in a WBAN and
then use energy efficient strategies to operate a WBAN.

At each stage of a WBAN design and operation, the
system designer has a wide range of options to trade-off
battery life for other important metrics. During system
software development phase the designer has a choice



of programming platforms for improving software pro-
ductivity. The designer may use Python, Java or a
phone’s native programming model such as Symbian
C++ or iPhone SDK to develop the system software.
The choice of language can tradeoff software productiv-
ity with potential runtime overheads of managed envi-
ronments that lead to energy inefficiency.

The sensed data collected on the mobile phone can
be buffered locally or transmitted to server immediately.
Local buffering to flash is energy intensive. In fact, writ-
ing a small packet of data to flash storage may consume
more energy per bit stored compared to transmitting
over a 3G wireless link.

During the data transmission phase, the designer has
to make energy tradeoff decisions on computation and
communication costs. Storing data on flash may allow
the mobile phone to compress large chunks of data and
send compressed data to the remote server. Data com-
pression places more compute demands. On the other
hand, compression may reduce the transmission energy
cost. Local storage of data also allows mobile phone to
process the data locally and only send interesting events
to the back-end. For instance, detecting an abnormal
heart beat signal from ECG will reduce the need to
continuously transmit normal operational data thereby
reducing transmission energy.

As demonstrated with these ample examples, the sys-
tem designer is faced with a daunting list of tradeoffs
. While some previous studies have quantified the en-
ergy tradeoffs in specific domains, such as communi-
cation versus computation [1, 8], sampling rate versus
accuracy [12, 13, 32], to the best of our knowledge,
there is no published work that provides a comprehen-
sive quantification of energy costs of the various choices
a designer has to make. Thus the goal of this paper
is two fold: first, we provide a comprehensive energy
consumption evaluation of the various WBAN design
choices using a Nokia N95 phone. We then compare
the energy consumption of a few WBAN components
across Nokia N95, E75 and Apple iPhone to demon-
strate that the observations made on N95 are applicable
to a broader set of mobile platforms. As a second goal,
using the knowledge gained from the evaluations we pro-
pose Active Energy Profiling (AEP) strategy that uses
short profiling intervals to automatically determine the
best energy efficient operating point of a WBAN. We
have gained access to KNOWME [3], a WBAN used
for pediatric obesity monitoring, which we will use as a
demonstration vehicle to highlight the energy consump-
tion tradeoffs.

The rest of this paper is organized as follows: Sec-
tion 2 describes KNOWME, the WBAN framework used
in this study. Section 3 shows the experimental setup
used to evaluate the effectiveness of our proposed ar-
chitecture and presents results from our evaluations.

We then make use of the observed energy consumption
tradeoffs to describe and evaluate AEP in Section 4.
Section 5 describes previous studies that are related to
our work. Finally, we conclude in Section 6 and discuss
future directions.

2. KNOWME PLATFORM

In this section, we provide details of the WBAN plat-
form, called KNOWME, used in this study. KNOWME
is a low cost mobile phone centric WBAN which is cur-
rently deployed in Los Angeles for pediatric obesity
prevention and treatment. In the current implemen-
tation, each KNOWME node consists of a Nokia N95
mobile phone (N95) and three health sensors, namely
tri-axial accelerometers (ACC), electrocardiograph sen-
sor (ECG) , blood oxygen saturation sensor (OXI), and
one location sensor, GPS. The ACC, ECG and OXI
are Bluetooth enabled off-the-shelf sensors from Alive
Technologies, while GPS is a built-in on N95. The ECG
samples at 300Hz, OXI uses 100Hz sampling, ACC uses
30Hz sampling while GPS can be sampled at any user-
specified rate.

2.1 KNOWME Software Component

KNOWME software runs as a mobile application on
N95. The mobile application has two components cor-
responding: a background process (KMCore) for data
collection in background and a client interface applica-
tion (KMClient) for configuring the sensors and data
visualization. The KMCore comprises of seven com-
ponents arranged in a four-tier hierarchy: (1) device
manager at the bottom-most tier (2) data collector at
the second tier (3) at the third tier there are data ana-
lyzer, local storage manager, and data transmitter and
(4) a service manager at the top tier. Figure 2(a) shows
how various components in the KMCore interact each
other. There is one thread per each sensor called device
manager thread that receives data from its associated
sensor. By creating a separate thread per each sen-
sor KNOWME continues to get data from working sen-
sors without being hindered by a single non-functional
sensor. The data collector thread receives sensor data
from each device manager and synchronizes all the sen-
sor data with the same timestamp into a single health
record. It combines several such records into a single
write buffer and sends it to the local storage manager
to write the data to the flash storage. When the flash
storage runs out of space old data is replaced with new
data in a FIFO manner.

The analyzer modules are designer defined modules
that perform domain specific tasks. In pediatric obesity
management domain these modules perform user state
classification using multi-modal signal processing algo-
rithms. In current implementation the analyzer classi-
fies user state as either sedentary or non-sedentary using
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just ACC data with Sedentary Analyzer (SA) based on
Support Vector Machine classifier [14]. The transmit-
ter module transfers data to back-end and handles data
compression and encryption for privacy and energy sav-
ing.

The back-end server runs a more comprehensive suite
of classification algorithms to detect a range of user
states such as walking, running, fidgeting, standing,
sitting using ECG and ACC sensor data with multi-
modal signal processing [28]. Such finer classification is
used by the physicians at the back-end to get a compre-
hensive understanding of user behavior and to precisely
measure the calories burned. Back-end server stores
sensor data indefinitely. In other words, the data stored
on the back-end server is a complete record of a person’s
physical activity history, and the most recent time win-
dow of this history is stored on the mobile phone’s flash
storage.

