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1 Introduction
This document provides the detailed proofs for lemmas and theorems of [2]. For the
definitions and more explanations refer to the paper.

2 Lemmas, Theorem, and Proofs
Lemma 1. Let p̂1 and p̂2 be two places  in a segment of  a live safe  and reversible  unique
choice Petri net with all cycles initially marked. If p̂1 is  not on the boundaries  of  the segment,
then l(p̂1) ̸= l(p̂2).

Proof. (By contradiction) If l(p̂1) = l(p̂2) = p, there must exist a path, ρ, between
p̂1 and p̂2 in the segment. Otherwise p̂1 and p̂2 would be concurrent which would
imply the existence of a marking in the original Petri net with multiple tokens in p,
contradicting the fact that the Petri net is safe. This path corresponds to a cycle, c,
in the original Petri net containing p which is not initially marked, contradicting our
initial assumption.

Lemma 2. For any two arbitrary transitions in any segment of a live safe and reversible
unique choice Petri net with all cycles marked initially, l(t̂1) ̸= l(t̂2).
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Proof. (By contradiction) All the transitions in any segment have all their input places
in the segment. If l(t̂1) = l(t̂2) then either there exists two input places where l(p̂1) =
l(p̂2) or there exists one input place in which both transitions t̂1 and t̂2 are in its post-
set. The latter suggests that the segment exhibits choice which is not possible by the
definition of a segment. The former is not possible according to Lemma 1.

Lemma 3. Let si = ⟨P̃i, T̃i, F̃i⟩ be a segment of  an unfolded execution of  a  live safe  and
reversible  unique  choice  Petri  net.π(si) is  a live safe marked graph.

Proof. π(si) is a marked graph because by definition of a marked graph all unfolded
places have at most one output and one input transition and by Lemma 1 and Lemma
2 no two internal unfolded places/transitions in a segment map to the same original
place/transition. π(si) is live since si is acyclic so by marking all places on its input
cutline, all the paths in si are marked by exactly one token. Therefore each cycle,
c ∈

∑
(si), is marked at least by one token, a sufficient condition to guarantee π(si) is

live. Moreover, from each input boundary place p there must exist a path to its next
occurence p′. Otherwise, otherwise p and p′ are concurrent in the unfolded execution
and a reachable marking exists in which l(p) is marked with more than one token,
contradicting the fact that the original Petri net P is safe. Thus, every initially marked
place in π(si) is part of a cycle that contains exactly one token, a sufficient condition
to guarantee that π(si) is safe.

Lemma 4. Let si and sj be  two  segments  of  an  unfolded  execution  of  a  live  safe  and
reversible  unique  choice  Petri  net  that  has  every  cycle  marked  with  at  least  one  token.
Let s∗ij be  the  super  segment  obtained by si × sj . π(s∗i ) is  a live safe marked graph.

Proof. π(s∗ij) is a marked graph because cross operator will not introduce any choice or
merge by definition. The cross operator generates acyclic super segments, otherwise
there must exist a cycle in the original Petri net that has no token, a contraction to
our initial assumption. Thus, using the same argument as in the proof of Lemma 3,
we know π(s∗ij) is  live. Moreover, if ether si or sj has a path from a place p to its
next occurence p′, l(p′) = l(p), a path would exists between these two places in s∗ij. If
neither si nor sj has a path then p = p′, this place will not exist in s∗ij. Thus, every
place p on the input cutline of s∗ij has a path to its next occurrence p′, l(p′) = l(p). This
means that every initially marked place in π(s∗ij) is part of a cycle that contains exactly
one token, a sufficient condition to guarantee that a marked graph is safe [1].

Lemma 5. Let U∗[i : j] be a sequence of segments obtained fromU [i : j] by elevating sk
to s∗k. For any path,ρ, between two unfolded places or transition,xi and xj in U [i : j], there
exists a path,ρ∗, between  them  inU∗[i : j] such thatρ ⊆ ρ∗.
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Proof. Let ρ cross sk boundaries at places ps and pe.
Case  1: If there exists a path between ps and pe such that ps ̸= pe, then there must

exist a path from p∗s = ps to p∗e = pe in s∗k because the cross operator only add arcs
between unfolded transition or places. Moreover, ρ∗ essentially passes along the same
path and p∗s = ps to p∗e = pe. The cross operator might insert additional transitions
on this path to convert choices/merges constructs to fork/join, but by dropping these
additional transitions ρ∗k−1 can be reproduced.

