
A novel software-based defect-tolerance approach
for application-specific embedded systems

Da Cheng
Electrical Engineering Department

dacheng@usc.edu

Sandeep Gupta
Electrical Engineering Department

sandeep@usc.edu

Abstract—Nano-scale fabrication processes have high defect
densities and variations, which lead to low yield. Traditional
solutions for improving yield are based on the use of hardware
redundancy, especially in memories. However, the maximum
benefits of hardware redundancy in terms of yield are limited
for high defect densities, because of increasing layout com-
plexity and diminishing yield improvements beyond some level
of redundancy. Previous research on memory defect tolerance
aimed at repairing all defects in memories. However, this is not
always necessary in application-specific systems, where programs
are known a priori. In this paper we propose a software-
based defect-tolerance (SBDT) approach in coordination with
hardware redundancy to make use of defective memory chips
with un-repaired defects for application-specific systems, and
demonstrated their effectiveness using some DSP applications.

1. INTRODUCTION

Reduction in CMOS feature sizes and increase in chip area
continue to put a downward pressure on yields due to in-
creasing levels of imperfection in fabrication processes [2].
While state-of-the-art fabrication techniques help somewhat
mitigate this trend [1], overall yields are decreasing. Especially
manufacturing defect free memory arrays is extremely difficult
for today’s memory size [10]. Memory repair is important for
yield improvement not only for stand-alone memory chips with
multi-Giga byte capacities, but also for memories embedded
in SoC chips, since such memories occupy more than half
of the area of today’s typical SoCs and are expected to
occupy 94% in 2014, according to ITRS projections [9].
Redundant elements and reconfiguration circuitry are hence
incorporated so that memories can work despite having certain
combinations of defects [2].

Typical schemes for enhancing yields for memory modules
either add redundant rows and/or columns or add redundant
memory arrays. For a memory array with T global redundant
rows (columns), each decoded row (column) address has a
dedicated 1 − to − T de-multiplexer cell, whose height must
be less than or equal to the height of a memory cell in order
to have a compact layout. However, as increasingly larger
memory modules, fabricated using processes with increasingly
high defect rates, require levels of redundancy beyond some
limit, the height of de-multiplexers becomes greater than the
height of a memory cell (one bit), which results in a wastage
of circuit area and hence in a dramatic drop in layout density.
Though the problem of de-multiplexers being un-scalable can
be relieved by implementing local redundancy (e.g., where

a set of spare rows are used to replace defective rows in a
part of a memory array), such approaches require more spare
rows and columns for achieving a comparable yield. In both
cases, maximum benefits obtained by hardware redundancy
(HR) are limited. Youhei [6] demonstrated that the yield of a
1Mb DRAM block saturates at about 0.6 due to extra routing
and elements, such as decoders.

The increase in the sizes of memory modules in the last
several years made it necessary to partition the memory array
into several sub-arrays. One of the previous DRAM modules
for IBM 110nm ASIC offering is composed of 16 1Mb DRAM
sub-arrays where each sub-array has 8 redundant rows and 8
redundant columns [5]. In 2011, a 45nm embedded DRAM
macro design was used in POWERTM processor as a 32 MB
on-chip L3 Cache. This DRAM is composed of 292 Kb arrays
(264 word-lines and 1200 bit-lines), each with 8 redundant
rows and 4 redundant columns [8]. In such designs, the yield
is limited by the yield of inter-array interconnects and the
inefficiency of local spares.

In summary, hardware-based schemes to improve RAM
yields cannot provide high yield and compact layout for in-
creasingly larger RAMs fabricated in processes with increasing
levels of imperfections.

In this paper, we propose a software/firmware based yield-
enhancement technique to complement hardware redundancy
techniques.