The last component of the KMCore application is
a service manager thread that uses sockets or inter-
process communication (IPC) to provide the sensor data
to other mobile applications running on the phone such
as data visualization application, KMClient. Figure 2(b)
shows a visualization screen of the KMClient that shows
how long a user is sedentary from SA.

3. ENERGY IMPACT OF DESIGN CHOICES

Using the KNOWME framework described in the prior
section, we will now provide a comprehensive evaluation
of the energy consumption of the various components in
KNOWME. While KNOWME is one particular imple-
mentation of a WBAN, we would like to note that most
WBANS that we are aware of have very similar architec-
ture [20, 23]. Furthermore, where possible we quantify
the energy consumption of basic operations without re-
lying on KNOWME semantics. For instance, energy
consumed for a byte of data compression and transmis-
sion is independent of whether it is performed within the
KNOWME framework or otherwise. In each subsection
below we evaluate the energy cost of each component

of KNOWME design using multiple available choices.

3.1 Impact of Software Platform on Energy
Consumption

Selecting an appropriate software development plat-
form is arguably the most important factor in any sys-
tem design. The programming platform choice can de-
termine the development cost in terms of person-hours
as well as the system performance. Hence, in this sec-
tion we first evaluate the design choices available for
mobile phone software development in terms of their
energy efficiency. There are three popular SDKs for
programming Symbian Operating System based phones
such as N95; namely, Symbian C++4, Java 2 Micro Edi-
tion (J2ME), and S60 Python (PyS60), and show their
relative energy efficiency.

We implemented a simple summation routine using
all three programming platforms supported by N95. The
application initializes a variable sum to zero and then
does a summation in a loop with loop count. This is
a trivial application that does not invoke any complex
system calls or memory management routines. Hence,
this kernel is a good estimator for the energy efficiency
of the runtime environment. Table 1 shows the execu-
tion time. Note that qualitatively these results should
come as no surprise; interpretive languages are slower
than native execution. But quantitatively differences
between various programming models is quite signifi-
cant. PyS60 suffers severe execution overhead due to in-
terpreter overhead. Prior comparison results [21] using
Python on desktop environments showed that Python
is only marginally slower than C since it uses Python
modules to run natively on the hardware. However,
PyS60 almost exclusively uses interpretation to dynami-
cally generate native instructions. Hence, the overhead
of PyS60 is extremely high, nearly 1000X worse than
Symbian C++. J2ME does pay the penalty of managed
environment. However, JVM on mobile phones uses
several optimizations such as code caching to speedup
execution, particularly in loops.

| Loop Count | C++ | J2ME | PyS60 |

10,000 <0.001s | <0.001s | 0.069s
100,000 0.001s 0.030s 0.689s
100,000,000 | 0.612s 3.659s | 688.379s

Table 1: Execution Time of Simple Summation
on N95

In order to measure overheads when running more re-
alistic applications we selected three functions that are
of particular interest to WBANSs, namely a heart beat
detection algorithm (QRS Detection [19]), Advanced
Encryption Standard (AES) encryption, GNU zip (Gzip)
data compression. AES encryption is commonly used to
transmit the data from the mobile phone to the back-
end server for data protection. Gzip is also another
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commonly used function to compress data before trans-
mitting the data to the back-end server to reduce trans-
mission costs. ECG signal is characterized using the P,
QRS and T waves as shown in Figure 3(a). The QRS
Detection Algorithm (QDA) detects R peak used as ba-
sis of reference in ECG segmentations and is necessary
to recognize heart beat. We selected QDA implemen-
tation from the Open Source ECG Toolbox [30]. We
ported this algorithm to each of the three programming
languages.

The first 9 bars in the Figure 4 show the execution
time of the three functions using the three program-
ming platforms (the remaining bars will be discussed
in the next section). Table 2, row labeled N95, shows
the corresponding energy consumption in joules. In this
paper, we used the Nokia Energy Profiler Tool [16] to re-
port energy consumption values. The tool itself is fairly
lightweight and adds negligible overhead. We used 10
minutes of ECG data, which is 180KB of data, as in-
put to each of the three functions QDA, AES and Gzip.
Based on results from Table 1 one would intuitively ex-
pect Python to have the lowest performance, and cor-
respondingly the highest energy. Results from Figure 4
show that PyS60 performance on AES is just as bad
(3 orders of magnitude) as shown in simple summa-
tion routine. However, for QDA PyS60 is about 40X
slower than Symbian C++ (comparing Bars 1 and 3 in
Figure 4) and has a corresponding 40X higher energy
consumption (Columnl and Column 3 in Table 2). The
improved performance of PyS60 in QDA case, compared
to the 1000X performance loss seen in Table 1, can be
attributed to efficient implementation of several built-
in library functions, such as low-pass filtering in PyS60.
For Gzip, PyS60 performed as fast as Symbian C++.
Further analysis of PyS60 Gzip function showed that
PyS60 implements Gzip as a native function written in
Symbian C++ and included in PyS60 as an extension
module. In essence, PyS60 implementation of Gzip is a
Symbian C++ implementation of Gzip. To summarize,
in all the tests, Symbian C+4 shows the best perfor-
mance.

3.1.1 Memory Consumption

To provide a better understanding of the observed
execution time differences we provide how memory us-
age varies over time while running QDA across the three

programming platforms. Memory consumption is a ma-
jor source of execution time variations and hence energy
consumption. As mentioned earlier, PyS60 and J2ME
provide automatic memory management functions to
reduce the burden on the user to deallocate memory
correctly. Figure 3(b). shows the memory allocation
and deallocation during QDA. The X-axis shows nor-
malized time as a percentage of the total execution time
of the corresponding programming model, and Y-axis
shows the amount of memory occupied. In Symbian
C++ implementation since the application programmer
allocates and deallocated memory explicitly the size of
memory allocated to the process does not continue to
increase with time. On the other hand both PyS60
and J2ME experience increasing memory footprint over
time. Furthermore, the baseline memory consumption
in PyS60, even when the QDA is just beginning, is sig-
nificantly higher than Symbian C++. While J2ME is
more efficient during the initial execution phase it mem-
ory usage significantly deteriorates with execution time.