Case  2: If there is no path between ps and pe then we must have ps = pe. There are
two sub-cases: Case  2-1: p∗s = p∗e. In this case, p∗s = ps and ρ∗ is the same as ρ. Case
2-2: p∗s ̸= p∗e. In this case, p∗s = ps and p∗e is the next occurrence of the p∗s in U∗[i : j].
Since π(s∗k) is live and safe, every initially marked place in π(s∗k) must exist in a cycle
containing exactly one token [1]. Thus, there must exist a path between any place on
the input cutline of s∗k to the next occurrence of the same place on the output cutline
of s∗k. In this case, ρ∗ passes along the path from p∗s to p∗e and ρ can be reproduced by
dropping all transitions and places along this path.

Lemma 6. LetU∗ be a sequence of segments obtained fromU by elevating sj to s∗j . γ̄
U
(t) ≤

γ̄
U∗
j
(t).

Proof. Let the globally critical path in U be ρ. By Lemma 5 this path is a subset of a
path ρ∗ contained in U∗. Moreover, as all delays in U∗ are non-negative, we know the
critical path in U∗ is at least as long as that of U.

As introduced in Section ??, we assume the Petri net has m segment types S̄ =
{s1, ..., sm} corresponding to mode set µ̄ = {µ1, ..., µm}. We consider an unfolded
execution of length N with mode sequence U = ⟨U0, ..., UN⟩ where Uj ∈ µ̄. Our goal
is to bound the length of the longest path from the first to the last instance of the
transition of interest t in this sequence, i.e., to bound γ

(0)
U (t, t, N).

We define increasingly larger super segments S̄∗ = {s∗1, ..., s∗m}, where s∗1 = s1, and
∀i ̸= 1, s∗i = s∗i−1 × si. We let τ ∗i be the cycle time for the marked graph associated
with super segment s∗i .

Lemma 7. ∀i > 1, τ ∗i ≥ τ ∗i−1.

Proof. Based on Lemma 6 since s∗i−1 ⊆ s∗i we can replace every s∗i−1 in U∗
i−1 with s∗i to

get U∗
i .

Theorem 1. For  any  arbitrary  unfolded  execution  of  a  live  safe  and  reversible  unique
choice  Petri  net,U , we  have γ̄

U
(t) ≤ τ ∗m.
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Proof. By Lemma 6 since ∀s ∈ µ, s ⊆ s∗m we can replace each segment in U to get U∗
m

which completes the proof.

Theorem 1 bounds the cycle time of any arbitrary unfolded execution of the Petri
net with conditionals from above without any assumption about the order of the seg-
ments (modes) or their frequencies. This result was intuitively accepted by industry
and the bound is used for slack matching of asynchronous circuits with conditional
behavior by treating them as unconditional.

The bound of Theorem 1 is not optimal. When applied to slack matching, this
conservative bound results in extra slack matching buffers. In the following we will
try to obtain tighter upper bounds for the cycle time considering more assumptions
about the mode switching behavior of the Petri net.

To do this, as introduced in Section ??, we consider an unfolded execution U =
⟨U0, ..., UN⟩ and start by proving a useful lemma about the time separation of events
within subsequences of segments that have the same type.

Lemma 8. ∀ρ Lets  define the span of each path,ρ, denoted by ||ρ|| is the number of cutline
intersecting with that  path.

∀ p̂1, p̂2 ∈ P̂ , l(p̂1) ̸= l(p̂2) ⇒ ||ρ|| < |M0|

Proof. Lets use ρ(i) notation to denote the place where cutline ci and path ρ intersect.
Lets assume that there exists a place-simple path, ρ′, with k = ||ρ′|| > |M0|. Let
{c1, c2, ..., ck} be the set of cutlines intersecting with ρ′ and {p̂1, p̂2, ..., p̂k} are places
on the cutlines which intersect with the path, p̂i = ρ′(ci). Since ρ′ is a place-simple
cycle we should have l(p̂1) ̸= l(p̂2) ̸= ... ̸= l(p̂k) and all since these places are on
the cutlines {l(p̂1), l(p̂2), ..., l(p̂k)} ⊂ M0 which is a contradiction since k > |M0| by
assumption.