2. PROBLEM STATEMENT

This paper focuses on SoCs and other application-specific
systems built around processors, such as DSP and graphics
processors, that share the following characteristics.
• A large part of the chip is devoted to memories.
• The system is designed to implement a specific applica-

tion.
• The system architecture is built around stored-program

processors.
• Its processors do not use virtual addressing.
Traditionally defective memories are discarded if any mem-

ory module is defective and cannot be completely repaired by
using available HR after post-fabrication testing. However, we
may be able to guarantee completely correct operation of user
programs while using chips with one or more unrepairable
memory modules if we use software level methods that guar-
antee that two conditions are met: (1) defects only affect a
few memory cells rather than cause malfunction for the entire



memory module, e.g., a failure that occurs in address decoder
or some other peripheral circuit; and (2) either we do not use
any part of the memory affected by the un-repaired defect, or
we do use the affected part, but only in a manner that does
not excite the un-repaired defect to cause errors. As we are
developing such an approach, we are interested not only in
the number of defects but also their locations in the memory.
We are also interested in the details of the programs to be
executed on the application-specific system.

One of the most important benefits of this approach is
that it can be applied to existing designs, since it does not
require any modifications in the hardware design or special
hardware insertion. Hence, it can be particularly useful in
situations where adaption of a new memory design or of
a new fabrication process leads to unexpectedly low yield.
Furthermore, this approach does not impose any area or
performance overheads on the fraction of fabricated chips
that do not have any un-repairable defects in their memory
modules.

For an embedded system designed for a specific application,
we have known programs. At the same time, copies of
dedicated embedded chips are manufactured and tested after
which (a) defect free copies or copies that can be completely
repaired are marked as good, and (b) copies with un-repaired
defects are identified with their defect information. We model
an application program and a defective memory as described
next.
A. Model of a memory with un-repairable defects

In a defective memory with given N = n defects,
X1, X2, ..., Xn denote the locations of defects in the memory.
As shown in Figure 1, a defective memory is viewed as n+1
partitions P1, P2, ..., Pn+1, of sizes Q1, Q2, ..., Qn+1, respec-
tively. If there are T redundant rows (columns), we will finally
have at most n′ unrepairable defects, where n′ ≤ (n−T ), since
each redundant row (column) can repair at least one defect.
As it is possible that multiple defects are located on one row
(column), n′ = n − T is an upper-bound on the number of
un-repaired defects.

Also each time a defect is repaired, the two partitions
divided by this defect are combined into one partition. In some
chips, n′ = 0, i.e., the memory is fully repaired. In classical
methodology, only chips with fully repaired memory are sold
and all other chips are discarded. Our software-based approach
(presented in Section 3) focuses on salvaging a fraction of
partially repaired memory modules, i.e., chips with one or
more un-reparable defects, in a manner that guarantees that
given programs will execute in a completely error-free manner.
B. Model of a compiled user program

Common object file format (COFF) is one of DSP program
formats created by assembler and linker [3]. COFF makes
modular programming easier, because it encourages the user
to think in terms of blocks of code and blocks of data during
the development of assembly language programs. These blocks
are known as sections and three scenarios are illustrated below
for a program, as shown in Figure 1. (Though we use COFF in
our experiments, our approach is applicable to other formats.)

• Scenario 1: A compiled program can be viewed as a
single section S with A Bits, including machine code
and data.

• Scenario 2: A compiled program is typically comprised
of a number of independent procedures and data objects
that can be placed independently in the address space.
Hence, the program can be viewed as a collection of code
and data sections S1, S2, ..., SK of sizes A1, A2, ..., AK
respectively, where each section Si can be placed inde-
pendently in any partition where Ai contiguous memory
locations are available.

• Scenario 3: Starting with Scenario 2, we can partition
a data or code section into smaller sections, potentially
with some performance penalty. In such a case, a com-
piled program can be considered as a collection of even
smaller data and code sections with user-defined lengths.
(Benefits of this will be quantified in Section 5.)

Fig. 1. Model of a Program and a defective Memory

Using the above representation for partially repaired memory
and programs, we formulate three problems.

Problem 1: When a program is viewed as a single section
as described in Scenario 1, a partially repaired memory can be
used if the section S can be placed in any partition whose
size is greater than A. Note that this can occur if and only
if there exists at least one partition with size greater than A
Bits.

Problem 2: As a program is viewed as a collection of mul-
tiple code and data sections as described in Scenario 2, where
each section can be placed in the memory independently, a
memory can be used if and only if every program section
is placed in some partition without running out of space in
any partition. Scenario 1 is a special case of Scenario 2, with
K = 1.