Note that while memory consumption provides good
understanding of the observed execution time differ-
ences, there are also several micro-architectural inter-
actions, such as cache misses, branch mispredictions
that may lead to differing execution times. Since mo-
bile phones do not provide performance counters it is
difficult to measure these subtle micro-architectural in-
teractions in our setup.

In summary, this section quantified the relative en-
ergy inefficiencies of three different software platforms.
As mentioned earlier, it is qualitatively obvious that
interpretive languages are likely to be slower than lan-
guages that run natively. But there is growing trend in
traditional computing to use interpretive languages due
to their programming simplicity and portability. How-
ever, in the WBAN domain given the stringent battery
constraints native execution provides significant energy
savings.

3.2 Sensitivity to Hardware Platform

One may raise the obvious concern, are the results
from prior section are specific to the underlying hard-
ware platform of N957 Do these application behave dif-
ferently on a different mobile phone. In order to clarify
these concerns, we repeated the same set of experiments
on a Nokia E75 and Apple iPhone. Table 3 shows rel-
evant hardware and software specifications where the
mobile phones differ. All platforms are based on ARM
cores but iPhone processor is nearly twice as fast as the
other two and has also twice the amount of memory.
Hence, memory related issues like garbage collection
are likely to be more severe on Nokia platforms com-
pared to iPhone. iPhone provides only one program-
ming interface, namely iPhone SDK, which is closer to
the Symbian C++ in terms of programming complexity.



1000 r

100 -

10

Execution Time (Seconds)

517.00

AES

Nokia N95

BC++

377.19

mJ2ME

@ PyS60
3.52
0.61
0.04
AES Q A G
Nokia E75 iPhone 3GS

Figure 4: Execution Time of Three WBAN Functions on Three Programming Languages

Model QDA AES Gzip
C++ [ J2ME [ PyS60 [ C++ [ J2ME | PyS60 | C++ | J2ME [ PyS60
N95 6.6J | 19.34J | 270.97J | 0.03J | 0.30J | 77.62J | 0.50J | 12.22J | 1.35J
E75 5.75J | 15.95J | 151.63J | 0.02J | 0.16J | 36.89J | 0.33J | 4.93J | 0.70J
iPhone 3GS | 2.58]J | n/a n/a | 0.04J | n/a n/a | 0.55J | n/a n/a

Table 2: Energy Consumption For Three Processing Functions

The second set of 9 bars in the Figure 4 show the exe-
cution time of the three functions while running on E75.
The last set of 3 bars in the Figure 4 show the execution
time of the three functions while running on iPhone.
Similarly in Table 2, rows labeled E75 and iPhone, show
the corresponding energy consumption in joules. Com-
paring results between N95 and E75 the relative im-
pact of programming language on execution time (and
energy) across all applications remain the same. Also
execution time decreases in almost all cases on ET75.
The primary reason for the improved performance and
energy efficiency on E75 is that these applications are
all single threaded and the higher frequency ARM 11
processor on E75 executes them faster. iPhone exe-
cutes these applications even faster compared to Sym-
bian C4++ implementation on E75. Again, the reason
is that iPhone processor is nearly 2X faster than E75.
All these applications have similar code footprint, given
that all platforms use ARM ISA. Hence, the relative ex-
ecution time differences of the three application remains
the same.

Due to resource limitations we restrict our evaluation
in the rest of this paper to only N95 and show results
only on this phone model. !

l Spec l N95 l E75 l iPhone 3GS ‘
CPU Dual ARM 11 ARM 11 ARM A8
332Mhz 369HMz 600Mhz
Memory | 128 MB RAM | 85MB RAM 256MB
(ON) Symbian S60 | Symbian S60 i0S4

Table 3: Specification of the Mobile Phones

'If a reader is interested, we will consider putting the com-

plete set results from E75 in an extended technical report.

3.3 Energy Consumption of the Sensors

After establishing the energy impact of software de-
velopment choice, we now focus on the energy costs
of sensing itself. In KNOWME built-in sensors such
as ACC consume energy to perform the sensing op-
eration while external sensors (ECG and OXI) cause
mobile phone’s battery drain due to Bluetooth com-
munication. Table 4 shows the energy consumption of
the built-in phone sensors (ACC) and the energy con-
sumption when reading data from external sensors using
Bluetooth. This data is obtained while sensing for a 10
minute interval using the sampling rates shown in the
table. A Symbian C++ application is used for reading
the sensor information. As mentioned earlier, ECG gen-
erates 300 sample per second while OXI generates 100
samples per second. However, these sensor samples are
internally buffered in the sensor and bulk transmitted
over the Bluetooth channel. Although ECG takes 300
samples it only transmits 4 samples per second, each
packet has 75 sensor samples. OXI transmits 10 pack-
ets per second. Hence, the energy consumption while
receiving data from OXI sensor is slightly higher than
when communicating with ECG. Interestingly, when
both ECG monitor and OXI concurrently send data the
mobile phone is more energy efficient since the energy
expenditure is much less than the sum of the energy
spent when both sensors transmit data in isolation. We
surmise that the energy expended in putting the blue-
tooth radio in an active listening mode is amortized over
both sensors when hearing from the two sensors simul-
taneously. The Built-in ACC consumes 38 Joules for 10
minutes while generating 30 samples per second.