Lemma 9. Cycle  extraction  as  defined  in  section ?? preserve  the  following  property:

D(ρ∗) =
∑
i

(ρ∗i )

Proof.

Lemma 10. D(ρ∗i ) ≤ |Ei|τ(s∗Max(E
i))

Proof.
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Theorem 2. lim
N→∞

γ
(0)
U (t, t, N) ≤ τB(U), where

τB(U) =
∑
i

|Ei|τ(s∗Max(E
i)).

Proof.

Theorem 3. For  an  arbitrary  mode  assignment  to {Ei}, 1 ≤ i ≤ η, let τB({Ei}) =∑
i |Ei|τ(s∗Max(E

i)) then τB({Ei}) ≤ τ ∗B = τ({Êi})

Êi = ⟨s∗i , U i
MIN(|M0|)⟩.

Proof. Exchange Argument: We prove that any arbitrary {Ei} can be converted
into {Êi} trough a series of mutations. Initially, {Ẽi} = {Ei} and lets assume at step
j of conversion Ẽ1:j = Ê1:j , and τ({Ei}) ≤ τ({Ẽi}) we show that after step j + 1 we
will have Ẽ1:j+1 = Ê1:j+1 and

τ({Ei}) ≤ τ({Ẽi}).

At step j + 1 some Ẽk, k ≥ j + 1 has the largest mode. Lets swap Ẽk and Ẽj+1.
We then swap the largest segment in Ẽj+1 with its first segment. Clearly these two ex-
changes wont change τ({Ẽi}). We then exchange each segment in Ẽj+1, from second
to the last segment, with the smallest segment in Ẽi≥j+1. Let assume that the smallest
segment falls into Ẽk if the next smallest segment is exchanged for a segment of Ẽj+1

which is larger than s∗Max(Ẽ
k), τ({Ẽi}) increases as Ẽk has to be elevated to a larger

segment otherwise there would be no change in elevation and τ({Ẽi}) remains con-
stant. The elevation of Ẽj+1 is governed by its first segment which remains unchanged.

Finally, we increase the length of Ẽj+1 one at a time until we reach to |M0|, by
removing next smallest segment from Ẽk, k ≥ j + 1, and appending it to Ẽj+1. On
this exchange τ({Ẽi}) will be increased by ∆ = τ(s∗MAX(Ẽ

j+1)) − τ(s∗MAX(Ẽ
k)) and

we know that ∆ ≥ 0 because Ẽj+1 contains the maximum segment.
By the sequence of exchanges applied, we know have Ẽj+1 = Êj+1 and as shown

by each exchange τ({Ẽi}) either remains constant or increases and therefor:

τ({Ei}) ≤ τ({Ẽi})

which completes the proof.
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Theorem 4. For any arbitrary long sequence Uwith arbitrary mode order,τU ≤
∑m

j=1 f̂jτ(s
∗
j)

where {
f̂m = Min(fm|M0|, 1)
f̂j = (1−Min(

∑
k>j f̂k, 1))fj|M0|, j < m

Proof. by Induction By theorem 3 we know that τU ≤
∑

i |Ei|τ(s∗Max(E
i)). Lets

assume that the sequence has N segments. For the base case, {Êi}, i ≤ fmN are
affected by mode s∗m which result in total Nm = min(|M0|fmN,N) mo.de elevations
to mode m leaving (N −Nm) un-elevated modes. f̂m can be calculated as:

f̂m = lim
N→∞

Nm/N = Min(fm|M0|, 1)

After elevating for modesm,m−1, ..., j+1we haveNm:j+1 = Min(
∑

k>j fk|M0|N,N)
segments already elevated and N−Nm:j+1 segments left un-elevated. On jth elevation
we elevate (N −Nm:j+1)fj|M0| segments to S∗

j+1. We will have

f̂j = (1− lim
N→∞

Nm:j+1

N
)fj|M0|

= (1−Min(
∑
k>j

f̂k, 1))fj|M0|
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