Problem 3: Similar to Problem 2, but here we have more
sections some of which are obtained by the user partitioning
some of the sections in Scenario 2 and making the correspond-
ing changes to the program.

The rest of this paper is organized as follows. In Section
3, the design, fabrication, and integration flow of our first
software-based defect tolerance approach and its two variants
for utilizing HR are proposed to solve above three problems.
In Section 4, a mathematical model based on order statistics is
derived to estimate memory yield for a program for Problem
1. Since Problem 2 and Problem 3 are not amenable to
derivation of analytical estimates of yield, in Section 5 we
develop a procedure for using HR and assigning sections



to memory partitions. We also use a Monte Carlo (MC)
approach to generate a number of defective memory instances
to estimate yield for our proposed software-based defect-
tolerance approaches for all three problems and demonstrate
its benefits for example programs. Finally, we close with our
conclusions.

3. OVERVIEW OF PROPOSED METHOLODOGY

To place a program into a defective memory, we propose
a novel software-based defect tolerance (SBDT) approach.
During the use of a system with a partially-repaired memory
module, compiled program files are linked in an optimized
manner that avoids using any un-repaired memory cells. The
location of every unrepaired memory location is identified for
each fabricated copy of the chip during post-fabrication testing
of the chip.

If memory modules have any HR available for repair, we
use HR in conjunction with SBDT in two ways as shown in
Figure 2, namely SBDT with classical repair (SBDTcr) and
SBDT with intelligent repair (SBDTir).
• Classical Repair: Available HR is configured to repair

defective memory in such a manner that every defective
location identified during post fabrication testing has
identical probability of being repaired.

• Intelligent Repair: Since how HR is used to repair dif-
ferent combinations of defects provides different levels
of benefits in terms of memory yield1, we develop the
notion of significance of a defect to capture how much
memory yield benefit is obtained if the defect is repaired.
A heuristic procedure identifies defects to be repaired
based on estimates of their significance, computed using
the relative positions of adjacent defects along with infor-
mation of the compiled programs. In a greedy manner, the
most significant defect combinations are then repaired.

Fig. 2. SBDT approach (a) with classical repair, and (b) with intelligent
repair.

After the above step, for both approaches the locations of
un-repaired defects are identified and the program sections are
optimally assigned to memory partitions before the compiled

1Though the percentage of useful chips, including good chips, repaired
chips, and un-repaired chips made usable by our SBDT approaches, is similar
to the traditional concept of yield, it is also a function of the given program.
For simplicity, we use the term “yield” in this paper.

files are linked. The objective is to maximize the probability of
fitting the program in the non-defective parts of the defective
memory. As described in Section 5, a best-fit decreasing
algorithm is adopted for mapping.

The proposed SBDT approaches require a direct control
over memory accesses instead of managing memory through
advanced operating systems. In application-specific embedded
systems, one application usually runs a single program or a set
of programs. Those programs, and a simple real-time operating
system (RTOS), if any, require little memory management, and
hence do not use virtual memory management. Furthermore,
software approaches are more suitable for application-specific
embedded systems because hardware techniques increase cir-
cuit complexity, while in these systems circuit simplicity is
a basic issue [7]. Hence, this paper focuses on application-
specific embedded systems and all experimental results are
obtained from five sample programs on TI DSP6713.

4. ANALYTICAL YIELD ESTIMATES FOR PROBLEM 1

This section presents a mathematical model to estimate effec-
tive memory yield for Problem 1 presented in Section 2.

4.1. Analytical yield estimation

It is easier to compute the probability that we will fail to solve
Problem 1, i.e., it is easier to compute the probability of failure
to place a single-section program in non-defective parts of a
defective memory.

What is the probability that un-repaired defects in memory
[1,M ] will prevent the existence of A contiguous non-defective
memory locations?