3.4 Energy Consumption of GPS
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Figure 5: Energy Cost of Positioning Methods

Table 4 also shows the GPS energy consumption us-
ing assisted GPS technology used in N95. In the 10
minute interval we made two GPS readings and hence
the sample rate is 0.0033 samples per second. GPS
consumes significantly higher power per each sample
than any of the other sensing functions in KNOWME.
Given that GPS is an energy-intensive operation mobile
phones provide multiple options for obtaining location
information. In particular, when using N95 the user has
four choices: Bluetooth based external GPS, Assisted
GPS, Traditional GPS with no assist, and network-
based GPS that uses only cell towers to provide ap-
proximate position information. Figure 5 shows energy
consumption when GPS is processing a first request us-
ing all four approaches. Generally, once the position
is known, the next GPS reading cost is reduced. For
example, in the assisted mode GPS, the first reading
cost for GPS is 29 Joules per sample, whereas from the
second reading it is reduces to 25 Joules. The figure
shows tradeoffs in the power consumption and the time
to obtain the first GPS reading using all four methods.
In Figure 5 the Bluetooth based external GPS power
consumption shows only the mobile phone power con-
sumption for establishing a Bluetooth link and read the
GPS coordinates. There is a spike in the power con-
sumption when the connection is established and the
data is read over the Bluetooth channel and the power
consumption drops down to the idle power when Blue-
tooth is ON but not actively sending/receiving data.
The Assisted GPS curve shows a large power spike when
it communicates with the cell tower to get the rough lo-
cation first. Once the cell tower provides the orbital
data of GPS satellites the GPS receiver on the mobile
phone can narrow the search for satellite signals and
quickly obtain the position information. In our mea-
surements this approach took roughly 15 seconds to re-
ceive the position information from network and further
35 seconds to compute the precise position from a cold
start. The third curve labeled Integrated GPS is the
basic non assisted GPS. In this mode the GPS receiver
continuously scans for the satellite information. This
approach uses lower peak power but takes nearly 100
seconds before obtaining the position information due
to the absence of any assistance from the cellular net-
work; the total energy consumed by Integrated GPS is
33.9 Joules. The last curve shows the power consump-
tion of Network based position information which, like

Assisted GPS, communicates with cell tower to triangu-
late its approximate position information but no further
communication with satellites is used. Hence network-
based GPS also consumes roughly the same power as
Assisted GPS initially when communicating with the
cell tower for the 15 seconds. The power consumption
then drops to idle power since it does not try to compute
accurate position information by communicating with
the satellites. Based on the total energy consumption
(Power consumption * time to get GPS reading) our
evaluations show Network-based GPS is best for saving
energy in a WBAN (13 Joules per sample), even though
location data is only approximate. Network-based GPS
is more than 2X energy efficient than Assisted GPS.
When precise location is needed then Assisted GPS is
the best option.

‘ Sensor ‘ Energy (J) ‘ Sampling Rate ‘ Xmit Rate ‘
Built-in ACC 37.804 30 30
ECG 114.846 300 4
OXI 137.433 100 10
ECG&OXI 156.419 300 & 100 4 & 10
Assisted GPS 53.994 0.003 0.003

Table 4: Energy Cost of Sensor Readings

3.5 Storage Costs

Once the sensor data is received the mobile phone
may write the data to phone’s flash memory for fur-
ther analysis. Figure 6 shows the battery level of the
mobile phone as we continuously sense data from ECG,
OXI and write sensor data to the flash memory. The
curve labeled ALL_UnBuffer shows the battery level on
the mobile phone as we write each packet of data im-
mediately to the local flash without any buffering. In
other words, every sensor sample received is immedi-
ately written to the flash memory. It is well known
that flash energy efficiency is significantly compromised
for small writes. Flash writes must be done at the size
of a page granularity, typically 4KB pages. If a smaller
than page size write is performed usually the page that
is being modified must be first read from the flash into
a DRAM buffer and the bytes that are going to be writ-
ten are updated in the DRAM buffer. Then the entire
DRAM buffer is written back to flash. Hence, writes
lead to a read-modify-write sequence in the Flash mem-
ory, where even a few bytes of write translate to a full
page write, which is referred to as write amplification



effect [2].

The curve labeled ALL_Buffer shows the battery level
if we buffer the writes to DRAM and send large chunks
to write to the flash. In this case we buffered sensor data
till we receive at least 100 packets from a sensor. Then
we write the buffered data to the flash. As can be seen
buffering improves the battery life from 240 minutes to
299 minutes. Just a note of caution that the battery
life time here does include the cost of using Bluetooth
to receive data as well. Hence, the 240 minutes of bat-
tery life is not just due to flash writes only. Rather we
focus on the difference in the battery life time with and
without buffered writing to the flash, rather than the
absolute values. The difference of 50 minutes translates
into an additional 25% increase in the battery life time
in this experiment.
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Figure 6: Battery Drain With Storage

3.6 Compute Versus Communicate

The mobile phone in KNOWME is not just a sensor
data collection node but as described in Section 2 there
is an Analyzer module that can perform local data anal-
ysis of the sensed data and a Transmitter module that
transmits data to the back-end server, optionally using
compression and-or encryption. Hence, the last trade-
off we consider in this study is the energy consumption
cost of performing local data analysis versus perform-
ing data analysis on the back-end server but pay for
the data communication energy. This compute versus
communication cost is not unique to KNOWME as we
expect most WBANSs to make this fundamental trade-
off.

3.6.1 Communication Costs

To quantify the energy costs of communication we
created a testbed. The testbed can send data from
mobile phone to the back-end server using either: 3G,
EDGE, Wi-Fi. AT&T broadband network is used for
3G and EDGE, while an 802.11g Linksys router is used
for Wi-Fi. We varied the data size transmitted to the
back-end from 100KB to 1000KB. As the performance
of mobile wireless networks vary from place to place
and from carrier to carrier, we tested all of data trans-
fer measurements from the same location during early
morning within one hour to reduce network congestion
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Figure 7: Three Phases of Transmissions

problems with other users. We repeated this study mul-
tiple times, but always done at the same time of the day,
to measure day to day variations.

A data transmission consists of three phases, namely
a connection phase, a transfer phase and a tail phase.
Figure 7 shows the power consumption during the three
phases for the three wireless data transmission approaches.
In this experiment we used a 200KB data transfer. Due
to shorter range, even though Wi-Fi has much higher
bandwidth the peak power consumed is only slightly
worse than 3G and EDGE radios on N95.

Figure 8 shows data transmission (uplink) energy costs
of three of wireless interfaces as we increase the size of
data transfer from 100KB to 1000KB. Wi-Fi is the most
energy efficient across all data packet sizes. Hence, the
overall energy consumption using Wi-Fi is significantly
less than either 3G/EGDE in our setup. Obviously, due
to limited Wi-Fi coverage a practical WBAN implemen-
tation will most likely use either 3G/EDGE for real time
data transfer for mobile users. In this experiment, 3G
consumes more energy than EDGE until about 400KB
of data size. In order to understand the reason, Ta-
ble 5 shows average connection and tail energy costs of
all three network interfaces. The connection and tail
energy of 3G are much higher than EDGE, while the
transfer energy is lower. Hence for small data pack-
ets 3G consumes more energy than EDGE. As the data
packet size increases beyond 400KB, the transfer en-
ergy dominates the overall energy costs and hence 3G
consumes less energy than EDGE.

‘ Meidum ‘ Connection Energy (J) ‘ Tail Energy ‘

EDGE 0.346 2.987
3G 2.331 10.752
Wi-Fi 0.132 0.166

Table 5: Connection and Tail Energy Costs

3.6.2 Local or Remote Computation

In KNOWME the most complex data analysis func-
tion is to detect user state to identify long phases of
physical inactivity (sedentary behavior). The choice of
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whether to perform the user state detection on the mo-
bile phone or on the back-end depends on the total en-
ergy cost taking several factors into account. Consider a
simple case where we are interested in performing QDA
on 10 minutes of ECG data, which is 180KB of data.
Figure 9 shows the energy cost of this computation for
local and remote computation. The first three bars in
the graph show the energy cost of local computation
when QDA is implemented in C++, J2ME or Python.
The second set of three bars show the transmission cost
to perform data analysis on the remote server using
three different transfer options: EDGE, 3G and WiFi.
The last set of 6 bars show the energy cost when data
is compressed and then transmitted. The compression
algorithm is implemented in C++ and J2ME and the
transfer options are EDGE, 3G, WiFi.

Let us consider J2ME implementation of QDA. The
local computation cost is 19.34 Joules. The remote com-
putation cost (without Gzip) varies between 1.46 Joules
using WiFi up to 22.72 Joules using 3G. On the other
hand the remote computation cost with Gzip imple-
mented in J2ME varies from 13.46 Joules using WiFI
to 32.89 Joules using 3G. Now consider C++ imple-
mentation of the QDA. The local computation cost is
6.6 Joules. The remote computation cost without Gzip
remain the same as before since there is no software
platform dependence on transmission cost. But when
Gzip is also implemented in C++ the energy cost varies
between 1.74 Joules using WiFi up to 21.17 Joules using
3G. When WiFi is available it is clearly energy efficient
to perform remote computation. But when the user is
roaming, which will be a common case in WBAN op-
eration, local computation is better than EDGE or 3G
cost when QDA is implemented in C++. But if QDA
implemented using J2ME then then remote computa-
tion using EDGE and without Gzip compression (15.86
Joules) is better.

Even in this simple scenario the choice of remote ver-
sus local computation is a complex function of which
software platform the application is developed under,
the wireless radio being used and whether or not data
is compressed. We even simplified the discussion by re-
moving the network signal quality issues that may alter
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Figure 9: Local vs Remote Computation of QDA

the energy costs dynamically; as explained earlier, in
our setup we used the network during the least con-
gested time and from a location with the best signal
quality. Through this simple experiment we demon-
strate that there is no single statically best choice when
it comes to trading off energy costs of computation with
communication.
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Figure 10: Comparing Energy Saving Method
4. ACTIVE ENERGY PROFILING METHOD

The previous section quantified the energy cost of
each sub-component within a WBAN. From the above
results it is clear that there is no single design choice
that optimizes energy cost under all operating condi-
tions. Some of the choices can be statically made at
design time for optimizing energy efficiency. For in-
stance, it may be worth the additional programming
effort to use native execution than to use managed or in-
terpreted environments that are more portable but con-
sume more energy. Similarly, buffering data in the flash
storage before transmission adds a small delay before
the data is received at the back-end. Even for WBANs
that need real-time data at the back-end the additional
delay is not a major impediment given that buffering
improves energy efficiency by at least 25%. However,



there are many other choices of a WBAN whose energy
consumption costs cannot be statically determined. For
instance, different WBANSs may have different computa-
tional demands depending on their target domain. Fur-
thermore, computational demands may also vary with
time. When KNOWME detects sedentary behavior it
may run new algorithms that activate user-specific ap-
proaches to encourage physical activity. Similarly the
energy cost of network signal quality, compression and
encryption choices need to be dynamically computed.