First, defects are random variables uniformly distributed
over [1,M ], yet without more than one defects at the same
memory location. Assume that there are N defects at locations
X1, X2, X3, . . . , XN distributed over [1,M ], where N is a
Poisson random variable. They are sorted in an increasing-
address order as X(1), X(2), X(3), . . . , X(N), where X(i) rep-
resents the location of the ith defect. Then the probability
for each of these defects to be placed at a specific location
P (X(1) = x1, X(2) = x2, X(3) = x3, . . . , X(N) = xN ) is
1

(MN)
, since every combination of defect locations is equally

likely. Second, the distance between adjacent defects is less
than A; distance between defects and the boundaries of the
memory (i.e., locations 1 and M ) is also less than A. Attributes
of such problems are captured by order statistics analysis.

Event B: Locations of N random defects are sorted in
an increasing order by address: X(1), X(2), X(3), . . . , X(N),
where X(i) is the ith smallest-address defect in the sequence,
is located over [1,M ]. Define X(0) = 1 and X(N+1) = M
as the beginning and the end of the memory. Event B meets
following conditions: (a) the distance from defect X(i) to
defect X(i−1) is less than A; and (b) the distance from X(i)

to X(N+1) is less than (N − i + 1)A. Constraints for X(i)
are shown in Equations (1) and (2), for i ≥ 1.

X(i−1) < X(i) ≤ X(i−1) +A, (1)

and
M −X(i) − (N − i) < (N − i+ 1)A. (2)



P (B|N) =

Min(A,M)∑
Max(1,M−NA+2)

Min(x1+A,M)∑
Max(x1+1,M−(N−1)A−N+3)

. . .

Min(xN−1+A,M)∑
Max(xN−1+1,M−A+1)

1(
M
N

) . (3)

PT
IR(B|N) =

Min(A,M)∑
Max(1,M−(N−1)−d N

T+1
eA)

. . .

Min(x1+A,M)∑
Max(xT+1,M−(N−T−1)−dN−T

T+1
eA)

. . .

Min(xN−T−1+A,M)∑
Max(xN−1+1,M−d 1

T+1
eA)

1(
M
N

) . (10)

Using the above constrains we can compute the probability of
occurrence of Event B (i.e., the failure to solve Problem 1),
given that the number of defects is N , i.e., we can calculate
P (B|N) by computing the conditional probability of P (B|N)
on each X(i) using the limits obtained from Equations (1) and
(2). Finally we obtain P (B|N) shown in Equation (3), based
on Bayes’ formula shown in Equation (4) and the knowledge
that P (B|X(1) = x1, X(2) = x2, ..., X(N) = xN , N) = 1.

P (X(2) = x2|X(1) = x1, N) =
P (X(1) = x1, X(2) = x2, N)

P (X(1) = x1, N)
.

(4)
A. SBDT without repair

According to above deductions given N defects, the prob-
ability of a defective memory being useful in terms of SBDT
is: 1− P (B). As the number of defects is a Poisson random
variable, the expected number of defects λ (Poisson parameter)
equals to M×D, where D is the probability of being defective
for each cell and M is the memory size. Hence, for a given
D, different numbers of defects are considered to compute
yield as memory size increases. Compounding the probability
for different numbers of defects, we compute yield without
repairs in Equation (5).

YNR = 1−
M∑

n=1

P (B|N = n)P (N = n), (5)

where P (B|N) is shown in Equation (3).
B. SBDT with classical repair

If there are T redundant rows (columns), we will finally
have at most N ′ = (N − T ) unrepairable defects, where
N ′ is computed assuming that each redundant row (column)
can only repair one defect. As it is possible that multiple
defects are located on one row (column), this value of N ′
is pessimistic and its use estimates a lower bound on the
benefits of our approach. In this case, it can be observed that
P ′(N defects) = P (N + T defects), where P and P ′ are
probability density functions before and after classical repair.
And yield with T classical repairs can be computed in
Equation (6).

Y T
CR = 1−

M∑
n=1

P (B|N = n)P (N = n+ T ). (6)

C. SBDT with intelligent repair
We are interested in the probability of existence of A

Bit contiguous defect-free memory locations after defects
are intelligently selected and repaired by using available T
redundant rows (columns). Define X(0) = 1 and X(N+1) =M
as beginning and the end of the memory, X(i), the ith smallest
defect in the sequence, is located in the memory in such a way
that (a) the distance from X(i) to X(i−T−1) is less than A; and
(b) the distance from X(i) to X(N+1) is less than d (N−i+1)A

T+1 e

so as to meet constraints of Event B. Hence constraints for
the ith defect are as below.