In this section we present a dynamic approach to
energy management, called the Active Energy Profil-
ing (AEP) approach. We first present a general ap-
proach for implementing AEP in any WBAN. Later
we present our specific implementation of AEP within
the KNOWME implementation limitations. An ideal-
ized AEP uses a short profiling phase where it tests
the various choices for WBAN operation. The profiling
phase first decides how much sensor sampling is nec-
essary for achieving the required user state detection
accuracy. Optimal sensor sampling rate for user state
detection may be computed using approaches described
in [33]. It then runs the sensor analysis algorithms,
that are specific to the WBAN implementation, locally
on the mobile phone. It will use sensor samples collected
over a short profile time window to perform local anal-
ysis. AEP then measures the energy consumption for
local computation. AEP measures the communication
cost of transmitting the same sensor data to a back-end
where the analysis algorithms may run on a server. It
then receives the results from data analysis from the
server. AEP measures the energy consumption of the
data transmission using both uncompressed and com-
pressed data. Once the profiling phase is complete AEP
then switches to a regular operating mode. During reg-
ular operation sensors are sampled at the optimal rate
as calculated during profiling phase for achieving de-
sired accuracy. If local computation is more energy ef-
ficient than remote computation then AEP selects that
option for data analysis. If remote computation is more
efficient AEP then selects the wireless radio with least
energy consumption as measured during profiling phase
based on network signal quality. Thus during regular
operation energy consumption is same as the lowest en-
ergy option measured during profile phase. However,
the regular operating mode may drift from the optimal
operating mode over time. Hence, the regular oper-
ating mode is interrupted whenever there is change in
the system state. A change can be triggered due to
three reasons: (1) when the user moves to a different
location, or (2) when an interesting event is detected
during sensor data analysis, or (3) after a predefined
time quantum has elapsed. AEP as described above is
a simple and yet powerful approach to automatically
optimize WBAN’s energy consumption.

There are several design parameters that need to de-
fined for AEP to work efficiently. A few key issues are
listed below:

e Profile Duration WBAN implementer must de-
cide on the duration of the profile phase. The pro-
file phase must at least collect minimum amount of
sensor data before activating analysis algorithms.
Furthermore, if the computation and communica-
tion cost varies with the input size the profile phase
must be able to predict the expected energy con-
sumption for any data size using the profiled en-
ergy measurements from the sample data size.

e State Change Detection: The designer must
also define the criteria under which the regular
operating mode is interrupted for collecting new
profile data. One criteria could be time based
where the designer specifies the time bounds for
toggling between profiling and regular operating
mode. Other approaches may use change in sen-
sor data volume to trigger a new profile phase.

e Profile Overhead: Since most system changes
are repetitive it is possible to store the profiled
data for a given system state and use the stored
data rather than redo the full profiling. This ap-
proach reduces the energy cost of profiling as well
as the latency to transition to regular operating
mode.

4.1 AEP Implementation in KNOWME

The specific implementation of AEP within KNOWME
is shown in the flowchart in Figure 10. In this imple-
mentation we use AEP to optimize on the two most en-
ergy consuming operations in KNOWME, namely GPS
and data transmission. The flow chart on the left shows
the sequence of steps in the baseline KNOWME. The
system collects activity data by sampling the sensors.
It buffers sensor samples for 10 minutes. KNOWME
runs a SA once every minute that uses just ACC data
to determine if a user is sedentary or not. It then gets
position information using Network-based GPS once ev-
ery 10 minutes. KNOWME then uploads the 10 minute
geo-stamped sensor data to a back-end server using 3G.
The flow chart on the right in Figure 10 shows AEP de-
cision tree. The system still collects sensor data and
buffers sensor samples for 10 minutes, just as in the
baseline KNOWME. At the start of the WBAN opera-
tion AEP collects basic information regarding compres-
sion energy cost per bit and how it scales with data
size. It also computes the typical compression ratios
obtained for the data collected from the first few data
samples. It stores the energy costs of compression and
compression ratios in a local database. AEP uses SA
to decide if user has moved. In other words, if the user
state is classified as sedentary, AEP assumes user has



not moved position. When user has not moved then
it simply operates the WBAN using the current opera-
tional settings. In our current implementation the op-
erational settings include (1) Whether or not to collect
GPS information, (2) whether or not to do data com-
pression, and (3) which wireless radio to use in the pres-
ence of multiple transmission options. If the user state
is classified as not-sedentary then the system assumes
that user has moved. If the user has moved the system
does not immediately start profiling. Instead it notes
that user has moved and waits until the next energy
intensive operation, which in our case is GPS and data
transmission. Before the beginning the energy inten-
sive operation AEP then scans for WiFi access points
(APs) to detect change in location based on detected
APs. If APs have changed then the system requests for
position information using GPS. If a WiFi AP is avail-
able it then probes its internal database to see if there
is any existing profile information for that WiFi AP
and GPS position. If such a profile information exists
it then uses that profile information to set the WBAN
operational settings. If no such profile information ex-
ists then it runs a profile phase with 10 minute sensor
data to measure the energy consumption with various
wireless radios and data packet sizes with and without
compression. Note that when multiple WiFi APs are
available AEP profiles the energy cost for sending data
from each of the WiFi APs. It then selects the most
energy efficient setting from the profile run and sets the
WBAN’s operational settings. These settings are also
stored in the profile information database and that en-
try is associated with a key formed by combining WiFi
AP and GPS.

Using the above algorithm energy savings come from
multiple optimizations: First, AEP can skip GPS sens-
ing whenever user has not moved within a 10 minute
interval. Second, AEP selects between 3G and WiFi
AP. It can also select the least energy AP when multiple
APs are available. The use of WiFi also significantly re-
duces the data transmission cost. Rather than running
a new user state algorithm it simply uses KNOWME’s
SA to infer movement. Few limitations are worth not-
ing. First, the sampling rate for external sensors in
KNOWME are currently not programmable. Hence, we
can not optimize external sensor sampling rate in cur-
rent KNOWME. Second, KNOWME runs SA on ACC
data for providing real time feedback to the user regard-
ing their sedentary state. SA consumes little energy
for doing the classification. Hence, SA computation is
always run locally. The more complex user state de-
tection using multi-modal signal processing is done on
the back-end. The last limitation is that Symbian S60
does not allow user level access for selecting EDGE or
3G network. Hence, we could not select EDGE network
even when EDGE uses less energy in cases where the

10

data packet size is small. We always ended with 3G in
our operating locations.

4.2 Results from AEP Implementation

For the data presented in this section we ran KNOWME
on two N95 phones (identical in all respects, includ-
ing battery age). On one phone we ran the baseline
KNOWME and the second phone ran AEP implemen-
tation of KNOWME, as described in the previous sec-
tion. In this experiment the user is moving through-
out the experiment, detected as non sedentary by SA,
between different locations and comes in contact with
WiFi AP as well. The sensor layer consisted of two ex-
ternal sensors, ECG and ACC sensors. Figure 11 shows
how the power consumption varies with time with both
approaches for a 40 minute KNOWME run where data
is transmitted to back-end once every 10 minutes. The
figure is divided into three segments. The first seg-
ment (left most segment) shows how power consump-
tion varies with time in the baseline KNOWME. The
first spike in the power consumption is the GPS and
second spike is 3G upload. The small spikes that occur
once every minute correspond to the power consump-
tion of SA that runs every minute. This pattern repeats
every 10 minutes irrespective of user state.

The last two segments of Figure 11 show the power
consumption with AEP. The second segment shows when
the user is roaming and hence there is only 3G network.
The last segment shows power consumption when the
user comes in proximity of two known WiFi APs. The
system first does a WiFi scan to see if user has moved.
But at the start it has no position information. So
it gets position information by GPS sensing just as in
baseline KNOWME. After GPS sensing the new power
spike corresponds to energy profiling. During this pro-
file run the system tries to upload data using 3G with
and without Gzip. Once the profiling phase is over the
system uses 3G to upload compressed data as it was
determined to be the best energy saving option. At the
next interval there is a short WiFi scan power spike
since the user is not sedentary. In this case the user
has not moved to a new location and hence WiFi scan
also determines the same since no APs are detected.
During this intervals there is a clear absence of GPS
and profiling power spikes since the system detects that
the user has stayed within the same area as during the
profile phase. Hence AEP simply uses WBAN settings
that were selected from the previous profile phase. Fi-
nally at time 25 the user has moved to a new location
where there are two WiFi APs in addition to 3G. At 30
before starting energy intensive GPS and data trans-
mission operation AEP starts the profile phase. There
is a power spike corresponding to WiFi scan which now
determines that user has moved and it also determines
(with a 5 second delay) that there are two new APs at
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Figure 11: Power usage of various cases

this location. The system then uses GPS sensing which
confirms that the user has in fact moved to a new loca-
tion. The profile phase now has three spikes that cor-
respond to the system sending data using the two WiFi
APs and 3G. Once profiling is complete it selects WiFi.
It continues to use WiFi access point to reduce over-
all energy consumption as long the user has not moved
too far away. Note that this figure just demonstrates
how AEP dynamically adapts to changing conditions.
In a true WBAN operation the user does not move as
frequently as we have shown in this figure. Hence, pro-
filing is not done as frequently and the system operates
in optimal mode for long periods of time before needing
a new profile run.

The net energy reduction after one hour of operation
with AEP is shown in Figure 12. Each bar measures
the total energy for one hour of KNOWME operation.
The first bar is the baseline KNOWME. The second bar
is AEP with only 3G. The third bar is AEP with 3G
and two WiFi APs. The bluetooth data transmission
costs stay the same in all approaches, as to be expected
given that external sensor sampling rate could not be
programmed, due to hardware limitation in our current
off-the-shelf components implementation. The cost of
profiling is less than 1% of the total energy cost. How-
ever, the benefits of profiling are clear. AEP with just
3G reduces the energy consumption from 1114 Joules to
980 Joules, a 12% improvement. AEP with two WiFis
and 3G reduce the energy cost to 918 Joules, an 18%
energy reduction. Note that if we remove bluetooth en-
ergy costs that we could not alter with AEP the gains
from AEP are even more impressive. Out of the 314
Joules (1114 - 800 Joules for Bluetooh) AEP targets
for reduction it reduces the energy consumption to 118
joules, a 62% energy improvement.

S. RELATED WORKS

The popularity of WBANS for health monitoring has
been increasing in the recent years. They are being de-
ployed to assist in physical rehabilitation [11], obesity
monitoring [3, 6], assisted living [17]. All these prior
studies focused on the usability of the system in terms
of computer-human interface. But as shown in our re-
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search, understanding energy implications of WBAN,
from design to operation, will significantly improve the
battery life and benefit many of these prior WBAN im-
plementations.

n [8] the authors described MAUI which is an auto-
mated system that can switch between local and remote
computation based on round trip time of a request re-
sponse cycle. MAUI relies on flexibility of managed
code environment to create two versions of any com-
putational task, one that runs locally on a phone and
second that runs remotely on a server. It estimates
the amount of task state that needs to be transferred
between local and remote sites. During runtime it com-
putes the energy cost of local computation versus trans-
ferring state to a remote site based on current network
conditions. It then invokes remote computation using
RPC whenever that option is more energy efficient. Our
research differs in two notable ways. We first character-
izes the energy consumption of all aspects of a typical
WBAN, software development platform, sensing, GPS,
data buffering, and finally remote versus local computa-
tion. Furthermore, the AEP approach takes a broader
set of criteria into consideration to automatically decide
on the best WBAN operational point. For instance,
it can avoid GPS sensing when user is sedentary. It
measures the energy cost of data transmission by pro-
filing across various network interfaces, including mul-
tiple APs. It can also avoid profiling by simply storing
profiled data in a database indexed by GPS and AP



as the key. We believe our AEP implementation can
benefit from using MAUI framework to automatically
split any task into remote and local methods. One note
of caution is that MAUT extensively relies on managed
runtime capabilities. But from an energy efficiency view
point, our results show that native methods such as
Symbian C++ are typically more efficient than J2ME.