X(i−1) < X(i) ≤ X(i−T−1) +A, (7)

M −X(i) − (N − i) < dN − i+ 1

T + 1
eA, (8)

when i ≥ T + 1. Hence, PTIR(B|N), the Probability of
Event B given T intelligent repairs (IR) is derived and shown
in Equation (10). The yield can be computed as shown in
Equation (11) by using Equation (10) in conjunction with
Equation (5).

Y T
IR = 1−

M∑
n=1

PT
IR(B|N = n)P (N = n). (11)

4.2. Scaling

Complexity of numerical integration of Equation (5), Equation
(6), and Equation (11) for memory size M and number of
defects N is O(MN ). This run-time complexity is unaccept-
ably large even for a 1Kb program. Hence we have developed
a scaling technique for programs and memories in order to
make our mathematical model computationally tractable yet
computing provable upper and lower bounds. In Section 5,
we demonstrate that bounds are tight by experiments. In our
scaling model, we view the memory of size M as shown in
Figure 3, where the scaled memory has M ′ blocks, where
each block represents α contiguous locations in the original
memory. A defective block (marked with a circle) indicates
that there was at least one defect among the original α
locations in the block. The values of other parameters are
scaled as:

M ′ =M/α D′ = 1− (1−D)α

A′ = A/α λ′ =M ′(1− (1−D)α)
Assume that we try to place a scaled program with size A
between the two defects. The best case probability of success
occurs when all defects are located at far ends of the blocks
and the worst case will be that all defects are located at near
ends of the blocks. Hence, if A′ is integer, the best case (upper
bound) and the worst case (lower bound) are A′ and A′ + 1,
respectively. Otherwise, bA′c and dA′e can be used to compute
the best case and worst case yields. Also the smaller α is,
the more accurate the approximation will be. If α equals to
1, there is no scaling and the yield is computed accurately
and the upper- and lower-bounds are equal. For example, by
setting scaling factor to 10, 000 Bytes/block, program P1 is
scaled from 242, 847 Bytes to 24.3 blocks with defect density
changed from 0.000001 to 0.076884. Then upper bound and
lower bound yields can be computed using A′ value of 24 and
25 blocks, respectively.



Fig. 3. Scaling

4.3. Scaling approach when HR is used for repair

To extend our scaling approach when some defective loca-
tions are repaired by HR, we assume that each block (10,000
Bytes) in the above example consists of NR rows and NC
columns. A redundant row (column) can repair a defective
memory as long as defects are located in the same row
(column), in other words, only one row (column) is defective.

According to Section 4.2, for α = 10, 000 the probability
of one block being defective is 0.076884. Assuming NR =
200 and NC = 400, probability that a defective block can be
repaired by one redundant row (column) is:
P (only one defective row) = 0.073864,
P (only one defective column) = 0.073856.
Hence a defective block can be completely repaired by one

redundant row (column) with a probability 0.96072 (0.96062).
Thus, overall yield with T redundant rows (columns) is
calculated by compounding i successful repairs (sr) with the
worse case probability Psr = 0.96062.

Y =

T∑
i=0

(
T

i

)
P isr(1− Psr)T−iY iR, (12)

where Y iR represents Y iCR or Y iIR for classical repair or
intelligent repair, respectively.

4.4. Yield estimation based on analysis

We have computed both upper and lower bounds of yield for
HR (or classical repair), SBDTcr or SBDTir. In Figure 4, we
compute upper and lower bounds for all five example programs
using above equations and Poisson distribution. As memory
size increases, yield increases due to a better chance that a
program can be placed in the defective memory. This is one
of SBDT’s advantages over traditional HR approaches. We
also have the following observations.

(1) For Problem 1 with size beyond some limit, memory
yield is close to 0.

(2) For a given memory size, yield decreases as the program
size increases.

(3) For a given program, yield under the proposed SBDT
approach increases as memory size increases.

5. DESIGN AND EVALUATION FOR PROBLEMS 2 AND 3

In this section we develop a procedure to solve Problem
2 and Problem 3. Particularly, we develop a characterized
bin packing approach for placing sections of code and data
in memory partitions to implement SBDT approaches. Since
Problem 1 is a special case of Problem 2, we also compute
this approach with the order statistics based analytical model
derived in Section 4.

5.1. Design: Placing program in a memory with un-repaired
defects

First consider Problem 2. In this case, we have a given program
in the form described in Section 2. We also have fabricated
chips, each with a memory with N defects, whose locations
X1, X2, ..., XN are provided by the post-fabrication testing
algorithm. As described in Section 2, locations of these N
defects can be sorted as X(1), X(2), ..., X(N) and they divide
the memory into N + 1 partitions. The mapping problem is
to place the K program sections into the N + 1 memory
partitions. To keep symbols consistent between bin packing
problem and actual program placement problem, consider (1) a
program as a set of sections S1, S2, ..., SK , where the sections
are objects of sizes A1, A2, ..., AK , and (2) the defective
memory with partitions P1, P2, ..., PN+1 as a sequence of bins
of sizes Q1, Q2, ..., QN+1. Program-to-memory mapping can
be directly formulated as a bin packing problem, which has
the following features.
• Bin sizes Q1, Q2, ..., QN+1 may be unequal, as defects

occur randomly in memory.
• Object sizes A1, A2, ..., AK are not necessarily less than

the sizes of all bins. Hence it is possible that the bin-
packing procedure will fail.

• Our objective is to pack all objects into available bins,
where the number of bins is determined by the number
of defects.

• Assignment of objects to bins obeys certain requirements
due to relocation rules, described next.

5.1.1 Requirements imposed by relocation rules
Source files are first compiled into object files, which consist
of input sections. The assembler treats each section as starting
at address 0. All relocatable symbols and labels are relative to
address 0 in their respective locations. Of course, all sections
cannot actually begin at address 0 in memory, so the linker
relocates sections by: allocating them into the memory map
so that they begin at the appropriate address; adjusting label
values to correspond to the new section addresses; adjusting
references to relocated symbols and labels to reflect the
adjusted label values.

If an instruction with a PC-relative field contains a reference
to a symbol or label, the relative displacement is expected to
fit in the instruction’s field. If the displacement does not fit
into the field (because the referenced item’s location is too
far away), the linker issues an error. For example, the linker
will issue an error message when an instruction with an 8 bit,
unsigned, PC-relative field references a symbol located 256
or more bytes away from the instruction [3]. Hence we must
ensure that sections are placed in a manner that meets the
above linking constraint when implementing bin packing.

5.1.2 Proposed procedure for placing program sections
Basic procedure: We have adopted the best-fit decreasing
(BFD) heuristic to solve this bin packing problem. Our proce-
dure (a) prioritizes the placement of the largest objects (sec-
tions), since they are typically the most difficult to place; (b)
tries to place each object in the bin with the smallest unused



space in which it fits, since this typically minimizes wastage
of space; and (c) takes into account the special requirements
posed by relocation rules. Also note that it is possible for
BFD to end with a failure for a particular fabricated copy of
the chip. Such a fabricated copy of the chip is discarded and
does not count as yield.
Enhancement for intelligent repair: We have developed ad-
ditional heuristics to identify a combination of defects to
repair that increases the probability of finding a successful
mapping. First consider the special case where only one
spare row (column) is available. For this special case we use
the following decision process with linear complexity: If the
memory’s largest partition Pi has two adjacent partitions Pi−1
and Pi+1, then the most significant defect is identified as the
defect that separates Pi and the larger one of Pi−1 and Pi+1.
The available spare is used to repair this defect. From the view
of bin packing, this combines the largest bin with the larger of
its two neighboring bins and hence maximizes the probability
that the largest object can be placed. Given that the success
of bin packing is almost always limited by the largest object
(demonstrated in Section 4.3), this intelligent-repair strategy
typically gives the best results.