Viredaz et al. [31] discussed methods for improving
energy consumption in hand-held devices. They detect
periods of idle time in a mobile device and use voltage
frequency scaling to reduce power consumption. Shih et
al. [24] showed that using wake-on-wireless a PDA can
be put into sleep mode and woken up only on an incom-
ing call or when the user is actively using the device.
Turdecken [27] demonstrates how to use hierarchical
power management to reduce energy consumption. In
this context they attach a low power mote to a mobile
node and use the mote to continuously monitor incom-
ing packets. The mote wakes up the mobile device when
an incoming packet is detected. The notion of hierar-
chical energy management is exploited at a much finer
granularity in EEMSS [34]. EEMSS categorizes all the
sensors on a mobile phone into a hierarchy and then
activates low energy sensor which will in turn decide
when to activate a higher energy intensive sensor.

User state detection is one of the fundamental tasks
of a WBAN, such as KNOWME [3] and UbiFIT [6].
These studies perform feature extraction on the sensor
signals and then run classification algorithms on the ex-
tracted features. The tradeoff between state detection
accuracy and sensor sampling rates are explored in [32,
12, 13]. Wang et al. [33] developed a framework for se-
lecting optimal sensor sampling for achieving highest
state detection accuracy when energy is constrained.
In SeeMon [12] sensor energy is conserved by provid-
ing feedback between end user application requirements
and the sensor layer. In [1] Aghera treat sensing, com-
munication and computation as tasks and use a task as-
signment algorithm to reduce the energy consumption
of the mobile phone. Constandache et al. [7] show that
GPS power consumption can be reduced by predicting
user movement patterns rather than trying to compute
location using GPS continuously. In [18] authors pro-
posed RAPS that estimates user velocity and uses GPS
only when the user has moved sufficiently far to reduce
GPS energy consumption. We believe KNOWME will
further benefit from user movement prediction to re-
duce sensor energy, but currently we do not have use
any prediction algorithms.

Energy efficiency in the context of communication is
well studied. Energy efficient algorithms for wireless
sensor networks have been proposed in [29, 25, 26].
Recently studies have also done energy measurement
of wireless data transmission using various network in-
terfaces [5]. They show that data transmission energy
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varies widely from one location to another and may
also vary at the same location depending on the time.
Hence, they also argue that dynamic routing is neces-
sary for optimizing energy. In [4] the authors introduce
Wifller which is designed for a vehicular network for op-
timizing data throughput. Wiffler can change network
interface between WiFi and 3G depending on network
condition. It uses historical data to predict future avail-
able WiFi APs. Since Wiffler is geared toward vehic-
ular network it cares more about bandwidth, whereas
a WBAN is sensitive to battery consumption. Bread-
crumbs [15] tracks user’s movement to generate connec-
tivity forecasts Ra et al. [22] focused on dynamically se-
lecting between various wireless radios. They introduce
SALSA that uses Lyapunov optimization framework to
automatically decide when to send data and when to de-
fer data transmission and wait for better channel avail-
ability so as to optimize the overall energy-delay trade-
offs. Again many of these approaches use prediction of
WiFi APs or user movement to optimize energy of at
least one component that is used in KNOWME. We
need to carefully develop these prediction models in
KNOWME context and we can then take advantage of
these prior studies to further reduce energy. Even with-
out relying on user movement prediction AEP provides
significant benefits.

It has been shown that the size of ECG data can be
reduced by using special compressing methods using an
autoregressive feature. Some of them use lossy compres-
sion method to get high compression ratio [10]. In par-
ticular, Fahim et al. [9] shows a three phase encoding-
compression-encryption mechanism of which higher com-
pression ratio is up to 20.06 on mobile phones. Al-
though the compression methods can reduce storage as
well as transmission energy cost, we need to consider
the energy cost of the compression method itself. In
section 3.6.2, we show a case where the energy costs of
data compression is higher than the transmission cost.

While there are disparate sources of some of the en-
ergy consumption information none of the previous stud-
ies have done a systematic and comprehensive analysis
of the energy consumption of a WBAN starting with
the initial system design choices to the data transmis-
sion. We believe that our research also sheds new light
on issues such as programmability and energy efficiency,
energy compression costs of sensor data and the energy
cost of storing data locally on mobile phones. Given the
energy consumption uncertainty in WBAN it is neces-
sary to use a profile based dynamic adaptation to mini-
mize energy consumption across all layers of a WBAN.

6. CONCLUSIONS

Limited battery life of mobile phones is a significant
bottleneck to a wider deployment of WBANs. As the
popularity of WBANSs continue to increase there is a



need to understand where exactly the energy consump-
tion goes in a WBAN. This paper presents a compre-
hensive quantification and analysis of energy consump-
tion of the various components in KNOWME, which
is one implementation of a WBAN. There are several
tradeoffs a designer has to make to reduce energy con-
sumption. At the software level our results showed that
improving energy efficiency is as important a metric as
programmer productivity in WBANs. We also quan-
tified how energy consumption can be curtailed by re-
ducing the sensor sampling rate or using approximate
sensing, such as network based location sensing. We
also show that while the quantitative results presented
here may differ from one mobile phone to another the
qualitative conclusions drawn are more broadly valid.
We should also note that the findings of this work may
also be helpful for other classes of applications that use
sense-compute-communicate cycle.

Inspired by the results from our measurement study
we implemented Active Energy Profiling (AEP). AEP
is a dynamic approach that automatically optimize the
energy consumption based on the real time operating
conditions of a WBAN. Given the uncertainty of en-
ergy consumption across various WBAN tasks no sin-
gle statically selected operating point can effectively re-
duce WBAN energy consumption. Hence, AEP uses
a short profile run to dynamically compute the energy
costs of various WBAN tasks and automatically selects
the operating point that best reduces energy consump-
tion during that time interval. In a one hour operation
of KNOWME AEP can reduce the energy consump-
tion by 12% even when there are no alternatives to 3G
data transmission. When multiple network interfaces
are available AEP can reduce the overall KNOWME
energy by 18%.
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