Finally, consider the general case where memory has mul-
tiple spare rows (columns) or where the user programs have
more than one dominant section (object for bin packing). In
this case, our heuristics for repair are integrated into the BFD
approach for bin packing. Each time BFD fails to pack a
section (object), every defect is checked. Assume that a defect
Xi separates two partitions Pi and Pi+1 with i ∈ (0, N), then
the defect Xi is repaired using one redundant row (column)
if and only if combining of Pi and Pi+1 can accommodate
this section with minimum combined capacity (Qi + Qi+1).
We repeat this process until all sections (objects) are packed
or all T redundant rows (columns) are used.

5.2. Yield estimation for Problem 1

As in Section 3, we consider a compiled program as a single
section and memory divided by defects into partitions. This is
a special case of Problem 2 where only one object needs to
be packed in the bin packing problem.

Yield improvement of traditional HR as well as the proposed
SBDTir and SBDTcr approaches for five example programs,
are explored. In each experiment, we use Monte Carlo (MC)
to generate 5000 faulty versions of the memory modules. In
the remainder of this section, we evaluate approaches using
five executable DSP programs summarized in Table I. We
obtained yield for five example programs for Scenario 1 shown
in Figure 6, where the empirical results match previously
captured upper and lower bounds for Scenario 1 shown in
Figure 4. Hence we claim that BFD is a good heuristic in
terms of both accuracy and run-time for Scenario 1. Especially
when we use our heuristics for intelligent repair, the yield
closely follows the upper bound obtained from order statistics
model in terms of SBDTir. From Figure 6, the following can
be concluded for Problem 1.

TABLE I
SIZE OF LARGEST PROGRAM SECTIONS

Program/bits P1 P2 P3 P4 P5
Original size 1,942,776 6,860,648 7,695,576 1,292,248 20,138,656
Scenario 1 1,942,776 1,292,248
Scenario 2 1,228,800 1,810,432
Scenario 3 614,400 1,228,800 1,216,512

i) Memory yield is determined by the program size, which
is shown in Table I. P2, P3 and P5 have yields equal to 0
because these programs are too large to fit into any memory
partition, for given memory size, defect density and hardware
redundancy.

ii) The improvement provided by SBDTcr and SBDTir
compared to HR increases as memory size increases.

iii) SBDTir provides higher yield improvement than SB-
DTcr. This demonstrates that different defects do have differ-
ent levels of inpact on yield for our appraoch.

iv) For P1 and P4, the improvement provided by SBDTcr
with increasing memory size is small because the yield im-
provement is negated by additional defects that occur in the
added memory.

Yield improvement for standard-size memory modules, i.e.,
whose memory size is a power-of-2, for all these techniques
are shown in Table III. In this table, classical approach with
given levels of HR is used as a baseline, where yield is
computed as the probability of defect free chips and fully
repaired chips, which is independent of the program. In
the second column, ALL approach refers attentively to HR,
SBDTcr, and SBDTir.

5.3. Yield estimation for Problem 2

Now we consider that program sections are of two types in
Scenario 2 for each program. Code sections contain segments
of machine code; data sections contain user data as well as
system data, e.g., stacks. Usually, user data sections contain
independent data arrays such that we can reasonably assume
that each array is compiled into one section. (Due to lack of
space, we do not provide the size of every section in the paper.
Interested readers can contact us via the Program Council
Chair for this information.).

Yield improvements for the traditional HR as well as our
SBDTir and SBDTcr approaches are computed for all five
example programs and the results are shown in Figure 6. The
results lead to the following observations.

i) Yield of 100% is achieved for small programs (P1 and
P4) and given memory size, the yield for larger programs (P2
and P3) increases, at the same time, yield for the program with
very large sections (P5) remains close to 0%.

ii) In Scenario 2, some programs have dominating sections.
When this is the case, the difference between SBDTcr and
SBDTir is less than in Problem 1, as only one spare row
(column) is assumed available for repair and that one single
spare often fails to ensure that all large sections are assigned
memory space in both SBDTcr and SBDTir.
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Fig. 4. Analytical estimation of yield for Problem 1 for five example programs P1 to P5

Fig. 5. Compiler-level remapping

5.4. Yield estimation for Problem 3

From Table III, we can see that in Scenario 2 yield for P1
and P4 becomes 100% for all given standard-size memories.
However, P2 and P3 need memories with more than twice
their program sizes to reach 100% yield. More importantly P5
still has yield of 0. The relatively low yields for P2, P3, and
P5 result from large data arrays used in these programs that
become dominating sections. Media applications often have
large data sections, such as images and video frames. For
example, a 240× 320 pixel2 image with 16-bit color depth is
an 153,600-Byte variable if stored as an array in one of the
data sections.

In our bin packing model, large objects are difficult to
pack into any specific defective memory. For programs with
large data sections, this creates a bottleneck for improving
memory yield. Hence we propose a data partitioning technique
to address this problem for data dominant programs and a code
partitioning technique for code dominant programs.

5.4.1 Data partitioning
For large data sections, partitioning can be implemented by
compiler-level remapping shown in Figure 5. The compiler
is enhanced to partition a large array into sub arrays where
each sub array is assigned an index pointer. For subsequent
bin-packing, each sub-array becomes a separate smaller data
section. The program must be modified correspondingly, and
a general approach is to insert a checking statement before
every access to the original memory array. This check can
identify the appropriate sub-array and use its index and
modified offset to access the correct data item. To evaluate
performance degradation of this partitioning technique, func-
tion TIMER getCount() in library csl6713.lib is used to
measure run-time of programs in terms of number of CPU
cycles. Then performance of critical routines that are affected
by partitioning are compared for cases with and without
partitioning.

To identify optimal partitioned data sections that meet a
certain yield threshold, a simple heuristic is developed based

TABLE II
CATEGORIES OF BRANCH INSTRUCTIONS

To a label: B.S1 dotp4clasmfunc
To an address: B.S1 0x80007A44
To a register: MVK.S2 0x27b4,B3

B.S1 B3

on the tradeoff between program run time and effective yield.
Program run time is obtained by simulating modified assembly
code on DSP6713 shown in Table III. As 100% yields are
already obtained for P1 and P4, data partitioning is only
performed for P2, P3 and P5. According to the results in Figure
6, we have the following observations.

i) After partitioning extra yield improvement is obtained for
P2 and P3, and the amount of yield improvement is limited
by the new dominating sections.

ii) As for Problem 2, as the number of dominating sec-
tions increases, the difference between SBDTir and SBDTcr
decreases.

iii) Non-zero yield is obtained for P5. As its program size
is much larger than others, it needs a much larger memory.

iv) Performance degradation due to data partitioning is
negligible.
Yield improvement and performance degradation for standard-
size memory modules are shown in Table III. For example,
a “1” in the “partition” column indicates that the largest data
array is partitioned once into two sub arrays and a “3” indicates
that the largest data array is partitioned three times, i.e., into
eight sub arrays. The last column shows the corresponding
performance degradation.

5.4.2 Code partitioning
Code partitioning technique is introduced based on a new
notation, unconditional block. Similar to the definition of basic
block in computer architecture, we define an unconditional
block as a block of instructions that ends with an unconditional
branch. Hence, unconditional blocks are independent code sec-
tions before compiled files are linked. It is worth mentioning
that as conditional branches (i.e., BEQ) can exist inside uncon-
ditional blocks and jump to labels outside this unconditional
block. That is, instructions from one unconditional block do
not execute exactly once, in order. Hence unconditional blocks
are not basic blocks by definition. In disassembled instruction
streams of COFF executables, all branch instructions can be
divided into three categories shown in Table II.

After the study of disassembled instructions of the exam-
ple program “Dotp4casm” on TI DSP 6713 DSK, we have
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Fig. 6. Experiment results

following observations:
i) Using only the existing unconditional branches, the

compiler is able to partition the program into blocks with a
maximum size of 932 Bytes. This is encouraging in terms of
bin packing algorithms, as it implies that memory yield for
code-dominated programs can be always raised to 100% by
appropriate code partitioning.

ii) As this approach only uses existing unconditional
branches, it does not introduce any performance degradation
or memory overhead.

6. CONCLUSION

This paper proposes a software-based defect-tolerance (SBDT)
approach and its variants, SBDTcr and SBDTir, for
application-specific embedded systems, which are demon-
strated to incur trivial performance overhead and significantly
improve yield for embedded systems memories.
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